Search results for: crop disease detection
7790 A Real-Time Snore Detector Using Neural Networks and Selected Sound Features
Authors: Stelios A. Mitilineos, Nicolas-Alexander Tatlas, Georgia Korompili, Lampros Kokkalas, Stelios M. Potirakis
Abstract:
Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) is a widespread chronic disease that mostly remains undetected, mainly due to the fact that it is diagnosed via polysomnography which is a time and resource-intensive procedure. Screening the disease’s symptoms at home could be used as an alternative approach in order to alert individuals that potentially suffer from OSAHS without compromising their everyday routine. Since snoring is usually linked to OSAHS, developing a snore detector is appealing as an enabling technology for screening OSAHS at home using ubiquitous equipment like commodity microphones (included in, e.g., smartphones). In this context, this study developed a snore detection tool and herein present the approach and selection of specific sound features that discriminate snoring vs. environmental sounds, as well as the performance of the proposed tool. Furthermore, a Real-Time Snore Detector (RTSD) is built upon the snore detection tool and employed in whole-night sleep sound recordings resulting to a large dataset of snoring sound excerpts that are made freely available to the public. The RTSD may be used either as a stand-alone tool that offers insight to an individual’s sleep quality or as an independent component of OSAHS screening applications in future developments.Keywords: obstructive sleep apnea hypopnea syndrome, apnea screening, snoring detection, machine learning, neural networks
Procedia PDF Downloads 2077789 Real-Time Detection of Space Manipulator Self-Collision
Authors: Zhang Xiaodong, Tang Zixin, Liu Xin
Abstract:
In order to avoid self-collision of space manipulators during operation process, a real-time detection method is proposed in this paper. The manipulator is fitted into a cylinder enveloping surface, and then the detection algorithm of collision between cylinders is analyzed. The collision model of space manipulator self-links can be detected by using this algorithm in real-time detection during the operation process. To ensure security of the operation, a safety threshold is designed. The simulation and experiment results verify the effectiveness of the proposed algorithm for a 7-DOF space manipulator.Keywords: space manipulator, collision detection, self-collision, the real-time collision detection
Procedia PDF Downloads 4697788 Iris Detection on RGB Image for Controlling Side Mirror
Authors: Norzalina Othman, Nurul Na’imy Wan, Azliza Mohd Rusli, Wan Noor Syahirah Meor Idris
Abstract:
Iris detection is a process where the position of the eyes is extracted from the face images. It is a current method used for many applications such as for security purpose and drowsiness detection. This paper proposes the use of eyes detection in controlling side mirror of motor vehicles. The eyes detection method aims to make driver easy to adjust the side mirrors automatically. The system will determine the midpoint coordinate of eyes detection on RGB (color) image and the input signal from y-coordinate will send it to controller in order to rotate the angle of side mirror on vehicle. The eye position was cropped and the coordinate of midpoint was successfully detected from the circle of iris detection using Viola Jones detection and circular Hough transform methods on RGB image. The coordinate of midpoint from the experiment are tested using controller to determine the angle of rotation on the side mirrors.Keywords: iris detection, midpoint coordinates, RGB images, side mirror
Procedia PDF Downloads 4237787 Effect of Steam Explosion of Crop Residues on Chemical Compositions and Efficient Energy Values
Authors: Xin Wu, Yongfeng Zhao, Qingxiang Meng
Abstract:
In China, quite low proportion of crop residues were used as feedstuff because of its poor palatability and low digestibility. Steam explosion is a physical and chemical feed processing technology which has great potential to improve sapidity and digestibility of crop residues. To investigate the effect of the steam explosion on chemical compositions and efficient energy values, crop residues (rice straw, wheat straw and maize stover) were processed by steam explosion (steam temperature 120-230°C, steam pressure 2-26kg/cm², 40min). Steam-exploded crop residues were regarded as treatment groups and untreated ones as control groups, nutritive compositions were analyzed and effective energy values were calculated by prediction model in INRA (1988, 2010) for both groups. Results indicated that the interaction between treatment and variety has a significant effect on chemical compositions of crop residues. Steam explosion treatment of crop residues decreased neutral detergent fiber (NDF) significantly (P < 0.01), and compared with untreated material, NDF content of rice straw, wheat straw, and maize stover lowered 21.46%, 32.11%, 28.34% respectively. Acid detergent lignin (ADL) of crop residues increased significantly after the steam explosion (P < 0.05). The content of crude protein (CP), ether extract (EE) and Ash increased significantly after steam explosion (P < 0.05). Moreover, predicted effective energy values of each steam-exploded residue were higher than that of untreated ones. The digestible energy (DE), metabolizable energy (ME), net energy for maintenance (NEm) and net energy for gain (NEg)of steam-exploded rice straw were 3.06, 2.48, 1.48and 0.29 MJ/kg respectively and increased 46.21%, 46.25%, 49.56% and 110.92% compared with untreated ones(P < 0.05). Correspondingly, the energy values of steam-exploded wheat straw were 2.18, 1.76, 1.03 and 0.15 MJ/kg, which were 261.78%, 261.29%, 274.59% and 1014.69% greater than that of wheat straw (P < 0.05). The above predicted energy values of steam exploded maize stover were 5.28, 4.30, 2.67 and 0.82 MJ/kg and raised 109.58%, 107.71%, 122.57% and 332.64% compared with the raw material(P < 0.05). In conclusion, steam explosion treatment could significantly decrease NDF content, increase ADL, CP, EE, Ash content and effective energy values of crop residues. The effect of steam explosion was much more obvious for wheat straw than the other two kinds of residues under the same condition.Keywords: chemical compositions, crop residues, efficient energy values, steam explosion
Procedia PDF Downloads 2507786 Varietal Screening of Watermelon against Powdery Mildew Disease and Its Management
Authors: Asim Abbasi, Amer Habib, Sajid Hussain, Muhammad Sufyan, Iqra, Hasnain Sajjad
Abstract:
Except for few scattered cases, powdery mildew disease was not a big problem for watermelon in the past but with the outbreaks of its pathotypes, races 1W and 2W, this disease becomes a serious issue all around the globe. The severe outbreak of this disease also increased the rate of fungicide application for its proper management. Twelve varieties of watermelon were screened in Research Area of Department of Plant pathology, University of Agriculture, Faisalabad to check the incidence of powdery mildew disease. Disease inoculum was prepared and applied with the help of foliar spray method. Fungicides and plants extracts were also applied after the disease incidence. Percentage leaf surface area diseased was assessed visually with a modified Horsfall-Barratt scale. The results of the experiment revealed that among all varieties, WT2257 and Zcugma F1 were highly resistant showing less than 5% disease incidence while Anar Kali and Sugar baby were highly susceptible with disease incidence of more than 65%. Among botanicals neem extract gave best results with disease incidence of less than 20%. Besides neem, all other botanicals also gave significant control of powdery mildew disease than the untreated check. In case of fungicides, Gemstar showed least disease incidence i.e. < 10%, however besides control maximum disease incidence was observed in Curzate (> 30%).Keywords: botanicals, fungicides, pathotypes, powdery mildew
Procedia PDF Downloads 2977785 Rapid, Label-Free, Direct Detection and Quantification of Escherichia coli Bacteria Using Nonlinear Acoustic Aptasensor
Authors: Shilpa Khobragade, Carlos Da Silva Granja, Niklas Sandström, Igor Efimov, Victor P. Ostanin, Wouter van der Wijngaart, David Klenerman, Sourav K. Ghosh
Abstract:
Rapid, label-free and direct detection of pathogenic bacteria is critical for the prevention of disease outbreaks. This paper for the first time attempts to probe the nonlinear acoustic response of quartz crystal resonator (QCR) functionalized with specific DNA aptamers for direct detection and quantification of viable E. coli KCTC 2571 bacteria. DNA aptamers were immobilized through biotin and streptavidin conjugation, onto the gold surface of QCR to capture the target bacteria and the detection was accomplished by shift in amplitude of the peak 3f signal (3 times the drive frequency) upon binding, when driven near fundamental resonance frequency. The developed nonlinear acoustic aptasensor system demonstrated better reliability than conventional resonance frequency shift and energy dissipation monitoring that were recorded simultaneously. This sensing system could directly detect 10⁽⁵⁾ cells/mL target bacteria within 30 min or less and had high specificity towards E. coli KCTC 2571 bacteria as compared to the same concentration of S.typhi bacteria. Aptasensor response was observed for the bacterial suspensions ranging from 10⁽⁵⁾-10⁽⁸⁾ cells/mL. Conclusively, this nonlinear acoustic aptasensor is simple to use, gives real-time output, cost-effective and has the potential for rapid, specific, label-free direction detection of bacteria.Keywords: acoustic, aptasensor, detection, nonlinear
Procedia PDF Downloads 5667784 Automatic Vehicle Detection Using Circular Synthetic Aperture Radar Image
Authors: Leping Chen, Daoxiang An, Xiaotao Huang
Abstract:
Automatic vehicle detection using synthetic aperture radar (SAR) image has been widely researched, as well as using optical remote sensing images. However, most researches treat the detection as an independent problem, failing to make full use of SAR data information. In circular SAR (CSAR), the two long borders of vehicle will shrink if the imaging surface is set higher than the reference one. Based on above variance, an automatic vehicle detection using CSAR image is proposed to enhance detection ability under complex environment, such as vehicles’ closely packing, which confuses the detector. The detection method uses the multiple images generated by different height plane to obtain an energy-concentrated image for detecting and then uses the maximally stable extremal regions method (MSER) to detect vehicles. A result of vehicles’ detection is given to verify the effectiveness and correctness of proposed method.Keywords: circular SAR, vehicle detection, automatic, imaging
Procedia PDF Downloads 3677783 Efficacy of Bio-Control Agents against Colletotrichum falcatum Causing Red Rot Disease of Sugarcane
Authors: Geeta Sharma, Suma Chandra
Abstract:
Sugarcane is one of the major commercial crop playing roles in agriculture and industrial economy of India. Globally sugarcane is affected by approximately 240 diseases caused by various plant pathogenic organisms. Among them, red rot disease caused by the fungus Colletotrichum falcatum, is one of the most important diseases. In the present investigation, one fungal bioagent of Trichoderma harzianum, Pant Bioagent 1 and one bacterial bioagent Pseudomonas fluorescence, Pant Bioagent 2 (PBAT 1 and PBAT 2, respectively) were tested by dual culture method against the pathogen under laboratory conditions. The effectiveness of biocontrol agents was observed against four isolates of C. falcatum. In the case of PBAT1 maximum percent inhibition of pathogen was recorded in isolated Cf 0238 (61.05%), followed by Cf 09 (60.62%) whereas, minimum percent inhibition was recorded in Cf 3220 (48.55%) and in case of PBAT2 maximum mycelial growth inhibition percent was recorded in Cf 767 (50.50%) followed by Cf 088230(48.83%), whereas minimum percent inhibition was recorded in Cf 08 (40.16%) followed by Cf 0238 (41.83%). The present study showed that these biocontrol agents have the potential of controlling the pathogen and can further be used for the management of red rot disease in field.Keywords: biocontrol agents, Colletotrichum falcatum, isolates, sugarcane
Procedia PDF Downloads 3177782 Multivariate Analysis of Spectroscopic Data for Agriculture Applications
Authors: Asmaa M. Hussein, Amr Wassal, Ahmed Farouk Al-Sadek, A. F. Abd El-Rahman
Abstract:
In this study, a multivariate analysis of potato spectroscopic data was presented to detect the presence of brown rot disease or not. Near-Infrared (NIR) spectroscopy (1,350-2,500 nm) combined with multivariate analysis was used as a rapid, non-destructive technique for the detection of brown rot disease in potatoes. Spectral measurements were performed in 565 samples, which were chosen randomly at the infection place in the potato slice. In this study, 254 infected and 311 uninfected (brown rot-free) samples were analyzed using different advanced statistical analysis techniques. The discrimination performance of different multivariate analysis techniques, including classification, pre-processing, and dimension reduction, were compared. Applying a random forest algorithm classifier with different pre-processing techniques to raw spectra had the best performance as the total classification accuracy of 98.7% was achieved in discriminating infected potatoes from control.Keywords: Brown rot disease, NIR spectroscopy, potato, random forest
Procedia PDF Downloads 1907781 Correlation between Peripheral Arterial Disease and Coronary Artery Disease in Bangladeshi Population: A Five Years Retrospective Study
Authors: Syed Dawood M. Taimur
Abstract:
Background: Peripheral arterial disease (PAD) is under diagnosed in primary care practices, yet the extent of unrecognized PAD in patients with coronary artery disease (CAD) is unknown. Objective: To assess the prevalence of previously unrecognized PAD in patients undergoing coronary angiogram and to determine the relationship between the presence of PAD and severity of CAD. Material & Methods: This five years retrospective study was conducted at an invasive lab of the department of Cardiology, Ibrahim Cardiac Hospital & Research Institute from January 2010 to December 2014. Total 77 patients were included in this study. Study variables were age, sex, risk factors like hypertension, diabetes mellitus, dyslipidaemia, smoking habit and positive family history for ischemic heart disease, coronary artery and peripheral artery profile. Results: Mean age was 56.83±13.64 years, Male mean age was 53.98±15.08 years and female mean age was 54.5±1.73years. Hypertension was detected in 55.8%, diabetes in 87%, dyslipidaemia in 81.8%, smoking habits in 79.2% and 58.4% had a positive family history. After catheterization 88.3% had peripheral arterial disease and 71.4% had coronary artery disease. Out of 77 patients, 52 had both coronary and peripheral arterial disease which was statistically significant (p < .014). Coronary angiogram revealed 28.6% (22) patients had triple vessel disease, 23.3% (18) had single vessel disease, 19.5% (15) had double vessel disease and 28.6% (22) were normal coronary arteries. The peripheral angiogram revealed 54.5% had superficial femoral artery disease, 26% had anterior tibial artery disease, 27.3% had posterior tibial artery disease, 20.8% had common iliac artery disease, 15.6% had common femoral artery disease and 2.6% had renal artery disease. Conclusion: There is a strong and definite correlation between coronary and peripheral arterial disease. We found that cardiovascular risk factors were in fact risk factors for both PAD and CAD.Keywords: coronary artery disease (CAD), peripheral artery disease(PVD), risk, factors, correlation, cathetarization
Procedia PDF Downloads 4267780 Adaptive CFAR Analysis for Non-Gaussian Distribution
Authors: Bouchemha Amel, Chachoui Takieddine, H. Maalem
Abstract:
Automatic detection of targets in a modern communication system RADAR is based primarily on the concept of adaptive CFAR detector. To have an effective detection, we must minimize the influence of disturbances due to the clutter. The detection algorithm adapts the CFAR detection threshold which is proportional to the average power of the clutter, maintaining a constant probability of false alarm. In this article, we analyze the performance of two variants of adaptive algorithms CA-CFAR and OS-CFAR and we compare the thresholds of these detectors in the marine environment (no-Gaussian) with a Weibull distribution.Keywords: CFAR, threshold, clutter, distribution, Weibull, detection
Procedia PDF Downloads 5897779 Intrusion Detection Techniques in Mobile Adhoc Networks: A Review
Authors: Rashid Mahmood, Muhammad Junaid Sarwar
Abstract:
Mobile ad hoc networks (MANETs) use has been well-known from the last few years in the many applications, like mission critical applications. In the (MANETS) prevention method is not adequate as the security concerned, so the detection method should be added to the security issues in (MANETs). The authentication and encryption is considered the first solution of the MANETs problem where as now these are not sufficient as MANET use is increasing. In this paper we are going to present the concept of intrusion detection and then survey some of major intrusion detection techniques in MANET and aim to comparing in some important fields.Keywords: MANET, IDS, intrusions, signature, detection, prevention
Procedia PDF Downloads 3797778 Comparison of Feedforward Back Propagation and Self-Organizing Map for Prediction of Crop Water Stress Index of Rice
Authors: Aschalew Cherie Workneh, K. S. Hari Prasad, Chandra Shekhar Prasad Ojha
Abstract:
Due to the increase in water scarcity, the crop water stress index (CWSI) is receiving significant attention these days, especially in arid and semiarid regions, for quantifying water stress and effective irrigation scheduling. Nowadays, machine learning techniques such as neural networks are being widely used to determine CWSI. In the present study, the performance of two artificial neural networks, namely, Self-Organizing Maps (SOM) and Feed Forward-Back Propagation Artificial Neural Networks (FF-BP-ANN), are compared while determining the CWSI of rice crop. Irrigation field experiments with varying degrees of irrigation were conducted at the irrigation field laboratory of the Indian Institute of Technology, Roorkee, during the growing season of the rice crop. The CWSI of rice was computed empirically by measuring key meteorological variables (relative humidity, air temperature, wind speed, and canopy temperature) and crop parameters (crop height and root depth). The empirically computed CWSI was compared with SOM and FF-BP-ANN predicted CWSI. The upper and lower CWSI baselines are computed using multiple regression analysis. The regression analysis showed that the lower CWSI baseline for rice is a function of crop height (h), air vapor pressure deficit (AVPD), and wind speed (u), whereas the upper CWSI baseline is a function of crop height (h) and wind speed (u). The performance of SOM and FF-BP-ANN were compared by computing Nash-Sutcliffe efficiency (NSE), index of agreement (d), root mean squared error (RMSE), and coefficient of correlation (R²). It is found that FF-BP-ANN performs better than SOM while predicting the CWSI of rice crops.Keywords: artificial neural networks; crop water stress index; canopy temperature, prediction capability
Procedia PDF Downloads 1177777 Genetically Engineered Crops: Solution for Biotic and Abiotic Stresses in Crop Production
Authors: Deepak Loura
Abstract:
Production and productivity of several crops in the country continue to be adversely affected by biotic (e.g., Insect-pests and diseases) and abiotic (e.g., water temperature and salinity) stresses. Over-dependence on pesticides and other chemicals is economically non-viable for the resource-poor farmers of our country. Further, pesticides can potentially affect human and environmental safety. While traditional breeding techniques and proper- management strategies continue to play a vital role in crop improvement, we need to judiciously use biotechnology approaches for the development of genetically modified crops addressing critical problems in the improvement of crop plants for sustainable agriculture. Modern biotechnology can help to increase crop production, reduce farming costs, and improve food quality and the safety of the environment. Genetic engineering is a new technology which allows plant breeders to produce plants with new gene combinations by genetic transformation of crop plants for improvement of agronomic traits. Advances in recombinant DNA technology have made it possible to have genes between widely divergent species to develop genetically modified or genetically engineered plants. Plant genetic engineering provides the strength to harness useful genes and alleles from indigenous microorganisms to enrich the gene pool for developing genetically modified (GM) crops that will have inbuilt (inherent) resistance to insect pests, diseases, and abiotic stresses. Plant biotechnology has made significant contributions in the past 20 years in the development of genetically engineered or genetically modified crops with multiple benefits. A variety of traits have been introduced in genetically engineered crops which include (i) herbicide resistance. (ii) pest resistance, (iii) viral resistance, (iv) slow ripening of fruits and vegetables, (v) fungal and bacterial resistance, (vi) abiotic stress tolerance (drought, salinity, temperature, flooding, etc.). (vii) quality improvement (starch, protein, and oil), (viii) value addition (vitamins, micro, and macro elements), (ix) pharmaceutical and therapeutic proteins, and (x) edible vaccines, etc. Multiple genes in transgenic crops can be useful in developing durable disease resistance and a broad insect-control spectrum and could lead to potential cost-saving advantages for farmers. The development of transgenic to produce high-value pharmaceuticals and the edible vaccine is also under progress, which requires much more research and development work before commercially viable products will be available. In addition, molecular-aided selection (MAS) is now routinely used to enhance the speed and precision of plant breeding. Newer technologies need to be developed and deployed for enhancing and sustaining agricultural productivity. There is a need to optimize the use of biotechnology in conjunction with conventional technologies to achieve higher productivity with fewer resources. Therefore, genetic modification/ engineering of crop plants assumes greater importance, which demands the development and adoption of newer technology for the genetic improvement of crops for increasing crop productivity.Keywords: biotechnology, plant genetic engineering, genetically modified, biotic, abiotic, disease resistance
Procedia PDF Downloads 717776 E-Vet Smart Rapid System: Detection of Farm Disease Based on Expert System as Supporting to Epidemic Disesase Control
Authors: Malik Abdul Jabbar Zen, Wiwik Misaco Yuniarti, Azisya Amalia Karimasari, Novita Priandini
Abstract:
Zoonos is as an infectiontransmitted froma nimals to human sand vice versa currently having increased in the last 20 years. The experts/scientists predict that zoonosis will be a threat to the community in the future since it leads on 70% emerging infectious diseases (EID) and the high mortality of 50%-90%. The zoonosis’ spread from animal to human is caused by contaminated food known as foodborne disease. One World One Health, as the conceptual prevention toward zoonosis, requires the crossed disciplines cooperation to accelerate and streamlinethe handling ofanimal-based disease. E-Vet Smart Rapid System is an integrated innovation in the veterinary expertise application is able to facilitate the prevention, treatment, and educationagainst pandemic diseases and zoonosis. This system is constructed by Decision Support System (DSS) method provides a database of knowledge that is expected to facilitate the identification of disease rapidly, precisely, and accurately as well as to identify the deduction. The testingis conducted through a black box test case and questionnaire (N=30) by validity and reliability approach. Based on the black box test case reveals that E-Vet Rapid System is able to deliver the results in accordance with system design, and questionnaire shows that this system is valid (r > 0.361) and has a reliability (α > 0.3610).Keywords: diagnosis, disease, expert systems, livestock, zoonosis
Procedia PDF Downloads 4557775 The Impact of Climate Change on Cropland Ecosystem in Tibet Plateau
Authors: Weishou Shen, Chunyan Yang, Zhongliang Li
Abstract:
The crop climate productivity and the distribution of cropland reflect long-term adaption of agriculture to climate. In order to fully understand the impact of climate change on cropland ecosystem in Tibet, the spatiotemporal changes of crop climate productivity and cropland distribution were analyzed with the help of GIS and RS software. Results indicated that the climate change to the direction of wet and warm in Tibet in the recent 30 years, with a rate of 0.79℃/10 yr and 23.28 mm/10yr respectively. Correspondingly, the climate productivity increased gradually, with a rate of 346.3kg/(hm2•10a), of which, the fastest-growing rate of the crop climate productivity is in Southern Tibet Mountain- plain-valley. During the study period, the total cropland area increased from 32.54 million ha to 37.13 million ha, and cropland has expanded to higher altitude area and northward. Overall, increased cropland area and crop climate productivity due to climate change plays a positive role for agriculture in Tibet.Keywords: climate change, productivity, cropland area, Tibet plateau
Procedia PDF Downloads 3787774 Smoker Recognition from Lung X-Ray Images Using Convolutional Neural Network
Authors: Moumita Chanda, Md. Fazlul Karim Patwary
Abstract:
Smoking is one of the most popular recreational drug use behaviors, and it contributes to birth defects, COPD, heart attacks, and erectile dysfunction. To completely eradicate this disease, it is imperative that it be identified and treated. Numerous smoking cessation programs have been created, and they demonstrate how beneficial it may be to help someone stop smoking at the ideal time. A tomography meter is an effective smoking detector. Other wearables, such as RF-based proximity sensors worn on the collar and wrist to detect when the hand is close to the mouth, have been proposed in the past, but they are not impervious to deceptive variables. In this study, we create a machine that can discriminate between smokers and non-smokers in real-time with high sensitivity and specificity by watching and collecting the human lung and analyzing the X-ray data using machine learning. If it has the highest accuracy, this machine could be utilized in a hospital, in the selection of candidates for the army or police, or in university entrance.Keywords: CNN, smoker detection, non-smoker detection, OpenCV, artificial Intelligence, X-ray Image detection
Procedia PDF Downloads 847773 A Comparative Study of Virus Detection Techniques
Authors: Sulaiman Al amro, Ali Alkhalifah
Abstract:
The growing number of computer viruses and the detection of zero day malware have been the concern for security researchers for a large period of time. Existing antivirus products (AVs) rely on detecting virus signatures which do not provide a full solution to the problems associated with these viruses. The use of logic formulae to model the behaviour of viruses is one of the most encouraging recent developments in virus research, which provides alternatives to classic virus detection methods. In this paper, we proposed a comparative study about different virus detection techniques. This paper provides the advantages and drawbacks of different detection techniques. Different techniques will be used in this paper to provide a discussion about what technique is more effective to detect computer viruses.Keywords: computer viruses, virus detection, signature-based, behaviour-based, heuristic-based
Procedia PDF Downloads 4847772 Management and Conservation of Crop Biodiversity in Karnali Mountains of Nepal
Authors: Chhabi Paudel
Abstract:
The food and nutrition security of the people of the mountain of Karnali province of Nepal is dependent on traditional crop biodiversity. The altitude range of the study area is 1800 meters to 2700 meters above sea level. The climate is temperate to alpine. Farmers are adopting subsistent oriented diversified farming systems and selected crop species, cultivars, and local production systems by their own long adaptation mechanism. The major crop species are finger millet, proso millet, foxtail millet, potato, barley, wheat, mountain rice, buckwheat, Amaranths, medicinal plants, and many vegetable species. The genetic and varietal diversity of those underutilized indigenous crops is also very high, which has sustained farming even in uneven climatic events. Biodiversity provides production synergy, inputs, and other agro-ecological services for self-sustainability. But increase in human population and urban accessibility are seen as threats to biodiversity conservation. So integrated conservation measures are suggested, including agro-tourism and other monetary benefits to the farmers who conserve the local biodiversity.Keywords: crop biodiversity, climate change, in-situ conservation, resilience, sustainability, agrotourism
Procedia PDF Downloads 977771 Detection of Oral Mucosal Lesions in Cutaneous Psoriatic Patients
Authors: Rania A. R. Soudan, Easter Joury
Abstract:
Introduction: Psoriasis is a common chronic dermatologic disease. It may affect the mucous membranes. The presence of oral mucosal lesions has been a subject of controversy. The aim: To determine possible association between oral mucosal lesions and psoriasis, and to correlate the same with different types of psoriasis and severity of the disease. Materials and Methods: The oral mucosa was clinically examined in 100 randomly selected Syrian psoriatic patients presented to the Dermatological Diseases Hospital in Damascus University, Syria (February 2009 - December 2010), and in 100 matched controls. PASI index was used to evaluate the disease severity. Chi-square and Student t-test were used to compare differences between groups. Results: Oral mucosal lesions were observed in 72% of the psoriasis cases, while 46% of the control group’s subjects had oral lesions. Fissured tongue, geographic tongue, and red lesions were detected in 36%, 25%, and 7% of the examined psoriatics, respectively. These lesions were significantly more frequent in the psoriatics than in the controls. A correlation was found between furred tongue and the age of the psoriasis patients. However, an association was observed for fissured tongue, furred tongue with the severity of the disease, and for fissured tongue, white lesions, cheilitis with nail involvement. However, no correlation with the psoriasis types was recorded. Conclusion: Some oral mucosal lesions were associated with psoriasis, so these lesions may be considered as oral manifestations of this disease, and should be taken into account in new studies as possible predictors or markers of this dermatitis. Further studies are recommended to confirm these oral manifestations.Keywords: psoriasis, tongue, mucosa, lesions
Procedia PDF Downloads 2927770 The Effect of Pixelation on Face Detection: Evidence from Eye Movements
Authors: Kaewmart Pongakkasira
Abstract:
This study investigated how different levels of pixelation affect face detection in natural scenes. Eye movements and reaction times, while observers searched for faces in natural scenes rendered in different ranges of pixels, were recorded. Detection performance for coarse visual detail at lower pixel size (3 x 3) was better than with very blurred detail carried by higher pixel size (9 x 9). The result is consistent with the notion that face detection relies on gross detail information of face-shape template, containing crude shape structure and features. In contrast, detection was impaired when face shape and features are obscured. However, it was considered that the degradation of scenic information might also contribute to the effect. In the next experiment, a more direct measurement of the effect of pixelation on face detection, only the embedded face photographs, but not the scene background, will be filtered.Keywords: eye movements, face detection, face-shape information, pixelation
Procedia PDF Downloads 3177769 Performance of Nakagami Fading Channel over Energy Detection Based Spectrum Sensing
Authors: M. Ranjeeth, S. Anuradha
Abstract:
Spectrum sensing is the main feature of cognitive radio technology. Spectrum sensing gives an idea of detecting the presence of the primary users in a licensed spectrum. In this paper we compare the theoretical results of detection probability of different fading environments like Rayleigh, Rician, Nakagami-m fading channels with the simulation results using energy detection based spectrum sensing. The numerical results are plotted as P_f Vs P_d for different SNR values, fading parameters. It is observed that Nakagami fading channel performance is better than other fading channels by using energy detection in spectrum sensing. A MATLAB simulation test bench has been implemented to know the performance of energy detection in different fading channel environment.Keywords: spectrum sensing, energy detection, fading channels, probability of detection, probability of false alarm
Procedia PDF Downloads 5327768 Molecular Interaction of Acetylcholinesterase with Flavonoids Involved in Neurodegenerative Diseases
Authors: W. Soufi, F. Boukli Hacene, S. Ghalem
Abstract:
Alzheimer's disease (AD) is a neurodegenerative disease that leads to a progressive and permanent deterioration of nerve cells. This disease is progressively accompanied by an intellectual deterioration leading to psychological manifestations and behavioral disorders that lead to a loss of autonomy. It is the most frequent of degenerative dementia. Alzheimer's disease (AD), which affects a growing number of people, has become a major public health problem in a few years. In the context of the study of the mechanisms governing the evolution of AD disease, we have found that natural flavonoids are good acetylcholinesterase inhibitors that reduce the rate of ßA secretion in neurons. This work is to study the inhibition of acetylcholinesterase (AChE) which is an enzyme involved in Alzheimer's disease, by methods of molecular modeling. These results will probably help in the development of an effective therapeutic tool in the fight against the development of Alzheimer's disease. Our goal of the research is to study the inhibition of acetylcholinesterase (AChE) by molecular modeling methods.Keywords: Alzheimer's disease, acetylcholinesterase, flavonoids, molecular modeling
Procedia PDF Downloads 1057767 Study of Virus/es Threatening Large Cardamom Cultivation in Sikkim and Darjeeling Hills of Northeast India
Authors: Dharmendra Pratap
Abstract:
Large Cardamom (Amomum subulatum), family Zingiberaceae is an aromatic spice crop and has rich medicinal value. Large Cardamom is as synonymous to Sikkim as Tea is to Darjeeling. Since Sikkim alone contributes up to 88% of India's large cardamom production which is the world leader by producing over 50% of the global yield. However, the production of large cardamom has declined almost to half since last two decade. The economic losses have been attributed to two viral diseases namely, chirke and Foorkey. Chirke disease is characterized by light and dark green streaks on leaves. The affected leaves exhibit streak mosaic, which gradually coalesce, turn brown and eventually dry up. Excessive sprouting and formation of bushy dwarf clumps at the base of mother plants that gradually die characterize the foorkey disease. In our surveys in Sikkim–Darjeeling hill area during 2012-14, 40-45% of plants were found to be affected with foorkey disease and 10-15% with chirke. Mechanical and aphid transmission study showed banana as an alternate host for both the disease. For molecular identification, total genomic DNA and RNA was isolated from the infected leaf tissues and subjected to Rolling circle amplification (RCA) and RT-PCR respectively. The DNA concatamers produced in the RCA reaction were monomerized by different restriction enzymes and the bands corresponding to ~1 kb genomes were purified and cloned in the respective sites. The nucleotide sequencing results revealed the association of Nanovirus with the foorkey disease of large cardamom. DNA1 showed 74% identity with Replicase gene of FBNYV, DNA2 showed 77% identity with the NSP gene of BBTV and DNA3 showed 74% identity with CP gene of BBTV. The finding suggests the presence of a new species of nanovirus associated with foorkey disease of large cardamom in Sikkim and Darjeeling hills. The details of their epidemiology and other factors would be discussed.Keywords: RCA, nanovirus, large cardamom, molecular virology and microbiology
Procedia PDF Downloads 4927766 Evaluation of Ceres Wheat and Rice Model for Climatic Conditions in Haryana, India
Authors: Mamta Rana, K. K. Singh, Nisha Kumari
Abstract:
The simulation models with its soil-weather-plant atmosphere interacting system are important tools for assessing the crops in changing climate conditions. The CERES-Wheat & Rice vs. 4.6 DSSAT was calibrated and evaluated for one of the major producers of wheat and rice state- Haryana, India. The simulation runs were made under irrigated conditions and three fertilizer applications dose of N-P-K to estimate crop yield and other growth parameters along with the phenological development of the crop. The genetic coefficients derived by iteratively manipulating the relevant coefficients that characterize the phenological process of wheat and rice crop to the best fit match between the simulated and observed anthesis, physological maturity and final grain yield. The model validated by plotting the simulated and remote sensing derived LAI. LAI product from remote sensing provides the edge of spatial, timely and accurate assessment of crop. For validating the yield and yield components, the error percentage between the observed and simulated data was calculated. The analysis shows that the model can be used to simulate crop yield and yield components for wheat and rice cultivar under different management practices. During the validation, the error percentage was less than 10%, indicating the utility of the calibrated model for climate risk assessment in the selected region.Keywords: simulation model, CERES-wheat and rice model, crop yield, genetic coefficient
Procedia PDF Downloads 3057765 An IoT-Enabled Crop Recommendation System Utilizing Message Queuing Telemetry Transport (MQTT) for Efficient Data Transmission to AI/ML Models
Authors: Prashansa Singh, Rohit Bajaj, Manjot Kaur
Abstract:
In the modern agricultural landscape, precision farming has emerged as a pivotal strategy for enhancing crop yield and optimizing resource utilization. This paper introduces an innovative Crop Recommendation System (CRS) that leverages the Internet of Things (IoT) technology and the Message Queuing Telemetry Transport (MQTT) protocol to collect critical environmental and soil data via sensors deployed across agricultural fields. The system is designed to address the challenges of real-time data acquisition, efficient data transmission, and dynamic crop recommendation through the application of advanced Artificial Intelligence (AI) and Machine Learning (ML) models. The CRS architecture encompasses a network of sensors that continuously monitor environmental parameters such as temperature, humidity, soil moisture, and nutrient levels. This sensor data is then transmitted to a central MQTT server, ensuring reliable and low-latency communication even in bandwidth-constrained scenarios typical of rural agricultural settings. Upon reaching the server, the data is processed and analyzed by AI/ML models trained to correlate specific environmental conditions with optimal crop choices and cultivation practices. These models consider historical crop performance data, current agricultural research, and real-time field conditions to generate tailored crop recommendations. This implementation gets 99% accuracy.Keywords: Iot, MQTT protocol, machine learning, sensor, publish, subscriber, agriculture, humidity
Procedia PDF Downloads 687764 Intrusion Detection and Prevention System (IDPS) in Cloud Computing Using Anomaly-Based and Signature-Based Detection Techniques
Authors: John Onyima, Ikechukwu Ezepue
Abstract:
Virtualization and cloud computing are among the fast-growing computing innovations in recent times. Organisations all over the world are moving their computing services towards the cloud this is because of its rapid transformation of the organization’s infrastructure and improvement of efficient resource utilization and cost reduction. However, this technology brings new security threats and challenges about safety, reliability and data confidentiality. Evidently, no single security technique can guarantee security or protection against malicious attacks on a cloud computing network hence an integrated model of intrusion detection and prevention system has been proposed. Anomaly-based and signature-based detection techniques will be integrated to enable the network and its host defend themselves with some level of intelligence. The anomaly-base detection was implemented using the local deviation factor graph-based (LDFGB) algorithm while the signature-based detection was implemented using the snort algorithm. Results from this collaborative intrusion detection and prevention techniques show robust and efficient security architecture for cloud computing networks.Keywords: anomaly-based detection, cloud computing, intrusion detection, intrusion prevention, signature-based detection
Procedia PDF Downloads 3077763 The Effect of Colloidal Metals Nanoparticles on Quarantine Bacterium - Clavibacter michiganensis Ssp. sepedonicus
Authors: Włodzimierz Przewodowski, Agnieszka Przewodowska
Abstract:
Colloidal metal nanoparticles have drawn increasing attention in the field of phytopathology because of their unique properties and possibilities of applications. Their antibacterial activity, no induction of the development of pathogen resistance and the ability to penetrate most of biological barriers make them potentially useful in the fighting against dangerous pathogens. These properties are very important in the case of protection of strategic crops in the world, like potato - fourth crop in the world - which is host to numerous pathogenic microorganisms causing serious diseases, significantly affecting yield and causing the economic losses. One of the most important and difficult to reduce pathogen of potato plant is quarantine bacterium Clavibacter michiganensis ssp. sepedonicus (Cms) responsible for ring rot disease. Control and detection of these pathogens is very complicated. Application of healthy, certified seed material as well as hygiene in potato production and storage are the most efficient ways of preventing of ring rot disease. Currently used disinfectants and pesticides, have many disadvantages, such as toxicity, low efficiency, selectivity, corrosiveness, and the inability to eliminate the pathogens in potato tissue. In this situation, it becomes important to search for new formulations based on components harmful to health, yet efficient, stable during prolonged period of time and a with wide range of biocide activity. Such capabilities are offered by the latest generation of biocidal nanoparticles such as colloidal metals. Therefore the aim of the presented research was to develop newly antibacterial preparation based on colloidal metal nanoparticles and checking their influence on the Cms bacteria. Our preliminary results confirmed high efficacy of the nano-colloids in controlling the this selected pathogen.Keywords: clavibacter michiganensis ssp. sepedonicus, colloidal metal nanoparticles, phytopathology, bacteria
Procedia PDF Downloads 2727762 Survey on Malware Detection
Authors: Doaa Wael, Naswa Abdelbaky
Abstract:
Malware is malicious software that is built to cause destructive actions and damage information systems and networks. Malware infections increase rapidly, and types of malware have become more sophisticated, which makes the malware detection process more difficult. On the other side, the Internet of Things IoT technology is vulnerable to malware attacks. These IoT devices are always connected to the internet and lack security. This makes them easy for hackers to access. These malware attacks are becoming the go-to attack for hackers. Thus, in order to deal with this challenge, new malware detection techniques are needed. Currently, building a blockchain solution that allows IoT devices to download any file from the internet and to verify/approve whether it is malicious or not is the need of the hour. In recent years, blockchain technology has stood as a solution to everything due to its features like decentralization, persistence, and anonymity. Moreover, using blockchain technology overcomes some difficulties in malware detection and improves the malware detection ratio over-than the techniques that do not utilize blockchain technology. In this paper, we study malware detection models which are based on blockchain technology. Furthermore, we elaborate on the effect of blockchain technology in malware detection, especially in the android environment.Keywords: malware analysis, blockchain, malware attacks, malware detection approaches
Procedia PDF Downloads 877761 A Study of Effective Stereo Matching Method for Long-Wave Infrared Camera Module
Authors: Hyun-Koo Kim, Yonghun Kim, Yong-Hoon Kim, Ju Hee Lee, Myungho Song
Abstract:
In this paper, we have described an efficient stereo matching method and pedestrian detection method using stereo types LWIR camera. We compared with three types stereo camera algorithm as block matching, ELAS, and SGM. For pedestrian detection using stereo LWIR camera, we used that SGM stereo matching method, free space detection method using u/v-disparity, and HOG feature based pedestrian detection. According to testing result, SGM method has better performance than block matching and ELAS algorithm. Combination of SGM, free space detection, and pedestrian detection using HOG features and SVM classification can detect pedestrian of 30m distance and has a distance error about 30 cm.Keywords: advanced driver assistance system, pedestrian detection, stereo matching method, stereo long-wave IR camera
Procedia PDF Downloads 414