Search results for: suicide ideation detection
2207 Room Temperature Sensitive Broadband Terahertz Photo Response Using Platinum Telluride Based Devices
Authors: Alka Jakhar, Harmanpreet Kaur Sandhu, Samaresh Das
Abstract:
The Terahertz (THz) technology-based devices are heightening at an alarming rate on account of the wide range of applications in imaging, security, communication, and spectroscopic field. The various available room operational THz detectors, including Golay cell, pyroelectric detector, field-effect transistors, and photoconductive antennas, have some limitations such as narrow-band response, slow response speed, transit time limits, and complex fabrication process. There is an urgent demand to explore new materials and device structures to accomplish efficient THz detection systems. Recently, TMDs including topological semimetals and topological insulators such as PtSe₂, MoTe₂, WSe₂, and PtTe₂ provide novel feasibility for photonic and optical devices. The peculiar properties of these materials, such as Dirac cone, fermions presence, nonlinear optical response, high conductivity, and ambient stability, make them worthy for the development of the THz devices. Here, the platinum telluride (PtTe₂) based devices have been demonstrated for THz detection in the frequency range of 0.1-1 THz. The PtTe₂ is synthesized by direct selenization of the sputtered platinum film on the high-resistivity silicon substrate by using the chemical vapor deposition (CVD) method. The Raman spectra, XRD, and XPS spectra confirm the formation of the thin PtTe₂ film. The PtTe₂ channel length is 5µm and it is connected with a bow-tie antenna for strong THz electric field confinement in the channel. The characterization of the devices has been carried out in a wide frequency range from 0.1-1 THz. The induced THz photocurrent is measured by using lock-in-amplifier after preamplifier. The maximum responsivity is achieved up to 1 A/W under self-biased mode. Further, this responsivity has been increased by applying biasing voltage. This photo response corresponds to low energy THz photons is mainly due to the photo galvanic effect in PtTe₂. The DC current is induced along the PtTe₂ channel, which is directly proportional to the amplitude of the incident THz electric field. Thus, these new topological semimetal materials provide new pathways for sensitive detection and sensing applications in the THz domain.Keywords: terahertz, detector, responsivity, topological-semimetals
Procedia PDF Downloads 1612206 A Palmprint Identification System Based Multi-Layer Perceptron
Authors: David P. Tantua, Abdulkader Helwan
Abstract:
Biometrics has been recently used for the human identification systems using the biological traits such as the fingerprints and iris scanning. Identification systems based biometrics show great efficiency and accuracy in such human identification applications. However, these types of systems are so far based on some image processing techniques only, which may decrease the efficiency of such applications. Thus, this paper aims to develop a human palmprint identification system using multi-layer perceptron neural network which has the capability to learn using a backpropagation learning algorithms. The developed system uses images obtained from a public database available on the internet (CASIA). The processing system is as follows: image filtering using median filter, image adjustment, image skeletonizing, edge detection using canny operator to extract features, clear unwanted components of the image. The second phase is to feed those processed images into a neural network classifier which will adaptively learn and create a class for each different image. 100 different images are used for training the system. Since this is an identification system, it should be tested with the same images. Therefore, the same 100 images are used for testing it, and any image out of the training set should be unrecognized. The experimental results shows that this developed system has a great accuracy 100% and it can be implemented in real life applications.Keywords: biometrics, biological traits, multi-layer perceptron neural network, image skeletonizing, edge detection using canny operator
Procedia PDF Downloads 3712205 Use of a New Multiplex Quantitative Polymerase Chain Reaction Based Assay for Simultaneous Detection of Neisseria Meningitidis, Escherichia Coli K1, Streptococcus agalactiae, and Streptococcus pneumoniae
Authors: Nastaran Hemmati, Farhad Nikkhahi, Amir Javadi, Sahar Eskandarion, Seyed Mahmuod Amin Marashi
Abstract:
Neisseria meningitidis, Escherichia coli K, Streptococcus agalactiae, and Streptococcus pneumoniae cause 90% of bacterial meningitis. Almost all infected people die or have irreversible neurological complications. Therefore, it is essential to have a diagnostic kit with the ability to quickly detect these fatal infections. The project involved 212 patients from whom cerebrospinal fluid samples were obtained. After total genome extraction and performing multiplex quantitative polymerase chain reaction (qPCR), the presence or absence of each infectious factor was determined by comparing with standard strains. The specificity, sensitivity, positive predictive value, and negative predictive value calculated were 100%, 92.9%, 50%, and 100%, respectively. So, due to the high specificity and sensitivity of the designed primers, they can be used instead of bacterial culture that takes at least 24 to 48 hours. The remarkable benefit of this method is associated with the speed (up to 3 hours) at which the procedure could be completed. It is also worth noting that this method can reduce the personnel unintentional errors which may occur in the laboratory. On the other hand, as this method simultaneously identifies four common factors that cause bacterial meningitis, it could be used as an auxiliary method diagnostic technique in laboratories particularly in cases of emergency medicine.Keywords: cerebrospinal fluid, meningitis, quantitative polymerase chain reaction, simultaneous detection, diagnosis testing
Procedia PDF Downloads 1162204 UV-Vis Spectroscopy as a Tool for Online Tar Measurements in Wood Gasification Processes
Authors: Philip Edinger, Christian Ludwig
Abstract:
The formation and control of tars remain one of the major challenges in the implementation of biomass gasification technologies. Robust, on-line analytical methods are needed to investigate the fate of tar compounds when different measures for their reduction are applied. This work establishes an on-line UV-Vis method, based on a liquid quench sampling system, to monitor tar compounds in biomass gasification processes. Recorded spectra from the liquid phase were analyzed for their tar composition by means of a classical least squares (CLS) and partial least squares (PLS) approach. This allowed for the detection of UV-Vis active tar compounds with detection limits in the low part per million by volume (ppmV) region. The developed method was then applied to two case studies. The first involved a lab-scale reactor, intended to investigate the decomposition of a limited number of tar compounds across a catalyst. The second study involved a gas scrubber as part of a pilot scale wood gasification plant. Tar compound quantification results showed good agreement with off-line based reference methods (GC-FID) when the complexity of tar composition was limited. The two case studies show that the developed method can provide rapid, qualitative information on the tar composition for the purpose of process monitoring. In cases with a limited number of tar species, quantitative information about the individual tar compound concentrations provides an additional benefit of the analytical method.Keywords: biomass gasification, on-line, tar, UV-Vis
Procedia PDF Downloads 2592203 Evaluation of Real Time PCR Methods for Food Safety
Authors: Ergun Sakalar, Kubra Bilgic
Abstract:
In the last decades, real-time PCR has become a reliable tool preferred to use in many laboratories for pathogen detection. This technique allows for monitoring target amplification via fluorescent molecules besides admit of quantitative analysis by enabling of convert outcomes of thermal cycling to digital data. Sensitivity and traceability of real-time PCR are based on measuring of fluorescence that appears only when fluorescent reporter dye bound to specific target DNA.The fluorescent reporter systems developed for this purpose are divided into two groups. The first group consists of intercalator fluorescence dyes such as SYBR Green, EvaGreen which binds to double-stranded DNA. On the other hand, the second group includes fluorophore-labeled oligonucleotide probes that are separated into three subgroups due to differences in mechanism of action; initial primer-probes such as Cyclicons, Angler®, Amplifluor®, LUX™, Scorpions, and the second one hydrolysis probes like TaqMan, Snake assay, finally hybridization probes, for instance, Molecular Beacons, Hybprobe/FRET, HyBeacon™, MGB-Eclipse, ResonSense®, Yin-Yang, MGB-Pleiades. In addition nucleic acid analogues, an increase of probe affinity to target site is also employed with fluorescence-labeled probes. Consequently, abundant real-time PCR detection chemistries are chosen by researcher according to the field of application, mechanism of action, advantages, and proper structures of primer/probes.Keywords: fluorescent dye, food safety, molecular probes, nucleic acid analogues
Procedia PDF Downloads 2562202 Detection of Powdery Mildew Disease in Strawberry Using Image Texture and Supervised Classifiers
Authors: Sultan Mahmud, Qamar Zaman, Travis Esau, Young Chang
Abstract:
Strawberry powdery mildew (PM) is a serious disease that has a significant impact on strawberry production. Field scouting is still a major way to find PM disease, which is not only labor intensive but also almost impossible to monitor disease severity. To reduce the loss caused by PM disease and achieve faster automatic detection of the disease, this paper proposes an approach for detection of the disease, based on image texture and classified with support vector machines (SVMs) and k-nearest neighbors (kNNs). The methodology of the proposed study is based on image processing which is composed of five main steps including image acquisition, pre-processing, segmentation, features extraction and classification. Two strawberry fields were used in this study. Images of healthy leaves and leaves infected with PM (Sphaerotheca macularis) disease under artificial cloud lighting condition. Colour thresholding was utilized to segment all images before textural analysis. Colour co-occurrence matrix (CCM) was introduced for extraction of textural features. Forty textural features, related to a physiological parameter of leaves were extracted from CCM of National television system committee (NTSC) luminance, hue, saturation and intensity (HSI) images. The normalized feature data were utilized for training and validation, respectively, using developed classifiers. The classifiers have experimented with internal, external and cross-validations. The best classifier was selected based on their performance and accuracy. Experimental results suggested that SVMs classifier showed 98.33%, 85.33%, 87.33%, 93.33% and 95.0% of accuracy on internal, external-I, external-II, 4-fold cross and 5-fold cross-validation, respectively. Whereas, kNNs results represented 90.0%, 72.00%, 74.66%, 89.33% and 90.3% of classification accuracy, respectively. The outcome of this study demonstrated that SVMs classified PM disease with a highest overall accuracy of 91.86% and 1.1211 seconds of processing time. Therefore, overall results concluded that the proposed study can significantly support an accurate and automatic identification and recognition of strawberry PM disease with SVMs classifier.Keywords: powdery mildew, image processing, textural analysis, color co-occurrence matrix, support vector machines, k-nearest neighbors
Procedia PDF Downloads 1202201 Exhaled Breath Condensate in Lung Cancer: A Non-Invasive Sample for Easier Mutations Detection by Next Generation Sequencing
Authors: Omar Youssef, Aija Knuuttila, Paivi Piirilä, Virinder Sarhadi, Sakari Knuutila
Abstract:
Exhaled breath condensate (EBC) is a unique sample that allows studying different genetic changes in lung carcinoma through a non-invasive way. With the aid of next generation sequencing (NGS) technology, analysis of genetic mutations has been more efficient with increased sensitivity for detection of genetic variants. In order to investigate the possibility of applying this method for cancer diagnostics, mutations in EBC DNA from lung cancer patients and healthy individuals were studied by using NGS. The key aim is to assess the feasibility of using this approach to detect clinically important mutations in EBC. EBC was collected from 20 healthy individuals and 9 lung cancer patients (four lung adenocarcinomas, four 8 squamous cell carcinoma, and one case of mesothelioma). Mutations in hotpot regions of 22 genes were studied by using Ampliseq Colon and Lung cancer panel and sequenced on Ion PGM. Results demonstrated that all nine patients showed a total of 19 cosmic mutations in APC, BRAF, EGFR, ERBB4, FBXW7, FGFR1, KRAS, MAP2K1, NRAS, PIK3CA, PTEN, RET, SMAD4, and TP53. In controls, 15 individuals showed 35 cosmic mutations in BRAF, CTNNB1, DDR2, EGFR, ERBB2, FBXW7, FGFR3, KRAS, MET, NOTCH1, NRAS, PIK3CA, PTEN, SMAD4, and TP53. Additionally, 45 novel mutations not reported previously were also seen in patients’ samples, and 106 novel mutations were seen in controls’ specimens. KRAS exon 2 mutations G12D was identified in one control specimen with mutant allele fraction of 6.8%, while KRAS G13D mutation seen in one patient sample showed mutant allele fraction of 17%. These findings illustrate that hotspot mutations are present in DNA from EBC of both cancer patients and healthy controls. As some of the cosmic mutations were seen in controls too, no firm conclusion can be drawn on the clinical importance of cosmic mutations in patients. Mutations reported in controls could represent early neoplastic changes or normal homeostatic process of apoptosis occurring in lung tissue to get rid of mutant cells. At the same time, mutations detected in patients might represent a non-invasive easily accessible way for early cancer detection. Follow up of individuals with important cancer mutations is necessary to clarify the significance of these mutations in both healthy individuals and cancer patients.Keywords: exhaled breath condensate, lung cancer, mutations, next generation sequencing
Procedia PDF Downloads 1762200 Prevalence of High Risk Human Papillomavirus in Cervical Dysplasia and Cancer Samples from Twin Cities in Pakistan
Authors: Sana Gul, Sheeba Murad, Aneela Javed
Abstract:
Introduction: Human Papilloma Virus (HPV) is small DNA virus mostly infecting mucosa and cutaneous keratinocytes. So far, more than 200 Human papillomaviruses are known. HPV have been divided into high- and low-risk on the basis of their oncogenic potential. High risk HPV is considered to be the main etiological cause for cervical cancer. Objective: Current study was designed to screen the local cervical cancer patients from the twin cities of Pakistan for the occurance of high risk HPV. Methodology: A total of 67 formalin fixed paraffin-embedded samples of cervical cancer biopsies were obtained from the government hospitals in Islamabad and Rawalpindi. Cervical cancer biopsies were examined for the presence of HPV DNA. Polymerase chain reaction (PCR) was used for the amplification of a region in the HPV-L1 gene for the general detection of the Papilloma virus and for the genotype specific detection of high risk HPV 16 and 18 using the GP5/GP6 primers and genotype specific primers respectively. Results: HPV DNA was detected in 59 out of 67 samples analyzed. 30 samples showed the presence of HPV16 while 22 samples were positive for HPV 18 . HPV subtype could not be determined in 7 samples. Conclusion: Our results show a strong association between HPV infection and cervical cancer among women in twin cities of Pakistan. One way to minimize the disease burden in relation to HPV infection in Pakistani population is the use of prophylactic vaccines and routine screening. An early diagnosis of HPV infection will allow better health management to reduce the risk of developing cervical cancer.Keywords: cervical cancer, Pakistan, human papillomavirus, HPV 16
Procedia PDF Downloads 3412199 Efficient Reuse of Exome Sequencing Data for Copy Number Variation Callings
Authors: Chen Wang, Jared Evans, Yan Asmann
Abstract:
With the quick evolvement of next-generation sequencing techniques, whole-exome or exome-panel data have become a cost-effective way for detection of small exonic mutations, but there has been a growing desire to accurately detect copy number variations (CNVs) as well. In order to address this research and clinical needs, we developed a sequencing coverage pattern-based method not only for copy number detections, data integrity checks, CNV calling, and visualization reports. The developed methodologies include complete automation to increase usability, genome content-coverage bias correction, CNV segmentation, data quality reports, and publication quality images. Automatic identification and removal of poor quality outlier samples were made automatically. Multiple experimental batches were routinely detected and further reduced for a clean subset of samples before analysis. Algorithm improvements were also made to improve somatic CNV detection as well as germline CNV detection in trio family. Additionally, a set of utilities was included to facilitate users for producing CNV plots in focused genes of interest. We demonstrate the somatic CNV enhancements by accurately detecting CNVs in whole exome-wide data from the cancer genome atlas cancer samples and a lymphoma case study with paired tumor and normal samples. We also showed our efficient reuses of existing exome sequencing data, for improved germline CNV calling in a family of the trio from the phase-III study of 1000 Genome to detect CNVs with various modes of inheritance. The performance of the developed method is evaluated by comparing CNV calling results with results from other orthogonal copy number platforms. Through our case studies, reuses of exome sequencing data for calling CNVs have several noticeable functionalities, including a better quality control for exome sequencing data, improved joint analysis with single nucleotide variant calls, and novel genomic discovery of under-utilized existing whole exome and custom exome panel data.Keywords: bioinformatics, computational genetics, copy number variations, data reuse, exome sequencing, next generation sequencing
Procedia PDF Downloads 2572198 The Correlation Between Self-Talk and COVID-19
Authors: Abigail Vallance
Abstract:
Current research shows a correlation between declining mental health in the United States and the effect of COVID-19 on young adults and adolescents. Anxiety and depression are the two most common psychiatric illnesses, which are also the leading impediments to academic success. Spending six hours a day or more using computers is associated with higher risks of depression, with this time constraint pervasive even in present-day academia. Along with many hours on the computer, common issues COVID-19 had on students’ academic performance during online school included technical difficulties, poor support services, and difficulty adapting to online learning. Given the volume of requirements with unrealistic deadlines, and despite experiencing COVID-19, students showed an increase in their levels of anxiety. Besides the prevalent effect of COVID-19 on mental health, many studies show a correlation between mental health, COVID-19, academia, and sports performance. Academic research showed that negative self-talk, in relation to one’s self-efficacy, correlated with negative academic performance. Research showed that students who reported negative self-efficacy when test-taking led to negative test results. Furthermore, in sports performance, negative effects were found when athletes engage in negative self-talk. Overall, motivational self-talk, by oneself and through teammates and coaches, correlated with better performance than regular self-talk in sports. In relation to sports performance, the COVID-19 pandemic canceled complete sports seasons for millions of adolescents across the country. Many student-athletes use their sport to release emotions and escape from their mental health, but this was taken away. The purpose of this study is to address the current increase in mental health diagnoses in adolescents, including suicide rates after the COVID-19 pandemic began in 2020.This literature analysis is actively being studied.Keywords: self-talk, COVID-19, mental health, adolescents
Procedia PDF Downloads 562197 Detecting Nitrogen Deficiency and Potato Leafhopper (Hemiptera, Cicadellidae) Infestation in Green Bean Using Multispectral Imagery from Unmanned Aerial Vehicle
Authors: Bivek Bhusal, Ana Legrand
Abstract:
Detection of crop stress is one of the major applications of remote sensing in agriculture. Multiple studies have demonstrated the capability of remote sensing using Unmanned Aerial Vehicle (UAV)-based multispectral imagery for detection of plant stress, but none so far on Nitrogen (N) stress and PLH feeding stress on green beans. In view of its wide host range, geographical distribution, and damage potential, Potato leafhopper- Empoasca fabae (Harris) has been emerging as a key pest in several countries. Monitoring methods for potato leafhopper (PLH) damage, as well as the laboratory techniques for detecting Nitrogen deficiency, are time-consuming and not always easily affordable. A study was initiated to demonstrate if the multispectral sensor attached to a drone can detect PLH stress and N deficiency in beans. Small-plot trials were conducted in the summer of 2023, where cages were used to manipulate PLH infestation in green beans (Provider cultivar) at their first-trifoliate stage. Half of the bean plots were introduced with PLH, and the others were kept insect-free. Half of these plots were grown with the recommended amount of N, and the others were grown without N. Canopy reflectance was captured using a five-band multispectral sensor. Our findings indicate that drone imagery could detect stress due to a lack of N and PLH damage in beans.Keywords: potato leafhopper, nitrogen, remote sensing, spectral reflectance, beans
Procedia PDF Downloads 602196 PathoPy2.0: Application of Fractal Geometry for Early Detection and Histopathological Analysis of Lung Cancer
Authors: Rhea Kapoor
Abstract:
Fractal dimension provides a way to characterize non-geometric shapes like those found in nature. The purpose of this research is to estimate Minkowski fractal dimension of human lung images for early detection of lung cancer. Lung cancer is the leading cause of death among all types of cancer and an early histopathological analysis will help reduce deaths primarily due to late diagnosis. A Python application program, PathoPy2.0, was developed for analyzing medical images in pixelated format and estimating Minkowski fractal dimension using a new box-counting algorithm that allows windowing of images for more accurate calculation in the suspected areas of cancerous growth. Benchmark geometric fractals were used to validate the accuracy of the program and changes in fractal dimension of lung images to indicate the presence of issues in the lung. The accuracy of the program for the benchmark examples was between 93-99% of known values of the fractal dimensions. Fractal dimension values were then calculated for lung images, from National Cancer Institute, taken over time to correctly detect the presence of cancerous growth. For example, as the fractal dimension for a given lung increased from 1.19 to 1.27 due to cancerous growth, it represents a significant change in fractal dimension which lies between 1 and 2 for 2-D images. Based on the results obtained on many lung test cases, it was concluded that fractal dimension of human lungs can be used to diagnose lung cancer early. The ideas behind PathoPy2.0 can also be applied to study patterns in the electrical activity of the human brain and DNA matching.Keywords: fractals, histopathological analysis, image processing, lung cancer, Minkowski dimension
Procedia PDF Downloads 1782195 Detection, Analysis and Determination of the Origin of Copy Number Variants (CNVs) in Intellectual Disability/Developmental Delay (ID/DD) Patients and Autistic Spectrum Disorders (ASD) Patients by Molecular and Cytogenetic Methods
Authors: Pavlina Capkova, Josef Srovnal, Vera Becvarova, Marie Trkova, Zuzana Capkova, Andrea Stefekova, Vaclava Curtisova, Alena Santava, Sarka Vejvalkova, Katerina Adamova, Radek Vodicka
Abstract:
ASDs are heterogeneous and complex developmental diseases with a significant genetic background. Recurrent CNVs are known to be a frequent cause of ASD. These CNVs can have, however, a variable expressivity which results in a spectrum of phenotypes from asymptomatic to ID/DD/ASD. ASD is associated with ID in ~75% individuals. Various platforms are used to detect pathogenic mutations in the genome of these patients. The performed study is focused on a determination of the frequency of pathogenic mutations in a group of ASD patients and a group of ID/DD patients using various strategies along with a comparison of their detection rate. The possible role of the origin of these mutations in aetiology of ASD was assessed. The study included 35 individuals with ASD and 68 individuals with ID/DD (64 males and 39 females in total), who underwent rigorous genetic, neurological and psychological examinations. Screening for pathogenic mutations involved karyotyping, screening for FMR1 mutations and for metabolic disorders, a targeted MLPA test with probe mixes Telomeres 3 and 5, Microdeletion 1 and 2, Autism 1, MRX and a chromosomal microarray analysis (CMA) (Illumina or Affymetrix). Chromosomal aberrations were revealed in 7 (1 in the ASD group) individuals by karyotyping. FMR1 mutations were discovered in 3 (1 in the ASD group) individuals. The detection rate of pathogenic mutations in ASD patients with a normal karyotype was 15.15% by MLPA and CMA. The frequencies of the pathogenic mutations were 25.0% by MLPA and 35.0% by CMA in ID/DD patients with a normal karyotype. CNVs inherited from asymptomatic parents were more abundant than de novo changes in ASD patients (11.43% vs. 5.71%) in contrast to the ID/DD group where de novo mutations prevailed over inherited ones (26.47% vs. 16.18%). ASD patients shared more frequently their mutations with their fathers than patients from ID/DD group (8.57% vs. 1.47%). Maternally inherited mutations predominated in the ID/DD group in comparison with the ASD group (14.7% vs. 2.86 %). CNVs of an unknown significance were found in 10 patients by CMA and in 3 patients by MLPA. Although the detection rate is the highest when using CMA, recurrent CNVs can be easily detected by MLPA. CMA proved to be more efficient in the ID/DD group where a larger spectrum of rare pathogenic CNVs was revealed. This study determined that maternally inherited highly penetrant mutations and de novo mutations more often resulted in ID/DD without ASD in patients. The paternally inherited mutations could be, however, a source of the greater variability in the genome of the ASD patients and contribute to the polygenic character of the inheritance of ASD. As the number of the subjects in the group is limited, a larger cohort is needed to confirm this conclusion. Inherited CNVs have a role in aetiology of ASD possibly in combination with additional genetic factors - the mutations elsewhere in the genome. The identification of these interactions constitutes a challenge for the future. Supported by MH CZ – DRO (FNOl, 00098892), IGA UP LF_2016_010, TACR TE02000058 and NPU LO1304.Keywords: autistic spectrum disorders, copy number variant, chromosomal microarray, intellectual disability, karyotyping, MLPA, multiplex ligation-dependent probe amplification
Procedia PDF Downloads 3492194 Object Oriented Classification Based on Feature Extraction Approach for Change Detection in Coastal Ecosystem across Kochi Region
Authors: Mohit Modi, Rajiv Kumar, Manojraj Saxena, G. Ravi Shankar
Abstract:
Change detection of coastal ecosystem plays a vital role in monitoring and managing natural resources along the coastal regions. The present study mainly focuses on the decadal change in Kochi islands connecting the urban flatland areas and the coastal regions where sand deposits have taken place. With this, in view, the change detection has been monitored in the Kochi area to apprehend the urban growth and industrialization leading to decrease in the wetland ecosystem. The region lies between 76°11'19.134"E to 76°25'42.193"E and 9°52'35.719"N to 10°5'51.575"N in the south-western coast of India. The IRS LISS-IV satellite image has been processed using a rule-based algorithm to classify the LULC and to interpret the changes between 2005 & 2015. The approach takes two steps, i.e. extracting features as a single GIS vector layer using different parametric values and to dissolve them. The multi-resolution segmentation has been carried out on the scale ranging from 10-30. The different classes like aquaculture, agricultural land, built-up, wetlands etc. were extracted using parameters like NDVI, mean layer values, the texture-based feature with corresponding threshold values using a rule set algorithm. The objects obtained in the segmentation process were visualized to be overlaying the satellite image at a scale of 15. This layer was further segmented using the spectral difference segmentation rule between the objects. These individual class layers were dissolved in the basic segmented layer of the image and were interpreted in vector-based GIS programme to achieve higher accuracy. The result shows a rapid increase in an industrial area of 40% based on industrial area statistics of 2005. There is a decrease in wetlands area which has been converted into built-up. New roads have been constructed which are connecting the islands to urban areas as well as highways. The increase in coastal region has been visualized due to sand depositions. The outcome is well supported by quantitative assessments which will empower rich understanding of land use land cover change for appropriate policy intervention and further monitoring.Keywords: land use land cover, multiresolution segmentation, NDVI, object based classification
Procedia PDF Downloads 1832193 A Survey of Feature-Based Steganalysis for JPEG Images
Authors: Syeda Mainaaz Unnisa, Deepa Suresh
Abstract:
Due to the increase in usage of public domain channels, such as the internet, and communication technology, there is a concern about the protection of intellectual property and security threats. This interest has led to growth in researching and implementing techniques for information hiding. Steganography is the art and science of hiding information in a private manner such that its existence cannot be recognized. Communication using steganographic techniques makes not only the secret message but also the presence of hidden communication, invisible. Steganalysis is the art of detecting the presence of this hidden communication. Parallel to steganography, steganalysis is also gaining prominence, since the detection of hidden messages can prevent catastrophic security incidents from occurring. Steganalysis can also be incredibly helpful in identifying and revealing holes with the current steganographic techniques, which makes them vulnerable to attacks. Through the formulation of new effective steganalysis methods, further research to improve the resistance of tested steganography techniques can be developed. Feature-based steganalysis method for JPEG images calculates the features of an image using the L1 norm of the difference between a stego image and the calibrated version of the image. This calibration can help retrieve some of the parameters of the cover image, revealing the variations between the cover and stego image and enabling a more accurate detection. Applying this method to various steganographic schemes, experimental results were compared and evaluated to derive conclusions and principles for more protected JPEG steganography.Keywords: cover image, feature-based steganalysis, information hiding, steganalysis, steganography
Procedia PDF Downloads 2162192 Performing Diagnosis in Building with Partially Valid Heterogeneous Tests
Authors: Houda Najeh, Mahendra Pratap Singh, Stéphane Ploix, Antoine Caucheteux, Karim Chabir, Mohamed Naceur Abdelkrim
Abstract:
Building system is highly vulnerable to different kinds of faults and human misbehaviors. Energy efficiency and user comfort are directly targeted due to abnormalities in building operation. The available fault diagnosis tools and methodologies particularly rely on rules or pure model-based approaches. It is assumed that model or rule-based test could be applied to any situation without taking into account actual testing contexts. Contextual tests with validity domain could reduce a lot of the design of detection tests. The main objective of this paper is to consider fault validity when validate the test model considering the non-modeled events such as occupancy, weather conditions, door and window openings and the integration of the knowledge of the expert on the state of the system. The concept of heterogeneous tests is combined with test validity to generate fault diagnoses. A combination of rules, range and model-based tests known as heterogeneous tests are proposed to reduce the modeling complexity. Calculation of logical diagnoses coming from artificial intelligence provides a global explanation consistent with the test result. An application example shows the efficiency of the proposed technique: an office setting at Grenoble Institute of Technology.Keywords: heterogeneous tests, validity, building system, sensor grids, sensor fault, diagnosis, fault detection and isolation
Procedia PDF Downloads 2932191 Examining Contraceptive Ideational Disparities Among Adolescents and Young Women in Nigeria using Multivariate Analysis
Authors: Oluwayemisi D. Ishola, Lekan Ajijola
Abstract:
Nigeria faces a demographic challenge characterized by a burgeoning youth population and an escalating fertility rate. A notable decline in the use of modern contraceptives among adolescent girls and young women compounds the challenge. The youthful demographic stands at a critical juncture in the nation's pursuit to fulfill its pledge of achieving a 27% modern contraceptive rate by 2030, embodying the potential to translate this ambitious commitment into a tangible reality. This research undertook a multi-dimensional examination to scrutinize contraceptive ideational disparities among adolescents and young women in Nigeria, with a particular emphasis on ideational factors. The data underpinning this study were drawn from a cross-sectional household survey carried out in the Nigerian states of Edo, Ogun, Plateau, and Niger between October 2019 and January 2020. The survey encompassed 2,857 sexually active women aged 15-24 years. Employing an ideational framework focusing on behavior that accentuates psychosocial factors, the study dissected nine unique ideational variables into three principal domains: social, cognitive, and emotional. Multivariate logistics regression analyses were used to assess associations between ideational elements and contraceptive use within the total sample and specific age brackets (adolescents of 15-19 years and youth of 20-24 years). For this study, a p-value less than 0.05 was considered indicative of statistical significance. The study's results revealed significant associations between the ideational variables and contraceptive use in total sample and among adolescent and youth, ranging from p < .05 to p < .001. The influence of each domain's predictors on Family Planning (FP) manifested variations when assessed separately and across the different age groups. Notably, cognitive and emotional domains were found to be the strongest predictor of contraceptive use when compared with social domains in the general sample and among youth. This study’s findings highlight the complex interplay of social, cognitive, and emotional factors in contraceptive use among young individuals. Understanding these dynamics is crucial in developing effective strategies to overcome barriers and improve access to contraceptive services among young women in Nigeria.Keywords: adolescents, contraception, ideation, youth
Procedia PDF Downloads 702190 The Application of Video Segmentation Methods for the Purpose of Action Detection in Videos
Authors: Nassima Noufail, Sara Bouhali
Abstract:
In this work, we develop a semi-supervised solution for the purpose of action detection in videos and propose an efficient algorithm for video segmentation. The approach is divided into video segmentation, feature extraction, and classification. In the first part, a video is segmented into clips, and we used the K-means algorithm for this segmentation; our goal is to find groups based on similarity in the video. The application of k-means clustering into all the frames is time-consuming; therefore, we started by the identification of transition frames where the scene in the video changes significantly, and then we applied K-means clustering into these transition frames. We used two image filters, the gaussian filter and the Laplacian of Gaussian. Each filter extracts a set of features from the frames. The Gaussian filter blurs the image and omits the higher frequencies, and the Laplacian of gaussian detects regions of rapid intensity changes; we then used this vector of filter responses as an input to our k-means algorithm. The output is a set of cluster centers. Each video frame pixel is then mapped to the nearest cluster center and painted with a corresponding color to form a visual map. The resulting visual map had similar pixels grouped. We then computed a cluster score indicating how clusters are near each other and plotted a signal representing frame number vs. clustering score. Our hypothesis was that the evolution of the signal would not change if semantically related events were happening in the scene. We marked the breakpoints at which the root mean square level of the signal changes significantly, and each breakpoint is an indication of the beginning of a new video segment. In the second part, for each segment from part 1, we randomly selected a 16-frame clip, then we extracted spatiotemporal features using convolutional 3D network C3D for every 16 frames using a pre-trained model. The C3D final output is a 512-feature vector dimension; hence we used principal component analysis (PCA) for dimensionality reduction. The final part is the classification. The C3D feature vectors are used as input to a multi-class linear support vector machine (SVM) for the training model, and we used a multi-classifier to detect the action. We evaluated our experiment on the UCF101 dataset, which consists of 101 human action categories, and we achieved an accuracy that outperforms the state of art by 1.2%.Keywords: video segmentation, action detection, classification, Kmeans, C3D
Procedia PDF Downloads 772189 Evaluation of the Microscopic-Observation Drug-Susceptibility Assay Drugs Concentration for Detection of Multidrug-Resistant Tuberculosis
Authors: Anita, Sari Septiani Tangke, Rusdina Bte Ladju, Nasrum Massi
Abstract:
New diagnostic tools are urgently needed to interrupt the transmission of tuberculosis and multidrug-resistant tuberculosis. The microscopic-observation drug-susceptibility (MODS) assay is a rapid, accurate and simple liquid culture method to detect multidrug-resistant tuberculosis (MDR-TB). MODS were evaluated to determine a lower and same concentration of isoniazid and rifampin for detection of MDR-TB. Direct drug-susceptibility testing was performed with the use of the MODS assay. Drug-sensitive control strains were tested daily. The drug concentrations that used for both isoniazid and rifampin were at the same concentration: 0.16, 0.08 and 0.04μg per milliliter. We tested 56 M. tuberculosis clinical isolates and the control strains M. tuberculosis H37RV. All concentration showed same result. Of 53 M. tuberculosis clinical isolates, 14 were MDR-TB, 38 were susceptible with isoniazid and rifampin, 1 was resistant with isoniazid only. Drug-susceptibility testing was performed with the use of the proportion method using Mycobacteria Growth Indicator Tube (MGIT) system as reference. The result of MODS assay using lower concentration was significance (P<0.001) compare with the reference methods. A lower and same concentration of isoniazid and rifampin can be used to detect MDR-TB. Operational cost and application can be more efficient and easier in resource-limited environments. However, additional studies evaluating the MODS using lower and same concentration of isoniazid and rifampin must be conducted with a larger number of clinical isolates.Keywords: isoniazid, MODS assay, MDR-TB, rifampin
Procedia PDF Downloads 3202188 Avidity and IgE versus IgG and IgM in Diagnosis of Maternal Toxoplasmosis
Authors: Ghada A. Gamea, Nabila A. Yaseen, Ahmed A. Othman, Ahmed S. Tawfik
Abstract:
Infection with Toxoplasma gondii can cause serious complications in pregnant women, leading to abortion, stillbirth, and congenital anomalies in the fetus. Definitive diagnosis of T. gondii acute infection is therefore critical for the clinical management of a mother and her fetus. This study was conducted on 250 pregnant females in the first trimester who were inpatients or outpatients at Obstetrics and Gynaecology Department at Tanta University Hospital. Screening of the selected females was done for the detection of immunoglobulin (IgG and IgM), and all subjects were submitted to history taking through a questionnaire including personal data, risk factors for Toxoplasma, complaint and history of the present illness. Thirty-eight samples, including 18 IgM +ve and 20 IgM-ve cases were further investigated by the avidity and IgE ELISA tests. The seroprevalence of toxoplasmosis in pregnant women was (42.8%) based on the presence of IgG antibodies in their sera. Contact with cats and consumption of raw or undercooked meat are important risk factors that were associated with toxoplasmosis in pregnant women. By serology, it could be observed that in the IgM +ve group, only one case (5.6%) showed an acute pattern by using the avidity test, though 10 (55.6%) cases were found to be acute by the IgE assay. On the other hand, in the IgM –ve group, 3 (15%) showed low avidity, but none of them was positive by using the IgE assay. In conclusion, there is no single serological test that can be used to confirm whether T. gondii infection is recent or was acquired in the distant past. A panel of tests for detection of toxoplasmosis will certainly have higher discriminatory power than any test alone.Keywords: diagnosis, serology, seroprevalence, toxoplasmosis
Procedia PDF Downloads 1532187 A Spatio-Temporal Analysis and Change Detection of Wetlands in Diamond Harbour, West Bengal, India Using Normalized Difference Water Index
Authors: Lopita Pal, Suresh V. Madha
Abstract:
Wetlands are areas of marsh, fen, peat land or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six metres. The rapidly expanding human population, large scale changes in land use/land cover, burgeoning development projects and improper use of watersheds all has caused a substantial decline of wetland resources in the world. Major degradations have been impacted from agricultural, industrial and urban developments leading to various types of pollutions and hydrological perturbations. Regular fishing activities and unsustainable grazing of animals are degrading the wetlands in a slow pace. The paper focuses on the spatio-temporal change detection of the area of the water body and the main cause of this depletion. The total area under study (22°19’87’’ N, 88°20’23’’ E) is a wetland region in West Bengal of 213 sq.km. The procedure used is the Normalized Difference Water Index (NDWI) from multi-spectral imagery and Landsat to detect the presence of surface water, and the datasets have been compared of the years 2016, 2006 and 1996. The result shows a sharp decline in the area of water body due to a rapid increase in the agricultural practices and the growing urbanization.Keywords: spatio-temporal change, NDWI, urbanization, wetland
Procedia PDF Downloads 2832186 A Practical and Theoretical Study on the Electromotor Bearing Defect Detection in a Wet Mill Using the Vibration Analysis Method and Defect Length Calculation in the Bearing
Authors: Mostafa Firoozabadi, Alireza Foroughi Nematollahi
Abstract:
Wet mills are one of the most important equipment in the mining industries and any defect occurrence in them can stop the production line and it can make some irrecoverable damages to the system. Electromotors are the significant parts of a mill and their monitoring is a necessary process to prevent unwanted defects. The purpose of this study is to investigate the Electromotor bearing defects, theoretically and practically, using the vibration analysis method. When a defect happens in a bearing, it can be transferred to the other parts of the equipment like inner ring, outer ring, balls, and the bearing cage. The electromotor defects source can be electrical or mechanical. Sometimes, the electrical and mechanical defect frequencies are modulated and the bearing defect detection becomes difficult. In this paper, to detect the electromotor bearing defects, the electrical and mechanical defect frequencies are extracted firstly. Then, by calculating the bearing defect frequencies, and the spectrum and time signal analysis, the bearing defects are detected. In addition, the obtained frequency determines that the bearing level in which the defect has happened and by comparing this level to the standards it determines the bearing remaining lifetime. Finally, the defect length is calculated by theoretical equations to demonstrate that there is no need to replace the bearing. The results of the proposed method, which has been implemented on the wet mills in the Golgohar mining and industrial company in Iran, show that this method is capable of detecting the electromotor bearing defects accurately and on time.Keywords: bearing defect length, defect frequency, electromotor defects, vibration analysis
Procedia PDF Downloads 5022185 Information Retrieval from Internet Using Hand Gestures
Authors: Aniket S. Joshi, Aditya R. Mane, Arjun Tukaram
Abstract:
In the 21st century, in the era of e-world, people are continuously getting updated by daily information such as weather conditions, news, stock exchange market updates, new projects, cricket updates, sports and other such applications. In the busy situation, they want this information on the little use of keyboard, time. Today in order to get such information user have to repeat same mouse and keyboard actions which includes time and inconvenience. In India due to rural background many people are not much familiar about the use of computer and internet also. Also in small clinics, small offices, and hotels and in the airport there should be a system which retrieves daily information with the minimum use of keyboard and mouse actions. We plan to design application based project that can easily retrieve information with minimum use of keyboard and mouse actions and make our task more convenient and easier. This can be possible with an image processing application which takes real time hand gestures which will get matched by system and retrieve information. Once selected the functions with hand gestures, the system will report action information to user. In this project we use real time hand gesture movements to select required option which is stored on the screen in the form of RSS Feeds. Gesture will select the required option and the information will be popped and we got the information. A real time hand gesture makes the application handier and easier to use.Keywords: hand detection, hand tracking, hand gesture recognition, HSV color model, Blob detection
Procedia PDF Downloads 2892184 Development of Advanced Virtual Radiation Detection and Measurement Laboratory (AVR-DML) for Nuclear Science and Engineering Students
Authors: Lily Ranjbar, Haori Yang
Abstract:
Online education has been around for several decades, but the importance of online education became evident after the COVID-19 pandemic. Eventhough the online delivery approach works well for knowledge building through delivering content and oversight processes, it has limitations in developing hands-on laboratory skills, especially in the STEM field. During the pandemic, many education institutions faced numerous challenges in delivering lab-based courses, especially in the STEM field. Also, many students worldwide were unable to practice working with lab equipment due to social distancing or the significant cost of highly specialized equipment. The laboratory plays a crucial role in nuclear science and engineering education. It can engage students and improve their learning outcomes. In addition, online education and virtual labs have gained substantial popularity in engineering and science education. Therefore, developing virtual labs is vital for institutions to deliver high-class education to their students, including their online students. The School of Nuclear Science and Engineering (NSE) at Oregon State University, in partnership with SpectralLabs company, has developed an Advanced Virtual Radiation Detection and Measurement Lab (AVR-DML) to offer a fully online Master of Health Physics program. It was essential for us to use a system that could simulate nuclear modules that accurately replicate the underlying physics, the nature of radiation and radiation transport, and the mechanics of the instrumentations used in the real radiation detection lab. It was all accomplished using a Realistic, Adaptive, Interactive Learning System (RAILS). RAILS is a comprehensive software simulation-based learning system for use in training. It is comprised of a web-based learning management system that is located on a central server, as well as a 3D-simulation package that is downloaded locally to user machines. Users will find that the graphics, animations, and sounds in RAILS create a realistic, immersive environment to practice detecting different radiation sources. These features allow students to coexist, interact and engage with a real STEM lab in all its dimensions. It enables them to feel like they are in a real lab environment and to see the same system they would in a lab. Unique interactive interfaces were designed and developed by integrating all the tools and equipment needed to run each lab. These interfaces provide students full functionality for data collection, changing the experimental setup, and live data collection with real-time updates for each experiment. Students can manually do all experimental setups and parameter changes in this lab. Experimental results can then be tracked and analyzed in an oscilloscope, a multi-channel analyzer, or a single-channel analyzer (SCA). The advanced virtual radiation detection and measurement laboratory developed in this study enabled the NSE school to offer a fully online MHP program. This flexibility of course modality helped us to attract more non-traditional students, including international students. It is a valuable educational tool as students can walk around the virtual lab, make mistakes, and learn from them. They have an unlimited amount of time to repeat and engage in experiments. This lab will also help us speed up training in nuclear science and engineering.Keywords: advanced radiation detection and measurement, virtual laboratory, realistic adaptive interactive learning system (rails), online education in stem fields, student engagement, stem online education, stem laboratory, online engineering education
Procedia PDF Downloads 902183 Advanced Magnetic Field Mapping Utilizing Vertically Integrated Deployment Platforms
Authors: John E. Foley, Martin Miele, Raul Fonda, Jon Jacobson
Abstract:
This paper presents development and implementation of new and innovative data collection and analysis methodologies based on deployment of total field magnetometer arrays. Our research has focused on the development of a vertically-integrated suite of platforms all utilizing common data acquisition, data processing and analysis tools. These survey platforms include low-altitude helicopters and ground-based vehicles, including robots, for terrestrial mapping applications. For marine settings the sensor arrays are deployed from either a hydrodynamic bottom-following wing towed from a surface vessel or from a towed floating platform for shallow-water settings. Additionally, sensor arrays are deployed from tethered remotely operated vehicles (ROVs) for underwater settings where high maneuverability is required. While the primary application of these systems is the detection and mapping of unexploded ordnance (UXO), these system are also used for various infrastructure mapping and geologic investigations. For each application, success is driven by the integration of magnetometer arrays, accurate geo-positioning, system noise mitigation, and stable deployment of the system in appropriate proximity of expected targets or features. Each of the systems collects geo-registered data compatible with a web-enabled data management system providing immediate access of data and meta-data for remote processing, analysis and delivery of results. This approach allows highly sophisticated magnetic processing methods, including classification based on dipole modeling and remanent magnetization, to be efficiently applied to many projects. This paper also briefly describes the initial development of magnetometer-based detection systems deployed from low-altitude helicopter platforms and the subsequent successful transition of this technology to the marine environment. Additionally, we present examples from a range of terrestrial and marine settings as well as ongoing research efforts related to sensor miniaturization for unmanned aerial vehicle (UAV) magnetic field mapping applications.Keywords: dipole modeling, magnetometer mapping systems, sub-surface infrastructure mapping, unexploded ordnance detection
Procedia PDF Downloads 4642182 Chat-Based Online Counseling for Enhancing Wellness of Undergraduates with Emotional Crisis Tendency
Authors: Arunya Tuicomepee
Abstract:
During the past two decades, there have been the increasing numbers of studies on online counseling, especially among adolescents who are familiar with the online world. This can be explained by the fact that via this channel enables easier access to the young, who may not be ready for face-to-face service, possibly due to uneasiness to reveal their personal problems with a stranger, the feeling that their problems are to be shamed, or the need to protect their images. Especially, the group of teenagers prone to suicide or despair, who tend to keep things to or isolate from the society to themselves, usually prefer types of services that require no face-to-face encounter and allow their anonymity, such as online services. This study aimed to examine effectiveness of chat-based online counseling for enhancing wellness of undergraduates with emotional crisis tendency. Experimental with pretest-posttest control group design was employed. Participants were 47 undergraduates (10 males and 37 females) with high emotional crisis tendency. They were randomly assigned to experimental group (24 students) and control group (23 students). Participants in the experimental group received a 60-minute, 4-sessions of individual chat-based online counseling led by counselor. Those in control group received no counseling session. Instruments were the Emotional Crisis Scale and Wellness Scales. Two-way mixed-design multivariate analysis of variance was used for data analysis. Finding revealed that the posttest scores on wellness of those in the experimental group were higher than the scores of those in the control group. The posttest scores on emotional crisis tendency of those in the experimental group were lower than the scores of those in the control group. Hence, this study suggests chat-based online counseling services can become a helping source that increasing more adolescents would recognize and turn to in the future and that will receive more attention.Keywords: chat-based online counseling, emotional crisis, undergraduate student, wellness
Procedia PDF Downloads 2422181 External Noise Distillation in Quantum Holography with Undetected Light
Authors: Sebastian Töpfer, Jorge Fuenzalida, Marta Gilaberte Basset, Juan P. Torres, Markus Gräfe
Abstract:
This work presents an experimental and theoretical study about the noise resilience of quantum holography with undetected photons. Quantum imaging has become an important research topic in the recent years after its first publication in 2014. Following this research, advances towards different spectral ranges in detection and different optical geometries have been made. Especially an interest in the field of near infrared to mid infrared measurements has developed, because of the unique characteristic, that allows to sample a probe with photons in a different wavelength than the photons arriving at the detector. This promising effect can be used for medical applications, to measure in the so-called molecule fingerprint region, while using broadly available detectors for the visible spectral range. Further advance the development of quantum imaging methods have been made by new measurement and detection schemes. One of which is quantum holography with undetected light. It combines digital phase shifting holography with quantum imaging to extent the obtainable sample information, by measuring not only the object transmission, but also its influence on the phase shift experienced by the transmitted light. This work will present extended research for the quantum holography with undetected light scheme regarding the influence of external noise. It is shown experimentally and theoretically that the samples information can still be at noise levels of 250 times higher than the signal level, because of its information being transmitted by the interferometric pattern. A detailed theoretic explanation is also provided.Keywords: distillation, quantum holography, quantum imaging, quantum metrology
Procedia PDF Downloads 752180 Detection and Dissemination of Putative Virulence Genes from Brucella Species Isolated from Livestock in Eastern Cape Province of South Africa
Authors: Rudzani Manafe, Ezekiel Green
Abstract:
Brucella, has many different virulence factors that act as a causative agent of brucellosis, depending on the environment and other factors, some factors may play a role more than others during infection and as a result, play a role in becoming a causative agent for pathogenesis. Brucella melitensis and Brucella abortus are considered to be pathogenic to humans. The genetic regularity of nine potential causes of virulence of two Brucella species in Eastern Cape livestock have been examined. A hundred and twenty isolates obtained from Molecular Pathogenesis and Molecular Epidemiology Research Group (MPMERG) were used for this study. All isolates were grown on Brucella agar medium. Nine primer pairs were used for the detection of virB2, virB5, vceC, btpA, btpB, prpA, betB, bpe275, and bspB virulence factors using Polymerase chain reaction (PCR). Approximately 100% was observed for genes BecC and BetB from B. arbotus. While the lowest gene observed was PrpA at 4.6% from B. arbotus. BetB was detected in 34.7%, while virB2 and prpA (0%) were not detected in B. melitensis. The results from this research suggest that most isolates of Brucella have virulence-related genes associated with disease pathogenesis. Finally, our findings showed that Brucella strains in the Eastern Cape Province are extremely virulent as virulence characteristics exist in most strains investigated.Keywords: putative virulence genes, brucella, polymerase chain reaction, milk
Procedia PDF Downloads 1392179 Colloid-Based Biodetection at Aqueous Electrical Interfaces Using Fluidic Dielectrophoresis
Authors: Francesca Crivellari, Nicholas Mavrogiannis, Zachary Gagnon
Abstract:
Portable diagnostic methods have become increasingly important for a number of different purposes: point-of-care screening in developing nations, environmental contamination studies, bio/chemical warfare agent detection, and end-user use for commercial health monitoring. The cheapest and most portable methods currently available are paper-based – lateral flow and dipstick methods are widely available in drug stores for use in pregnancy detection and blood glucose monitoring. These tests are successful because they are cheap to produce, easy to use, and require minimally invasive sampling. While adequate for their intended uses, in the realm of blood-borne pathogens and numerous cancers, these paper-based methods become unreliable, as they lack the nM/pM sensitivity currently achieved by clinical diagnostic methods. Clinical diagnostics, however, utilize techniques involving surface plasmon resonance (SPR) and enzyme-linked immunosorbent assays (ELISAs), which are expensive and unfeasible in terms of portability. To develop a better, competitive biosensor, we must reduce the cost of one, or increase the sensitivity of the other. Electric fields are commonly utilized in microfluidic devices to manipulate particles, biomolecules, and cells. Applications in this area, however, are primarily limited to interfaces formed between immiscible interfaces. Miscible, liquid-liquid interfaces are common in microfluidic devices, and are easily reproduced with simple geometries. Here, we demonstrate the use of electrical fields at liquid-liquid electrical interfaces, known as fluidic dielectrophoresis, (fDEP) for biodetection in a microfluidic device. In this work, we apply an AC electric field across concurrent laminar streams with differing conductivities and permittivities to polarize the interface and induce a discernible, near-immediate, frequency-dependent interfacial tilt. We design this aqueous electrical interface, which becomes the biosensing “substrate,” to be intelligent – it “moves” only when a target of interest is present. This motion requires neither labels nor expensive electrical equipment, so the biosensor is inexpensive and portable, yet still capable of sensitive detection. Nanoparticles, due to their high surface-area-to-volume ratio, are often incorporated to enhance detection capabilities of schemes like SPR and fluorimetric assays. Most studies currently investigate binding at an immobilized solid-liquid or solid-gas interface, where particles are adsorbed onto a planar surface, functionalized with a receptor to create a reactive substrate, and subsequently flushed with a fluid or gas with the relevant analyte. These typically involve many preparation and rinsing steps, and are susceptible to surface fouling. Our microfluidic device is continuously flowing and renewing the “substrate,” and is thus not subject to fouling. In this work, we demonstrate the ability to electrokinetically detect biomolecules binding to functionalized nanoparticles at liquid-liquid interfaces using fDEP. In biotin-streptavidin experiments, we report binding detection limits on the order of 1-10 pM, without amplifying signals or concentrating samples. We also demonstrate the ability to detect this interfacial motion, and thus the presence of binding, using impedance spectroscopy, allowing this scheme to become non-optical, in addition to being label-free.Keywords: biodetection, dielectrophoresis, microfluidics, nanoparticles
Procedia PDF Downloads 3882178 Deep Learning-Based Object Detection on Low Quality Images: A Case Study of Real-Time Traffic Monitoring
Authors: Jean-Francois Rajotte, Martin Sotir, Frank Gouineau
Abstract:
The installation and management of traffic monitoring devices can be costly from both a financial and resource point of view. It is therefore important to take advantage of in-place infrastructures to extract the most information. Here we show how low-quality urban road traffic images from cameras already available in many cities (such as Montreal, Vancouver, and Toronto) can be used to estimate traffic flow. To this end, we use a pre-trained neural network, developed for object detection, to count vehicles within images. We then compare the results with human annotations gathered through crowdsourcing campaigns. We use this comparison to assess performance and calibrate the neural network annotations. As a use case, we consider six months of continuous monitoring over hundreds of cameras installed in the city of Montreal. We compare the results with city-provided manual traffic counting performed in similar conditions at the same location. The good performance of our system allows us to consider applications which can monitor the traffic conditions in near real-time, making the counting usable for traffic-related services. Furthermore, the resulting annotations pave the way for building a historical vehicle counting dataset to be used for analysing the impact of road traffic on many city-related issues, such as urban planning, security, and pollution.Keywords: traffic monitoring, deep learning, image annotation, vehicles, roads, artificial intelligence, real-time systems
Procedia PDF Downloads 200