Search results for: rubber artificial muscle
1621 Legal Personality and Responsibility of Robots
Authors: Mehrnoosh Abouzari, Shahrokh Sahraei
Abstract:
Arrival of artificial intelligence or smart robots in the modern world put them in charge on pericise and at risk. So acting human activities with robots makes criminal or civil responsibilities for their acts or behavior. The practical usage of smart robots has entered them in to a unique situation when naturalization happens and smart robots are identifies as members of society. There would be some legal situation by adopting these new smart citizens. The first situation is about legal responsibility of robots. Recognizing the naturalization of robot involves some basic right , so humans have the rights of employment, property, housing, using energy and other human rights may be employed for robots. So how would be the practice of these rights in the society and if some problems happens with these rights, how would the civil responsibility and punishment? May we consider them as population and count on the social programs? The second episode is about the criminal responsibility of robots in important activity instead of human that is the aim of inventing robots with handling works in AI technology , but the problem arises when some accidents are happened by robots who are in charge of important activities like army, surgery, transporting, judgement and so on. Moreover, recognizing independent identification for robots in the legal world by register ID cards, naturalization and civilian rights makes and prepare the same rights and obligations of human. So, the civil responsibility is not avoidable and if the robot commit a crime it would have criminal responsibility and have to be punished. The basic component of criminal responsibility may changes in so situation. For example, if designation for criminal responsibility bounds to human by sane, maturity, voluntariness, it would be for robots by being intelligent, good programming, not being hacked and so on. So it is irrational to punish robots by prisoning , execution and other human punishments for body. We may determine to make digital punishments like changing or repairing programs, exchanging some parts of its body or wreck it down completely. Finally the responsibility of the smart robot creators, programmers, the boss in chief, the organization who employed robot, the government which permitted to use robot in important bases and activities , will be analyzing and investigating in their article.Keywords: robot, artificial intelligence, personality, responsibility
Procedia PDF Downloads 1451620 An Architectural Study on the Railway Station Buildings in Malaysia during British Era, 1885-1957
Authors: Nor Hafizah Anuar, M. Gul Akdeniz
Abstract:
This paper attempted on emphasize on the station buildings façade elements. Station buildings were essential part of the transportation that reflected the technology. Comparative analysis on architectural styles will also be made between the railway station buildings of Malaysia and any railway station buildings which have similarities. The Malay Peninsula which is strategically situated between the Straits of Malacca and the South China Sea makes it an ideal location for trade. Malacca became an important trading port whereby merchants from around the world stopover to exchange various products. The Portuguese ruled Malacca for 130 years (1511–1641) and for the next century and a half (1641–1824), the Dutch endeavoured to maintain an economic monopoly along the coasts of Malaya. Malacca came permanently under British rule under the Anglo-Dutch Treaty, 1824. Up to Malaysian independence in 1957, Malaya saw a great influx of Chinese and Indian migrants as workers to support its growing industrial needs facilitated by the British. The growing tin ore mining and rubber industry resulted as the reason of the development of the railways as urgency to transport it from one place to another. The existence of railway transportation becomes more significant when the city started to bloom and the British started to build grandeur buildings that have different functions; administrative buildings, town and city halls, railway stations, public works department, courts, and post offices.
Keywords: Malaysia, station building, architectural styles, facade elements
Procedia PDF Downloads 1651619 Effects of GRF on CMJ in Different Wooden Surface Systems
Authors: Yi-cheng Chen, Ming-jum Guo, Yang-ru Chen
Abstract:
Background and Objective: For safety and fair during basketball competition, FIBA proposes the definite level of physical functions in wooden surface system (WSS). There are existing various between different systems in indoor-stadium, so the aim of this study want to know how many effects in different WSS, especially for effects of ground reaction force(GRF) when player jumped. Materials and Methods: 12 participants acted counter-movement jump (CMJ) on 7 different surfaces, include 6 WSSs by 3 types rubber shock absorber pad (SAP) on cross or parallel fixed, and 1 rigid ground. GRFs of takeoff and landing had been recorded from an AMTI force platform when all participants acted vertical CMJs by counter-balance design. All data were analyzed using the one-way ANOVA to evaluate whether the test variable differed significantly between surfaces. The significance level was set at α=0.05. Results: There were non-significance in GRF between surfaces when participants taken off. For GRF of landing, we found WSS with cross fixed SAP are harder than parallel fixed. Although there were also non-significance when participant was landing on cross or parallel fixed surfaces, but there have test variable differed significantly between WSS with parallel fixed to rigid ground. In the study, landing to WSS with the hardest SAP, the GRF also have test variable differed significantly to other WSS. Conclusion: Although official basketball competition is in the WSS certificated by FIBA, there are also exist the various in GRF under takeoff or landing, any player must to warm-up before game starting. Especially, there is unsafe situation when play basketball on uncertificated WSS.Keywords: wooden surface system, counter-movement jump, ground reaction force, shock absorber pad
Procedia PDF Downloads 4431618 Extraction and Encapsulation of Carotenoids from Carrot
Authors: Gordana Ćetković, Sanja Podunavac-Kuzmanović, Jasna Čanadanović-Brunet, Vesna Tumbas Šaponjac, Vanja Šeregelj, Jelena Vulić, Slađana Stajčić
Abstract:
The color of food is one of the decisive factors for consumers. Potential toxicity of artificial food colorants has led to the consumers' preference for natural products over products with artificial colors. Natural pigments have many bioactive functions, such as antioxidant, provitamin and many other. Having this in mind, the acceptability of natural colorants by the consumers is much higher. Being present in all photosynthetic plant tissues carotenoids are probably most widespread pigments in nature. Carrot (Daucus carota) is a good source of functional food components. Carrot is especially rich in carotenoids, mainly α- and β-carotene and lutein. For this study, carrot was extracted using classical extraction with hexane and ethyl acetate, as well as supercritical CO₂ extraction. The extraction efficiency was evaluated by estimation of carotenoid yield determined spectrophotometrically. Classical extraction using hexane (18.27 mg β-carotene/100 g DM) was the most efficient method for isolation of carotenoids, compared to ethyl acetate classical extraction (15.73 mg β-carotene/100 g DM) and supercritical CO₂ extraction (0.19 mg β-carotene/100 g DM). Three carrot extracts were tested in terms of antioxidant activity using DPPH and reducing power assay as well. Surprisingly, ethyl acetate extract had the best antioxidant activity on DPPH radicals (AADPPH=120.07 μmol TE/100 g) while hexane extract showed the best reducing power (RP=1494.97 μmol TE/100 g). Hexane extract was chosen as the most potent source of carotenoids and was encapsulated in whey protein by freeze-drying. Carotenoid encapsulation efficiency was found to be high (89.33%). Based on our results it can be concluded that carotenoids from carrot can be efficiently extracted using hexane and classical extraction method. This extract has the potential to be applied in encapsulated form due to high encapsulation efficiency and coloring capacity. Therefore it can be used for dietary supplements development and food fortification.Keywords: carotenoids, carrot, extraction, encapsulation
Procedia PDF Downloads 2701617 Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 701616 Comparison of Sediment Rating Curve and Artificial Neural Network in Simulation of Suspended Sediment Load
Authors: Ahmad Saadiq, Neeraj Sahu
Abstract:
Sediment, which comprises of solid particles of mineral and organic material are transported by water. In river systems, the amount of sediment transported is controlled by both the transport capacity of the flow and the supply of sediment. The transport of sediment in rivers is important with respect to pollution, channel navigability, reservoir ageing, hydroelectric equipment longevity, fish habitat, river aesthetics and scientific interests. The sediment load transported in a river is a very complex hydrological phenomenon. Hence, sediment transport has attracted the attention of engineers from various aspects, and different methods have been used for its estimation. So, several experimental equations have been submitted by experts. Though the results of these methods have considerable differences with each other and with experimental observations, because the sediment measures have some limits, these equations can be used in estimating sediment load. In this present study, two black box models namely, an SRC (Sediment Rating Curve) and ANN (Artificial Neural Network) are used in the simulation of the suspended sediment load. The study is carried out for Seonath subbasin. Seonath is the biggest tributary of Mahanadi river, and it carries a vast amount of sediment. The data is collected for Jondhra hydrological observation station from India-WRIS (Water Resources Information System) and IMD (Indian Meteorological Department). These data include the discharge, sediment concentration and rainfall for 10 years. In this study, sediment load is estimated from the input parameters (discharge, rainfall, and past sediment) in various combination of simulations. A sediment rating curve used the water discharge to estimate the sediment concentration. This estimated sediment concentration is converted to sediment load. Likewise, for the application of these data in ANN, they are normalised first and then fed in various combinations to yield the sediment load. RMSE (root mean square error) and R² (coefficient of determination) between the observed load and the estimated load are used as evaluating criteria. For an ideal model, RMSE is zero and R² is 1. However, as the models used in this study are black box models, they don’t carry the exact representation of the factors which causes sedimentation. Hence, a model which gives the lowest RMSE and highest R² is the best model in this study. The lowest values of RMSE (based on normalised data) for sediment rating curve, feed forward back propagation, cascade forward back propagation and neural network fitting are 0.043425, 0.00679781, 0.0050089 and 0.0043727 respectively. The corresponding values of R² are 0.8258, 0.9941, 0.9968 and 0.9976. This implies that a neural network fitting model is superior to the other models used in this study. However, a drawback of neural network fitting is that it produces few negative estimates, which is not at all tolerable in the field of estimation of sediment load, and hence this model can’t be crowned as the best model among others, based on this study. A cascade forward back propagation produces results much closer to a neural network model and hence this model is the best model based on the present study.Keywords: artificial neural network, Root mean squared error, sediment, sediment rating curve
Procedia PDF Downloads 3231615 Designing Function Knitted and Woven Upholstery Textile With SCOPY Film
Authors: Manar Y. Abd El-Aziz, Alyaa E. Morgham, Amira A. El-Fallal, Heba Tolla E. Abo El Naga
Abstract:
Different textile materials are usually used in upholstery. However, upholstery parts may become unhealthy when dust accrues and bacteria raise on the surface, which negatively affects the user's health. Also, leather and artificial leather were used in upholstery but, leather has a high cost and artificial leather has a potential chemical risk for users. Researchers have advanced vegie leather made from bacterial cellulose a symbiotic culture of bacteria and yeast (SCOBY). SCOBY remains a gelatinous, cellulose biofilm discovered floating at the air-liquid interface of the container. But this leather still needs some enhancement for its mechanical properties. This study aimed to prepare SCOBY, produce bamboo rib knitted fabrics with two different stitch densities, and cotton woven fabric then laminate these fabrics with the prepared SCOBY film to enhance the mechanical properties of the SCOBY leather at the same time; add anti-microbial function to the prepared fabrics. Laboratory tests were conducted on the produced samples, including tests for function properties; anti-microbial, thermal conductivity and light transparency. Physical properties; thickness and mass per unit. Mechanical properties; elongation, tensile strength, young modulus, and peel force. The results showed that the type of the fabric affected significantly SCOBY properties. According to the test results, the bamboo knitted fabric with higher stitch density laminated with SCOBY was chosen for its tensile strength and elongation as the upholstery of a bed model with antimicrobial properties and comfortability in the headrest design. Also, the single layer of SCOBY was chosen regarding light transparency and lower thermal conductivity for the creation of a lighting unit built into the bed headboard.Keywords: anti-microbial, bamboo, rib, SCOPY, upholstery
Procedia PDF Downloads 641614 Designing Web Application to Simulate Agricultural Management for Smart Farmer: Land Development Department’s Integrated Management Farm
Authors: Panasbodee Thachaopas, Duangdorm Gamnerdsap, Waraporn Inthip, Arissara Pungpa
Abstract:
LDD’s IM Farm or Land Development Department’s Integrated Management Farm is the agricultural simulation application developed by Land Development Department relies on actual data in simulation game to grow 12 cash crops which are rice, corn, cassava, sugarcane, soybean, rubber tree, oil palm, pineapple, longan, rambutan, durian, and mangosteen. Launching in simulation game, players could select preferable areas for cropping from base map or Orthophoto map scale 1:4,000. Farm management is simulated from field preparation to harvesting. The system uses soil group, and present land use database to facilitate player to know whether what kind of crop is suitable to grow in each soil groups and integrate LDD’s data with other agencies which are soil types, soil properties, soil problems, climate, cultivation cost, fertilizer use, fertilizer price, socio-economic data, plant diseases, weed, pest, interest rate for taking on loan from Bank for Agriculture and Agricultural Cooperatives (BAAC), labor cost, market prices. These mentioned data affect the cost and yield differently to each crop. After completing, the player will know the yield, income and expense, profit/loss. The player could change to other crops that are more suitable to soil groups for optimal yields and profits.Keywords: agricultural simulation, smart farmer, web application, factors of agricultural production
Procedia PDF Downloads 1971613 Study of the Non-isothermal Crystallization Kinetics of Polypropylene Homopolymer/Impact Copolymer Composites
Authors: Pixiang Wang, Shaoyang Liu, Yucheng Peng
Abstract:
Polypropylene (PP) is an essential material of numerous applications in different industrial sectors, including packaging, construction, and automotive. Because the application of homopolypropylene (HPP) is limited by its relatively low impact strength and high embrittlement temperature, various types of impact copolymer PP (ICPP) that incorporate elastomers/rubbers into HPP to increase impact strength have been successfully commercialized. Crystallization kinetics of an isotactic HPP, an ICPP, and their composites were studied in this work understand the composites’ behaviors better. The Avrami-Jeziorny model was used to describe the crystallization process. For most samples, the Avrami exponent, n, was greater than 3, indicating the crystal grew in three dimensions with spherical geometry. However, the n value could drop below 3 when the ICPP content was 80 wt.% or higher and the cooling rate was 7.5°C/min or lower, implying that the crystals could grow in two dimensions and some lamella structures could be formed under those conditions. The nucleation activity increased with the increase of the ICPP content, demonstrating that the rubber phase in the ICPP acted as a nucleation agent and facilitated the nucleation process. The decrease in crystallization rate after the ICPP content exceeded 60 wt.% might be caused by the excessive amount of crystal nuclei induced by the high ICPP content, which caused strong crystal-crystal interactions and limited the crystal growth space. The nucleation activity and the n value showed high correlations to the mechanical and thermal properties of the materials. The quantitative study of the kinetics of crystallization in this work could be a helpful reference for manufacturing ICPP and HPP/ICPP mixtures.Keywords: polypropylene, crystallization kinetics, Avrami-Jeziorny model, crystallization activation energy, Nucleation activity
Procedia PDF Downloads 851612 A Distributed Mobile Agent Based on Intrusion Detection System for MANET
Authors: Maad Kamal Al-Anni
Abstract:
This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).Keywords: Intrusion Detection System (IDS), Mobile Adhoc Networks (MANET), Back Propagation Algorithm (BPA), Neural Networks (NN)
Procedia PDF Downloads 1931611 The Contemporary Visual Spectacle: Critical Visual Literacy
Authors: Lai-Fen Yang
Abstract:
In this increasingly visual world, how can we best decipher and understand the many ways that our everyday lives are organized around looking practices and the many images we encounter each day? Indeed, how we interact with and interpret visual images is a basic component of human life. Today, however, we are living in one of the most artificial visual and image-saturated cultures in human history, which makes understanding the complex construction and multiple social functions of visual imagery more important than ever before. Themes regarding our experience of a visually pervasive mediated culture, here, termed visual spectacle.Keywords: visual culture, contemporary, images, literacy
Procedia PDF Downloads 5111610 Prototype of an Interactive Toy from Lego Robotics Kits for Children with Autism
Authors: Ricardo A. Martins, Matheus S. da Silva, Gabriel H. F. Iarossi, Helen C. M. Senefonte, Cinthyan R. S. C. de Barbosa
Abstract:
This paper is the development of a concept of the man/robot interaction. More accurately in developing of an autistic child that have more troubles with interaction, here offers an efficient solution, even though simple; however, less studied for this public. This concept is based on code applied thought out the Lego NXT kit, built for the interpretation of the robot, thereby can create this interaction in a constructive way for children suffering with Autism.Keywords: lego NXT, interaction, BricX, autismo, ANN (Artificial Neural Network), MLP back propagation, hidden layers
Procedia PDF Downloads 5681609 Accessing Motional Quotient for All Round Development
Authors: Zongping Wang, Chengjun Cui, Jiacun Wang
Abstract:
The concept of intelligence has been widely used to access an individual's cognitive abilities to learn, form concepts, understand, apply logic, and reason. According to the multiple intelligence theory, there are eight distinguished types of intelligence. One of them is the bodily-kinaesthetic intelligence that links to the capacity of an individual controlling his body and working with objects. Motor intelligence, on the other hand, reflects the capacity to understand, perceive and solve functional problems by motor behavior. Both bodily-kinaesthetic intelligence and motor intelligence refer directly or indirectly to bodily capacity. Inspired by these two intelligence concepts, this paper introduces motional intelligence (MI). MI is two-fold. (1) Body strength, which is the capacity of various organ functions manifested by muscle activity under the control of the central nervous system during physical exercises. It can be measured by the magnitude of muscle contraction force, the frequency of repeating a movement, the time to finish a movement of body position, the duration to maintain muscles in a working status, etc. Body strength reflects the objective of MI. (2) Level of psychiatric willingness to physical events. It is a subjective thing and determined by an individual’s self-consciousness to physical events and resistance to fatigue. As such, we call it subjective MI. Subjective MI can be improved through education and proper social events. The improvement of subjective MI can lead to that of objective MI. A quantitative score of an individual’s MI is motional quotient (MQ). MQ is affected by several factors, including genetics, physical training, diet and lifestyle, family and social environment, and personal awareness of the importance of physical exercise. Genes determine one’s body strength potential. Physical training, in general, makes people stronger, faster and swifter. Diet and lifestyle have a direct impact on health. Family and social environment largely affect one’s passion for physical activities, so does personal awareness of the importance of physical exercise. The key to the success of the MQ study is developing an acceptable and efficient system that can be used to assess MQ objectively and quantitatively. We should apply different accessing systems to different groups of people according to their ages and genders. Field test, laboratory test and questionnaire are among essential components of MQ assessment. A scientific interpretation of MQ score is part of an MQ assessment system as it will help an individual to improve his MQ. IQ (intelligence quotient) and EQ (emotional quotient) and their test have been studied intensively. We argue that IQ and EQ study alone is not sufficient for an individual’s all round development. The significance of MQ study is that it offsets IQ and EQ study. MQ reflects an individual’s mental level as well as bodily level of intelligence in physical activities. It is well-known that the American Springfield College seal includes the Luther Gulick triangle with the words “spirit,” “mind,” and “body” written within it. MQ, together with IQ and EQ, echoes this education philosophy. Since its inception in 2012, the MQ research has spread rapidly in China. By now, six prestigious universities in China have established research centers on MQ and its assessment.Keywords: motional Intelligence, motional quotient, multiple intelligence, motor intelligence, all round development
Procedia PDF Downloads 1621608 Serum Concentration of the CCL7 Chemokine in Diabetic Pregnant Women during Pregnancy until the Postpartum Period
Authors: Fernanda Piculo, Giovana Vesentini, Gabriela Marini, Debora Cristina Damasceno, Angelica Mercia Pascon Barbosa, Marilza Vieira Cunha Rudge
Abstract:
Introduction: Women with previous gestational diabetes mellitus (GDM) were significantly more likely to have urinary incontinence (UI) and pelvic floor muscle dysfunction compared to non-diabetic women two years after a cesarean section. Additional results demonstrated that induced diabetes causes detrimental effects on pregnant rat urethral muscle. These results indicate the need for exploration of the mechanistic role of a recovery factor in female UI. Chemokine ligand 7 (CCL7) was significantly over expressed in rat serum, urethral and vaginal tissues immediately following induction of stress UI in a rat model simulating birth trauma. CCL7 over expression has shown potency for stimulating targeted stem cell migration and provide a translational link (clinical measurement) which further provide opportunities for treatment. The aim of this study was to investigate the CCL7 levels profile in diabetic pregnant women with urinary incontinence during pregnancy over the first year postpartum. Methods: This study was conducted in the Perinatal Diabetes Research Center of the Botucatu Medical School/UNESP, and was approved by the Research Ethics Committee of the Institution (CAAE: 20639813.0.0000.5411). The diagnosis of GDM was established between 24th and 28th gestational weeks, by the 75 g-OGTT test according to ADA’s criteria. Urinary incontinence was defined according to the International Continence Society and the CCL7 levels was measured by ELISA (R&D Systems, Catalog Number DCC700). Two hundred twelve women were classified into four study groups: normoglycemic continent (NC), normoglycemic incontinent (NI), diabetic continent (DC) and diabetic incontinent (DI). They were evaluated at six-time-points: 12-18, 24-28 and 34-38 gestational weeks, 24-48 hours, 6 weeks and 6-12 months postpartum. Results: At 12-18 weeks, it was possible to consider only two groups, continent and incontinent, because at this early gestational period has not yet been the diagnosis of GDM. The group with GDM and UI (DI group) showed lower levels of CCL7 in all time points during pregnancy and postpartum, compared to normoglycemic groups (NC and NI), indicating that these women have not recovered from child birth induced UI during the 6-12 months postpartum compared to their controls, and that the progression of UI and/or lack of recovery throughout the first postpartum year can be related with lower levels of CCL7. Instead, serum CCL7 was significantly increased in the NC group. Taken together, these findings of overexpression of CCL7 in the NC group and decreased levels in the DI group, could confirm that diabetes delays the recovery from child birth induced UI, and that CCL7 could potentially be used as a serum marker of injury. Conclusion: This study demonstrates lower levels of CCL7 in the DI group during pregnancy and postpartum and suggests that the progression of UI in diabetic women and/or lack of recovery throughout the first postpartum year can be related with low levels of CCL7. This provides a translational potential where CCL7 measurement could be used as a surrogate for injury after delivery. Successful controlled CCL7 mediated stem cell homing to the lower urinary tract could one day introduce the potential for non-operative treatment or prevention of stress urinary incontinence.Keywords: CCL7, gestational diabetes, pregnancy, urinary incontinence
Procedia PDF Downloads 3351607 GAILoc: Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 721606 Effect of Resistance Exercise on Hypothalamic-Pituitary-Gonadal Axis
Authors: Alireza Barari, Saeed Shirali, Ahmad Abdi
Abstract:
Abstract: Introduction: Physical activity may be related to male reproductive function by affecting on thehypothalamic-pituitary-gonadal(HPG) axis. Our aim was to determine the effects of 6 weeks resistance exercise on reproductive hormones, HPG axis. The hypothalamic-pituitary-gonadal (HPG) axis refers tothe effects of endocrine glands in three-level including (i) the hypothalamic releasing hormone GnRH, which is synthesized in in a small heterogenous neuronal population and released in a pulsatile fashion, (ii) the anterior pituitary hormones, follicle-stimulating hormone(FSH) and luteinizing hormone (LH) and (iii) the gonadal hormones, which include both steroid such as testosterone (T), estradiol and progesterone and peptide hormones (such as inhibin). Hormonal changes that create a more anabolic environment have been suggested to contribute to the adaptation to strength exercise. Physical activity has an extensive impact on male reproductive function depending upon the intensity and duration of the exercise and the fitness level of the individual. However, strenuous exercise represents a physical stress and inflammation changed that challenges homeostasis. Materials and methods: Sixteen male volunteered were included in a 6-week control period followed by 6 weeks of resistance training (leg press, lat pull, chest press, squat, seatedrow, abdominal crunch, shoulder press, biceps curl and triceps press down) four times per week. intensity of training loading was 60%-75% of one maximum repetition. Participants performed 3 sets of 10 repetitions. Rest periods were two min between exercises and sets. Start with warm up exercises include: The muscles relax and stretch the body, which was for 10 minutes. Body composition, VO2max and the circulating level of free testosterone (fT), luteinizing hormone (LH), follicle-stimulating hormone (FSH), sex hormone binding globulin (SHBG) and inhibin B measured prior and post 6-week intervention. The hormonal levels of each serum sample were measured using commercially available ELISA kits. Analysis of anthropometrical data and hormonal level were compared using the independent samples t- test in both groups and using SPSS (version 19). P ≤ 0.05 was considered statistically significant. Results: For muscle strength, both lower- and upper-body strength were increased significantly. Aerobic fitness level improved in trained participant from 39.4 ± 5.6 to 41.9 ± 5.3 (P = 0.002). fT concentration rise progressively in the trained group and was significantly greater than those in the control group (P = 0.000). By the end of the 6-week resistance training, serum SHBG significantly increased in the trained group compared with the control group (P = 0.013). In response to resistance training, LH, FSH and inhibin B were not significantly changed. Discussion: According to our finfings, 6 weeks of resistance training induce fat loss without any changes in body weight and BMI. A decline of 25.3% in percentage of body fat with statiscally same weight was due to increase in muscle mass that happened during resistance exercise periods . Six weeks of resistance training resulted in significant improvement in BF%, VO2max and increasing strength and the level of fT and SHBG.Keywords: resistance, hypothalamic, pituitary, gonadal axis
Procedia PDF Downloads 3971605 Development of Excellent Water-Repellent Coatings for Metallic and Ceramic Surfaces
Authors: Aditya Kumar
Abstract:
One of the most fascinating properties of various insects and plant surfaces in nature is their water-repellent (superhydrophobicity) capability. The nature offers new insights to learn and replicate the same in designing artificial superhydrophobic structures for a wide range of applications such as micro-fluidics, micro-electronics, textiles, self-cleaning surfaces, anti-corrosion, anti-fingerprint, oil/water separation, etc. In general, artificial superhydrophobic surfaces are synthesized by creating roughness and then treating the surface with low surface energy materials. In this work, various super-hydrophobic coatings on metallic surfaces (aluminum, steel, copper, steel mesh) were synthesized by chemical etching process using different etchants and fatty acid. Also, SiO2 nano/micro-particles embedded polyethylene, polystyrene, and poly(methyl methacrylate) superhydrophobic coatings were synthesized on glass substrates. Also, the effect of process parameters such as etching time, etchant concentration, and particle concentration on wettability was studied. To know the applications of the coatings, surface morphology, contact angle, self-cleaning, corrosion-resistance, and water-repellent characteristics were investigated at various conditions. Furthermore, durabilities of coatings were also studied by performing thermal, ultra-violet, and mechanical stability tests. The surface morphology confirms the creation of rough microstructures by chemical etching or by embedding particles, and the contact angle measurements reveal the superhydrophobic nature. Experimentally it is found that the coatings have excellent self-cleaning, anti-corrosion and water-repellent nature. These coatings also withstand mechanical disturbances such surface bending, adhesive peeling, and abrasion. Coatings are also found to be thermal and ultra-violet stable. Additionally, coatings are also reproducible. Hence aforesaid durable superhydrophobic surfaces have many potential industrial applications.Keywords: superhydrophobic, water-repellent, anti-corrosion, self-cleaning
Procedia PDF Downloads 2941604 Knowledge, Attitude, and Practice Related to Potential Application of Artificial Intelligence in Health Supply Chain
Authors: Biniam Bahiru Tufa, Hana Delil Tesfaye, Seife Demisse Legesse, Manaye Tamire
Abstract:
The healthcare industry is witnessing a digital transformation, with artificial intelligence (AI) offering potential solutions for challenges in health supply chain management (HSCM). However, the adoption of AI in this field remains limited. This research aimed to assess the knowledge, attitude, and practice of AI among students and employees in the health supply chain sector in Ethiopia. Using an explanatory case study research design with a concurrent mixed approach, quantitative and qualitative data were collected simultaneously. The study included 153 participants comprising students and employed health supply chain professionals working in various sectors. The majority had a pharmacy background, and one-third of the participants were male. Most respondents were under 35 years old, and around 68.6% had less than 10 years of experience. The findings revealed that 94.1% of participants had prior knowledge of AI, but only 35.3% were aware of its application in the supply chain. Moreover, the majority indicated that their training curriculum did not cover AI in health supply chain management. Participants generally held positive attitudes toward the necessity of AI for improving efficiency, effectiveness, and cost savings in the supply chain. However, many expressed concerns about its impact on job security and satisfaction, considering it as a burden Graduate students demonstrated higher knowledge of AI compared to employed staff, while graduate students also exhibited a more positive attitude toward AI. The study indicated low previous utilization and potential future utilization of AI in the health supply chain, suggesting untapped opportunities for improvement. Overall, while supply chain experts and graduate students lacked sufficient understanding of AI and its significance, they expressed favorable views regarding its implementation in the sector. The study recommends that the Ethiopian government and international organizations consider introducing AI in the undergraduate pharmacy curriculum and promote its integration into the health supply chain field.Keywords: knowledge, attitude, practice, supply chain, articifial intellegence
Procedia PDF Downloads 901603 Reproductive Biology and Lipid Content of Albacore Tuna (Thunnus alalunga) in the Western Indian Ocean
Authors: Zahirah Dhurmeea, Iker Zudaire, Heidi Pethybridge, Emmanuel Chassot, Maria Cedras, Natacha Nikolic, Jerome Bourjea, Wendy West, Chandani Appadoo, Nathalie Bodin
Abstract:
Scientific advice on the status of fish stocks relies on indicators that are based on strong assumptions on biological parameters such as condition, maturity and fecundity. Currently, information on the biology of albacore tuna, Thunnus alalunga, in the Indian Ocean is scarce. Consequently, many parameters used in stock assessment models for Indian Ocean albacore originate largely from other studied stocks or species of tuna. Inclusion of incorrect biological data in stock assessment models would lead to inappropriate estimates of stock status used by fisheries manager’s to establish future catch allowances. The reproductive biology of albacore tuna in the western Indian Ocean was examined through analysis of the sex ratio, spawning season, length-at-maturity (L50), spawning frequency, fecundity and fish condition. In addition, the total lipid content (TL) and lipid class composition in the gonads, liver and muscle tissues of female albacore during the reproductive cycle was investigated. A total of 923 female and 867 male albacore were sampled from 2013 to 2015. A bias in sex-ratio was found in favour of females with fork length (LF) <100 cm. Using histological analyses and gonadosomatic index, spawning was found to occur between 10°S and 30°S, mainly to the east of Madagascar from October to January. Large females contributed more to reproduction through their longer spawning period compared to small individuals. The L50 (mean ± standard error) of female albacore was estimated at 85.3 ± 0.7 cm LF at the vitellogenic 3 oocyte stage maturity threshold. Albacore spawn on average every 2.2 days within the spawning region and spawning months from November to January. Batch fecundity varied between 0.26 and 2.09 million eggs and the relative batch fecundity (mean standard deviation) was estimated at 53.4 ± 23.2 oocytes g-1 of somatic-gutted weight. Depending on the maturity stage, TL in ovaries ranged from 7.5 to 577.8 mg g-1 of wet weight (ww) with different proportions of phospholipids (PL), wax esters (WE), triacylglycerol (TAG) and sterol (ST). The highest TL were observed in immature (mostly TAG and PL) and spawning capable ovaries (mostly PL, WE and TAG). Liver TL varied from 21.1 to 294.8 mg g-1 (ww) and acted as an energy (mainly TAG and PL) storage prior to reproduction when the lowest TL was observed. Muscle TL varied from 2.0 to 71.7 g-1 (ww) in mature females without a clear pattern between maturity stages, although higher values of up to 117.3 g-1 (ww) was found in immature females. TL results suggest that albacore could be viewed predominantly as a capital breeder relying mostly on lipids stored before the onset of reproduction and with little additional energy derived from feeding. This study is the first one to provide new information on the reproductive development and classification of albacore in the western Indian Ocean. The reproductive parameters will reduce uncertainty in current stock assessment models which will eventually promote sustainability of the fishery.Keywords: condition, size-at-maturity, spawning behaviour, temperate tuna, total lipid content
Procedia PDF Downloads 2591602 Composition and Distribution of Seabed Marine Litter Along Algerian Coast (Western Mediterranean)
Authors: Ahmed Inal, Samir Rouidi, Samir Bachouche
Abstract:
The present study is focused on the distribution and composition of seafloor marine litter associated to trawlable fishing areas along Algerian coast. The sampling was done with a GOC73 bottom trawl during four (04) demersal resource assessment cruises, respectively, in 2016, 2019, 2021 and 2022, carried out on board BELKACEM GRINE R/V. A total of 254 fishing hauls were sampled for the assessment of marine litter. Hauls were performed between 22 and 600 m of depth, the duration was between 30 and 60 min. All sampling was conducted during daylight. After the haul, marine litter was sorted and split from the catch. Then, according to the basis of the MEDITS protocol, litters were sorted into six different categories (plastic, rubber, metal, wood, glass and natural fiber). Thereafter, all marine litter were counted and weighed separately to the nearest 0.5 g. The results shows that the maximums of marine litter densities in the seafloor of the trawling fishing areas along Algerian coast are, respectively, 1996 item/km2 in 2016, 5164 item/km2 in 2019, 2173 item/km2 in 2021 and 7319 item/km2 in 2022. Thus, the plastic is the most abundant litter, it represent, respectively, 46% of marine litter in 2016, 67% in 2019, 69% in 2021 and 74% in 2022. Regarding the weight of the marine litter, it varies between 0.00 and 103 kg in 2016, between 0.04 and 81 kg in 2019, between 0.00 and 68 Kg in 2021 and between 0.00 and 318 kg in 2022. Thus, the maximum rate of marine litter compared to the total catch approximate, respectively, 66% in 2016, 90% in 2019, 65% in 2021 and 91% in 2022. In fact, the average loss in catch is estimated, respectively, at 7.4% in 2016, 8.4% in 2019, 5.7% in 2021 and 6.4% in 2022. However, the bathymetric and geographical variability had a significant impact on both density and weight of marine litter. Marine litter monitoring program is necessary for offering more solution proposals.Keywords: composition, distribution, seabed, marine litter, algerian coast
Procedia PDF Downloads 661601 Resonant Auxetic Metamaterial for Automotive Applications in Vibration Isolation
Authors: Adrien Pyskir, Manuel Collet, Zoran Dimitrijevic, Claude-Henri Lamarque
Abstract:
During the last decades, great efforts have been made to reduce acoustic and vibrational disturbances in transportations, as it has become a key feature for comfort. Today, isolation and design have neutralized most of the troublesome vibrations, so that cars are quieter and more comfortable than ever. However, some problems remain unsolved, in particular concerning low-frequency isolation and the frequency-dependent stiffening of materials like rubber. To sum it up, a balance has to be found between a high static stiffness to sustain the vibration source’s mass, and low dynamic stiffness, as wideband as possible. Systems meeting these criteria are yet to be designed. We thus investigated solutions inspired by metamaterials to control efficiently low-frequency wave propagation. Structures exhibiting a negative Poisson ratio, also called auxetic structures, are known to influence the propagation of waves through beaming or damping. However, their stiffness can be quite peculiar as well, as they can present regions of zero stiffness on the stress-strain curve for compression. In addition, auxetic materials can be easily adapted in many ways, inducing great tuning potential. Using finite element software COMSOL Multiphysics, a resonant design has been tested through statics and dynamics simulations. These results are compared to experimental results. In particular, the bandgaps featured by these structures are analyzed as a function of design parameters. Great stiffness properties can be observed, including low-frequency dynamic stiffness loss and broadband transmission loss. Such features are very promising for practical isolation purpose, and we hope to adopt this kind of metamaterial into an effective industrial damper.Keywords: auxetics, metamaterials, structural dynamics, vibration isolation
Procedia PDF Downloads 1471600 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 461599 Aseismic Stiffening of Architectural Buildings as Preventive Restoration Using Unconventional Materials
Authors: Jefto Terzovic, Ana Kontic, Isidora Ilic
Abstract:
In the proposed design concept, laminated glass and laminated plexiglass, as ”unconventional materials”, are considered as a filling in a steel frame on which they overlap by the intermediate rubber layer, thereby forming a composite assembly. In this way vertical elements of stiffening are formed, capable for reception of seismic force and integrated into the structural system of the building. The applicability of such a system was verified by experiments in laboratory conditions where the experimental models based on laminated glass and laminated plexiglass had been exposed to the cyclic loads that simulate the seismic force. In this way the load capacity of composite assemblies was tested for the effects of dynamic load that was parallel to assembly plane. Thus, the stress intensity to which composite systems might be exposed was determined as well as the range of the structure stiffening referring to the expressed deformation along with the advantages of a particular type of filling compared to the other one. Using specialized software whose operation is based on the finite element method, a computer model of the structure was created and processed in the case study; the same computer model was used for analyzing the problem in the first phase of the design process. The stiffening system based on composite assemblies tested in laboratories is implemented in the computer model. The results of the modal analysis and seismic calculation from the computer model with stiffeners applied showed an efficacy of such a solution, thus rounding the design procedures for aseismic stiffening by using unconventional materials.Keywords: laminated glass, laminated plexiglass, aseismic stiffening, experiment, laboratory testing, computer model, finite element method
Procedia PDF Downloads 771598 Understanding ICT Behaviors among Health Workers in Sub-Saharan Africa: A Cross-Sectional Study for Laboratory Persons in Uganda
Authors: M. Kasusse, M. Rosette, E. Burke, C. Mwangi, R. Batamwita, N. Tumwesigye, S. Aisu
Abstract:
A cross-sectional survey to ascertain the capacity of laboratory persons in using ICTs was conducted in 15 Ugandan districts (July-August 2013). A self-administered questionnaire served as data collection tool, interview guide and observation checklist. 69 questionnaires were filled, 12 interviews conducted, 45 HC observed. SPSS statistics 17.0 and SAS 9.2 software were used for entry and analyses. 69.35% of participants find it difficult to access a computer at work. Of the 30.65% who find it easy to access a computer at work, a significant 21.05% spend 0 hours on a computer daily. 60% of the participants cannot access internet at work. Of the 40% who have internet at work, a significant 20% lack email address but 20% weekly read emails weekly and 48% daily. It is viable/feasible to pilot informatics projects as strategies to build bridges develop skills for e-health landscape in laboratory services with a bigger financial muscle.Keywords: ICT behavior, clinical laboratory persons, Sub-Saharan Africa, Uganda
Procedia PDF Downloads 2291597 Reinventing Education Systems: Towards an Approach Based on Universal Values and Digital Technologies
Authors: Ilyes Athimni, Mouna Bouzazi, Mongi Boulehmi, Ahmed Ferchichi
Abstract:
The principles of good governance, universal values, and digitization are among the tools to fight corruption and improve the quality of service delivery. In recent years, these tools have become one of the most controversial topics in the field of education and a concern of many international organizations and institutions against the problem of corruption. Corruption in the education sector, particularly in higher education, has negative impacts on the quality of education systems and on the quality of administrative or educational services. Currently, the health crisis due to the spread of the COVID-19 pandemic reveals the difficulties encountered by education systems in most countries of the world. Due to the poor governance of these systems, many educational institutions were unable to continue working remotely. To respond to these problems encountered by most education systems in many countries of the world, our initiative is to propose a methodology to reinvent education systems based on global values and digital technologies. This methodology includes a work strategy for educational institutions, whether in the provision of administrative services or in the teaching method, based on information and communication technologies (ICTs), intelligence artificial, and intelligent agents. In addition, we will propose a supervisory law that will be implemented and monitored by intelligent agents to improve accountability, transparency, and accountability in educational institutions. On the other hand, we will implement and evaluate a field experience by applying the proposed methodology in the operation of an educational institution and comparing it to the traditional methodology through the results of teaching an educational program. With these specifications, we can reinvent quality education systems. We also expect the results of our proposal to play an important role at local, regional, and international levels in motivating governments of countries around the world to change their university governance policies.Keywords: artificial intelligence, corruption in education, distance learning, education systems, ICTs, intelligent agents, good governance
Procedia PDF Downloads 2111596 The Various Legal Dimensions of Genomic Data
Authors: Amy Gooden
Abstract:
When human genomic data is considered, this is often done through only one dimension of the law, or the interplay between the various dimensions is not considered, thus providing an incomplete picture of the legal framework. This research considers and analyzes the various dimensions in South African law applicable to genomic sequence data – including property rights, personality rights, and intellectual property rights. The effective use of personal genomic sequence data requires the acknowledgement and harmonization of the rights applicable to such data.Keywords: artificial intelligence, data, law, genomics, rights
Procedia PDF Downloads 1361595 Durability of Light-Weight Concrete
Authors: Rudolf Hela, Michala Hubertova
Abstract:
The paper focuses on research of durability and lifetime of dense light-weight concrete with artificial light-weight aggregate Liapor exposed to various types of aggressive environment. Experimental part describes testing of designed concrete of various strength classes and volume weights exposed to cyclical freezing, frost and chemical de-icers and various types of chemically aggressive environment.Keywords: aggressive environment, durability, physical-mechanical properties, light-weight concrete
Procedia PDF Downloads 2661594 Digital Architectural Practice as a Challenge for Digital Architectural Technology Elements in the Era of Digital Design
Authors: Ling Liyun
Abstract:
In the field of contemporary architecture, complex forms of architectural works continue to emerge in the world, along with some new terminology emerged: digital architecture, parametric design, algorithm generation, building information modeling, CNC construction and so on. Architects gradually mastered the new skills of mathematical logic in the form of exploration, virtual simulation, and the entire design and coordination in the construction process. Digital construction technology has a greater degree in controlling construction, and ensure its accuracy, creating a series of new construction techniques. As a result, the use of digital technology is an improvement and expansion of the practice of digital architecture design revolution. We worked by reading and analyzing information about the digital architecture development process, a large number of cases, as well as architectural design and construction as a whole process. Thus current developments were introduced and discussed in our paper, such as architectural discourse, design theory, digital design models and techniques, material selecting, as well as artificial intelligence space design. Our paper also pays attention to the representative three cases of digital design and construction experiment at great length in detail to expound high-informatization, high-reliability intelligence, and high-technique in constructing a humane space to cope with the rapid development of urbanization. We concluded that the opportunities and challenges of the shift existed in architectural paradigms, such as the cooperation methods, theories, models, technologies and techniques which were currently employed in digital design research and digital praxis. We also find out that the innovative use of space can gradually change the way people learn, talk, and control information. The past two decades, digital technology radically breaks the technology constraints of industrial technical products, digests the publicity on a particular architectural style (era doctrine). People should not adapt to the machine, but in turn, it’s better to make the machine work for users.Keywords: artificial intelligence, collaboration, digital architecture, digital design theory, material selection, space construction
Procedia PDF Downloads 1351593 Personalizing Human Physical Life Routines Recognition over Cloud-based Sensor Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study introduces state-of-the-art techniques for recognizing static and dy-namic patterns and forecasting those challenging activities from multi-fused sensors. Further-more, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, we acquired raw data is filtered with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.Keywords: artificial intelligence, machine learning, gait analysis, local binary pattern (LBP), statistical features, micro-electro-mechanical systems (MEMS), maximum relevance and minimum re-dundancy (MRMR)
Procedia PDF Downloads 191592 Analysis of Total Acid in Arabica Coffee Beans after Fermentation with Ohmic Technology
Authors: Reta
Abstract:
Coffee is widely consumed not only because of its typical taste, but coffee has antioxidant properties because of its polyphenols, and it stimulates brain's performance. The main problem with the consumption of coffee is its content of caffeine. Caffeine, when consumed in excess, can increase muscle tension, stimulate the heart, and increase the secretion of gastric acid. In this research, we applied ohmic-based fermentation technology, which is specially designed to mimic the stomach. We used Arabica coffee, which although cheaper than Luwak coffee, has high acidity, which needs to be reduced. Hence, we applied the ohmic technology, varied the time and temperature of the process and measured the total acidity of the coffee to determine optimum fermentation conditions. Results revealed total acidity of the coffee varied with fermentation conditions; 0.32% at 400C and 12 hr, and 0.52% at 400C and 6 hr. The longer the fermentation, the lower was the acidity. The acidity of the mongoose-fermented (natural fermentation) beans was 2.34%, which is substantially higher than the acidity of the ohmic samples. Ohmic-based fermentation technology, therefore, offers improvements in coffee quality, and this is discussed to highlight the potential of ohmic technology in coffee processing.Keywords: ohmic technology, fermentation, coffee quality, Arabica coffee
Procedia PDF Downloads 341