Search results for: multiple instance learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11866

Search results for: multiple instance learning

10426 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever

Authors: Sudha T., Naveen C.

Abstract:

Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.

Keywords: deep learning model, dengue fever, prediction, optimization

Procedia PDF Downloads 65
10425 The Impact of Online Learning on Visual Learners

Authors: Ani Demetrashvili

Abstract:

As online learning continues to reshape the landscape of education, questions arise regarding its efficacy for diverse learning styles, particularly for visual learners. This abstract delves into the impact of online learning on visual learners, exploring how digital mediums influence their educational experience and how educational platforms can be optimized to cater to their needs. Visual learners comprise a significant portion of the student population, characterized by their preference for visual aids such as diagrams, charts, and videos to comprehend and retain information. Traditional classroom settings often struggle to accommodate these learners adequately, relying heavily on auditory and written forms of instruction. The advent of online learning presents both opportunities and challenges in addressing the needs of visual learners. Online learning platforms offer a plethora of multimedia resources, including interactive simulations, virtual labs, and video lectures, which align closely with the preferences of visual learners. These platforms have the potential to enhance engagement, comprehension, and retention by presenting information in visually stimulating formats. However, the effectiveness of online learning for visual learners hinges on various factors, including the design of learning materials, user interface, and instructional strategies. Research into the impact of online learning on visual learners encompasses a multidisciplinary approach, drawing from fields such as cognitive psychology, education, and human-computer interaction. Studies employ qualitative and quantitative methods to assess visual learners' preferences, cognitive processes, and learning outcomes in online environments. Surveys, interviews, and observational studies provide insights into learners' preferences for specific types of multimedia content and interactive features. Cognitive tasks, such as memory recall and concept mapping, shed light on the cognitive mechanisms underlying learning in digital settings. Eye-tracking studies offer valuable data on attentional patterns and information processing during online learning activities. The findings from research on the impact of online learning on visual learners have significant implications for educational practice and technology design. Educators and instructional designers can use insights from this research to create more engaging and effective learning materials for visual learners. Strategies such as incorporating visual cues, providing interactive activities, and scaffolding complex concepts with multimedia resources can enhance the learning experience for visual learners in online environments. Moreover, online learning platforms can leverage the findings to improve their user interface and features, making them more accessible and inclusive for visual learners. Customization options, adaptive learning algorithms, and personalized recommendations based on learners' preferences and performance can enhance the usability and effectiveness of online platforms for visual learners.

Keywords: online learning, visual learners, digital education, technology in learning

Procedia PDF Downloads 38
10424 The Reality of the Digital Inequality and Its Negative Impact on Virtual Learning during the COVID-19 Pandemic: The South African Perspective

Authors: Jacob Medupe

Abstract:

Life as we know it has changed since the global outbreak of Coronavirus Disease 2019 (COVID-19) and business as usual will not continue. The human impact of the COVID-19 crisis is already immeasurable. Moreover, COVID-19 has already negatively impacted economies, livelihoods and disrupted food systems around the world. The disruptive nature of the Corona virus has affected every sphere of life including the culture and teaching and learning. Right now the majority of education research is based around classroom management techniques that are no longer necessary with digital delivery. Instead there is a great need for new data about how to make the best use of the one-on-one attention that is now becoming possible (Diamandis & Kotler, 2014). The COVID-19 pandemic has necessitated an environment where the South African learners are focused to adhere to social distancing in order to minimise the wild spread of the Corona virus. This arrangement forces the student to utilise the online classroom technologies to continue with the lessons. The historical reality is that the country has not made much strides on the closing of the digital divide and this is particularly a common status quo in the deep rural areas. This will prove to be a toll order for most of the learners affected by the Corona Virus to be able to have a seamless access to the online learning facilities. The paper will seek to look deeply into this reality and how the Corona virus has brought us to the reality that South Africa remains a deeply unequal society in every sphere of life. The study will also explore the state of readiness for education system around the online classroom environment.

Keywords: virtual learning, virtual classroom, COVID-19, Corona virus, internet connectivity, blended learning, online learning, distance education, e-learning, self-regulated Learning, pedagogy, digital literacy

Procedia PDF Downloads 127
10423 The Impact of Quality of Life on Satisfaction and Intent to Return for Distance Running

Authors: Chin-Huang Huang, Chun-Chu Yeh

Abstract:

Physical activities have a positive impact on individuals’ health and well-being. They also play an important role in promoting quality of life (QoL). The distance running enhances participants’ life satisfaction and provides positive experiences in physical activity. This study aims to measure the perception of QoL and to find the effect on satisfaction and intent to return for distance runners. Exploratory factor analysis is carried out to extract four major factorial dimensions of QoL, including multiple functions, spiritual, physical and cognitive factors. The main factors of QoL will be introduced into the regression function on satisfaction and return intention. The results show that the QoL factors including multiple functions, spiritual, physical and cognitive factors have a positive and significant impact on satisfaction for participants. The multiple functions and physical factors are also significantly positively correlated to the intent of return for runners.

Keywords: quality of life, physical activity, distance running, satisfaction

Procedia PDF Downloads 465
10422 Chinese Fantasy Novel: New Word Teaching for Non-Native Learners

Authors: Bok Check Meng, Goh Ying Soon

Abstract:

Giving additional learning materials such as Chinese fantasy novel to non-native learners can be strenuous. Instructors have to understand the underpinning theories about cognitive theory for new word instruction. This paper discusses the underpinning theories. Relevant literature reviews are given. There are basically five major areas of cognitive related theories mentioned in this article. These include motivational learning theory, Affective theory of learning, Cognitive psychology theory, Vocabulary acquisition theory and Bloom’s cognitive levels theory. A theoretical framework has been constructed. Thus, this will give a hand in ensuring non-native learners might gain positive outcomes in the instruction process. Instructors who are interested in teaching new word from Chinese fantasy novel in specific to support additional learning might be able to get insights from this article.

Keywords: Chinese fantasy novel, new word teaching, non-native learners, cognitive theory, bloom

Procedia PDF Downloads 735
10421 Vehicle Speed Estimation Using Image Processing

Authors: Prodipta Bhowmik, Poulami Saha, Preety Mehra, Yogesh Soni, Triloki Nath Jha

Abstract:

In India, the smart city concept is growing day by day. So, for smart city development, a better traffic management and monitoring system is a very important requirement. Nowadays, road accidents increase due to more vehicles on the road. Reckless driving is mainly responsible for a huge number of accidents. So, an efficient traffic management system is required for all kinds of roads to control the traffic speed. The speed limit varies from road to road basis. Previously, there was a radar system but due to high cost and less precision, the radar system is unable to become favorable in a traffic management system. Traffic management system faces different types of problems every day and it has become a researchable topic on how to solve this problem. This paper proposed a computer vision and machine learning-based automated system for multiple vehicle detection, tracking, and speed estimation of vehicles using image processing. Detection of vehicles and estimating their speed from a real-time video is tough work to do. The objective of this paper is to detect vehicles and estimate their speed as accurately as possible. So for this, a real-time video is first captured, then the frames are extracted from that video, then from that frames, the vehicles are detected, and thereafter, the tracking of vehicles starts, and finally, the speed of the moving vehicles is estimated. The goal of this method is to develop a cost-friendly system that can able to detect multiple types of vehicles at the same time.

Keywords: OpenCV, Haar Cascade classifier, DLIB, YOLOV3, centroid tracker, vehicle detection, vehicle tracking, vehicle speed estimation, computer vision

Procedia PDF Downloads 84
10420 Personality as a Predictor of Knowledge Hiding Behavior: Case Study of Alpha Electronics

Authors: Sadeeqa Khan, Muhammad Usman

Abstract:

Employees’ knowledge hiding behaviors can be detrimental to employees’ interpersonal relationships and individual and organizational learning and creativity. However, to the best of the authors’ knowledge, the literature on the contingencies, antecedents and outcomes of employees’ knowledge hiding behaviors is still in its infancy. On the other hand, not everyone who hides knowledge hides it the same way, as individuals are different, so do their behaviors. This study explores the links between employees’ personality traits and their knowledge hiding behaviors. By using a single case study as a research methodology and collecting data through 28 semi-structured interviews from employees working in Alpha Electronics (the pseudo name of the company to ascertain anonymity) operating in Pakistan, we foreground the patterns of relationships between employees’ personality traits and knowledge hiding behaviors – rationalized hiding, evasive hiding and playing dumb. Our findings suggest that employees high on extraversion involve in evasive knowledge hiding; while employees low on extraversion (introverts) demonstrate rationalized hiding. Moreover, both extrovert and introvert employees involve in playing dumb in situations that involve risk for their jobs and careers. For instance, when knowledge is requested from their managers, both extrovert and introvert employees tend to play dumb, as in such cases, evasive and rationalized hiding can be harmful to their job and career-related interests and motives. Other than theoretical contributions, the study offers important implications for organizations faced with the challenges of shortage of skills and knowledge.

Keywords: knowledge hiding, personality, rationalized hiding, playing dumb, evasive hiding

Procedia PDF Downloads 215
10419 A Systematic Review on Lifelong Learning Programs for Community-Dwelling Older Adults

Authors: Xi Vivien Wu, Emily Neo Kim Ang, Yi Jung Tung, Wenru Wang

Abstract:

Background and Objective: The increase in life expectancy and emphasis on self-reliance for the older adults are global phenomena. As such, lifelong learning in the community is considered a viable means of promoting successful and active aging. This systematic review aims to examine various lifelong learning programs for community-dwelling older adults and to synthesize the contents and outcomes of these lifelong learning programs. Methods: A systematic search was conducted in July to December 2016. Two reviewers were engaged in the process to ensure creditability of the selection process. Narrative description and analysis were applied with the support of a tabulation of key data including study design, interventions, and outcomes. Results: Eleven articles, which consisted of five randomized controlled trials and six quasi-experimental studies, were included in this review. Interventions included e-health literacy programs with the aid of computers and the Internet (n=4), computer and Internet training (n=3), physical fitness programs (n=2), music program (n=1), and intergenerational program (n=1). All studies used objective measurement tools to evaluate the outcomes of the study. Conclusion: The systematic review indicated lifelong learning programs resulted in positive outcomes in terms of physical health, mental health, social behavior, social support, self-efficacy and confidence in computer usage, and increased e-health literacy efficacy. However, the lifelong learning programs face challenges such as funding shortages, program cuts, and increasing costs. A comprehensive lifelong learning program could be developed to enhance the well-being of the older adults at a more holistic level. Empirical research can be done to explore the effectiveness of this comprehensive lifelong learning program.

Keywords: community-dwelling older adults, e-health literacy program, lifelong learning program, the wellbeing of the older adults

Procedia PDF Downloads 164
10418 Physical Verification Flow on Multiple Foundries

Authors: Rohaya Abdul Wahab, Raja Mohd Fuad Tengku Aziz, Nazaliza Othman, Sharifah Saleh, Nabihah Razali, Muhammad Al Baqir Zinal Abidin, Md Hanif Md Nasir

Abstract:

This paper will discuss how we optimize our physical verification flow in our IC Design Department having various rule decks from multiple foundries. Our ultimate goal is to achieve faster time to tape-out and avoid schedule delay. Currently the physical verification runtimes and memory usage have drastically increased with the increasing number of design rules, design complexity and the size of the chips to be verified. To manage design violations, we use a number of solutions to reduce the amount of violations needed to be checked by physical verification engineers. The most important functions in physical verifications are DRC (design rule check), LVS (layout vs. schematic) and XRC (extraction). Since we have a multiple number of foundries for our design tape-outs, we need a flow that improve the overall turnaround time and ease of use of the physical verification process. The demand for fast turnaround time is even more critical since the physical design is the last stage before sending the layout to the foundries.

Keywords: physical verification, DRC, LVS, XRC, flow, foundry, runset

Procedia PDF Downloads 654
10417 A Multiple Case Study of How Bilingual-Bicultural Teachers' Language Shame and Loss Affects Teaching English Language Learners

Authors: Lisa Winstead, Penny Congcong Wang

Abstract:

This two-year multiple case study of eight Spanish-English speaking teachers explores bilingual-bicultural Latino teachers’ lived experiences as English Language Learners and, more recently, as adult teachers who work with English Language Learners in mainstream schools. Research questions explored include: How do bilingual-bicultural teachers perceive their native language use and sense of self within society from childhood to adulthood? Correspondingly, what are bilingual teachers’ perceptions of how their own language learning experience might affect teaching students of similar linguistic and cultural backgrounds? This study took place in an urban area in the Pacific Southwest of the United States. Participants were K-8 teachers and enrolled in a Spanish-English bilingual authorization program. Data were collected from journals, focus group interviews, field notes, and class artifacts. Within case and cross-case analysis revealed that the participants were shamed about their language use as children which contributed to their primary language loss. They similarly reported how experiences of mainstream educator and administrator language shaming invalidated their ability to provide support for Latino heritage ELLs, despite their bilingual-bicultural expertise. However, participants reported that counter-narratives from the bilingual authorization program, parents, community and church organizations, and cultural responsive teachers were effective in promoting their language retention, pride, and feelings of well-being.

Keywords: teacher education, bilingual education, English language learners, emergent bilinguals, social justice, language shame, language loss, translanguaging

Procedia PDF Downloads 189
10416 A Systematic Review of Chronic Neurologic Complications of COVID-19; A Potential Risk Factor for Narcolepsy, Parkinson's Disease, and Multiple Sclerosis.

Authors: Sulemana Saibu, Moses Ikpeme

Abstract:

Background: The severity of the COVID-19 pandemic, brought on by the SARS-CoV-2 coronavirus, has been unprecedented since the 1918 influenza pandemic. SARS-CoV-2 cases of CNS and peripheral nervous system disease, including neurodegenerative disorders and chronic immune-mediated diseases, may be anticipated based on knowledge of past coronaviruses, particularly those that caused the severe acute respiratory syndrome and Middle East respiratory syndrome outbreaks. Although respiratory symptoms are the most common clinical presentation, neurological symptoms are becoming increasingly recognized, raising concerns about their potential role in causing Parkinson's disease, Multiple sclerosis, and Narcolepsy. This systematic review aims to summarize the current evidence by exploring the association between COVID-19 infection and how it may overlap with etiological mechanisms resulting in Narcolepsy, Parkinson's disease, and Multiple sclerosis. Methods: A systematic search was conducted using electronic databases ((PubMed/MedLine, Embase, PsycINFO, ScieLO, Web of Science, ProQuest (Biotechnology, Virology, and AIDS), Scopus, and CINAHL)) to identify studies published between January 2020 and December 2022 that investigated the association between COVID-19 and Parkinson's disease, multiple sclerosis, and Narcolepsy. Per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the review was performed and reported. Study quality was assessed using the Critical Appraisal Skills Programme Checklist and the Joanna Briggs Institute Critical appraisal tools. Results: A total of 21 studies out of 1025 met the inclusion criteria, including 8 studies reporting Parkinson's disease, 11 on multiple sclerosis, and 2 on Narcolepsy. In COVID-19 individuals compared to the general population, Narcolepsy, Parkinson's disease, and multiple sclerosis were shown to have a higher incidence. The findings imply that COVID-19 may worsen the signs or induce multiple sclerosis and Parkinson's disease and may raise the risk of developing Narcolepsy. Further research is required to confirm these connections because the available data is insufficient. Conclusion: According to the existing data, COVID-19 may raise the risk of Narcolepsy and have a causative relationship with Parkinson's disease, multiple sclerosis, and other diseases. More study is required to confirm these correlations and pinpoint probable mechanisms behind these interactions. Clinicians should be aware of how COVID-19 may affect various neurological illnesses and should treat patients who are affected accordingly.

Keywords: COVID-19, parkinson’s disease, multiple sclerosis, narcolepsy, neurological disorders, sars-cov-2, neurodegenerative disorders, chronic immune-mediated diseases

Procedia PDF Downloads 84
10415 Teaching English to Students with Hearing Impairments - A Preliminary Study

Authors: Jane O`Halloran

Abstract:

This research aims to identify the issues and challenges of teaching English as a Foreign Language to Japanese university students who have special learning needs. This study sought to investigate factors influencing the academic performance of students with special or additional needs in an inclusive education context. This study will focus on a consideration of the methods available to support those with hearing impairments. While the study population is limited, it is important to give classes to be inclusive places where all students receive equal access to content. Hearing impairments provide an obvious challenge to language learning and, therefore, second-language learning. However, strategies and technologies exist to support the instructor without specialist training. This paper aims to identify these and present them to other teachers of English as a second language who wish to provide the best possible learning experience for every student. Two case studies will be introduced to compare and contrast the experience of in-class teaching and the online option and to share the positives and negatives of the two approaches. While the study focuses on the situation in a university in Japan, the lessons learned by the author may have universal value to any classroom with a student with a hearing disability.

Keywords: inclusive learning, special needs, hearing impairments, teaching strategies

Procedia PDF Downloads 132
10414 Developing New Academics: So What Difference Does It Make?

Authors: Nalini Chitanand

Abstract:

Given the dynamic nature of the higher education landscape, induction programmes for new academics has become the norm nowadays to support academics negotiate these rough terrain. This study investigates an induction programme for new academics in a higher education institution to establish what difference it has made to participants. The findings revealed that the benefits ranged from creating safe spaces for collaboration and networking to fostering reflective practice and contributing to the scholarship of teaching and learning. The study also revealed that some of the intentions of the programme may not have been achieved, for example transformative learning. This led to questioning whether this intention is an appropriate one given the short duration of the programme and the long, drawn out process of transformation. It may be concluded that the academic induction programme in this study serves to sow the seeds for transformative learning through fostering critically reflective practice. Recommendations for further study could include long term impact of the programme on student learning and success, these being the core business of higher education. It is also recommended that in addition to an induction programme, the university invests in a mentoring programme for new staff and extend the support for academics in order to sustain critical reflection and which may contribute to transformative educational practice.

Keywords: induction programme, reflective practice, scholarship of teaching, transformative learning

Procedia PDF Downloads 316
10413 Drama in the Classroom: Work and Experience with Standardized Patients and Classroom Simulation of Difficult Clinical Scenarios

Authors: Aliyah Dosani, Kerri Alderson

Abstract:

Two different simulations using standardized patients were developed to reinforce content and foster undergraduate nursing students’ practice and development of interpersonal skills in difficult clinical situations in the classroom. The live actor simulations focused on fostering interpersonal skills, traditionally considered by students to be simple and easy. However, seemingly straightforward interactions can be very stressful, particularly in women’s complex social/emotional situations. Supporting patients in these contexts is fraught with complexity and high emotion, requiring skillful support, assessment and intervention by a registered nurse. In this presentation, the personal and professional perspectives of the development, incorporation, and execution of the live actor simulations will be discussed, as well as the inclusion of student perceptions, and the learning gained by the involved faculty.

Keywords: adult learning, interpersonal skill development, simulation learning, teaching and learning

Procedia PDF Downloads 143
10412 Knowledge Management Best Practice Model in Higher Learning Institution: A Systematic Literature Review

Authors: Ismail Halijah, Abdullah Rusli

Abstract:

Introduction: This systematic literature review aims to identify the Knowledge Management Best Practice components in the Knowledge Management Model for Higher Learning Institutions environment. Study design: Systematic literature review. Methods: A systematic literature re-view of Knowledge Management Best Practice to identify and define the components of Best Practice from the Knowledge Management models was conducted recently. Results: This review of published papers of conference and journals’ articles shows the components of Best Practice in Knowledge Management are basically divided into two aspect which is the soft aspect and the hard aspect. The lacks of combination of these two aspects into an integrated model decelerate Knowledge Management Best Practice to fully throttle. Evidence from the literature shows the lack of integration of this two aspects leads to the immaturity of the Higher Learning Institution (HLI) towards the implementation of Knowledge Management System. Conclusion: The first steps of identifying the attributes to measure the Knowledge Management Best Practice components from the models in the literature will led to the definition of the Knowledge Management Best Practice component for the higher learning environment.

Keywords: knowledge management, knowledge management system, knowledge management best practice, knowledge management higher learning institution

Procedia PDF Downloads 592
10411 Algorithm Optimization to Sort in Parallel by Decreasing the Number of the Processors in SIMD (Single Instruction Multiple Data) Systems

Authors: Ali Hosseini

Abstract:

Paralleling is a mechanism to decrease the time necessary to execute the programs. Sorting is one of the important operations to be used in different systems in a way that the proper function of many algorithms and operations depend on sorted data. CRCW_SORT algorithm executes ‘N’ elements sorting in O(1) time on SIMD (Single Instruction Multiple Data) computers with n^2/2-n/2 number of processors. In this article having presented a mechanism by dividing the input string by the hinge element into two less strings the number of the processors to be used in sorting ‘N’ elements in O(1) time has decreased to n^2/8-n/4 in the best state; by this mechanism the best state is when the hinge element is the middle one and the worst state is when it is minimum. The findings from assessing the proposed algorithm by other methods on data collection and number of the processors indicate that the proposed algorithm uses less processors to sort during execution than other methods.

Keywords: CRCW, SIMD (Single Instruction Multiple Data) computers, parallel computers, number of the processors

Procedia PDF Downloads 310
10410 SVM-Based Modeling of Mass Transfer Potential of Multiple Plunging Jets

Authors: Surinder Deswal, Mahesh Pal

Abstract:

The paper investigates the potential of support vector machines based regression approach to model the mass transfer capacity of multiple plunging jets, both vertical (θ = 90°) and inclined (θ = 60°). The data set used in this study consists of four input parameters with a total of eighty eight cases. For testing, tenfold cross validation was used. Correlation coefficient values of 0.971 and 0.981 (root mean square error values of 0.0025 and 0.0020) were achieved by using polynomial and radial basis kernel functions based support vector regression respectively. Results suggest an improved performance by radial basis function in comparison to polynomial kernel based support vector machines. The estimated overall mass transfer coefficient, by both the kernel functions, is in good agreement with actual experimental values (within a scatter of ±15 %); thereby suggesting the utility of support vector machines based regression approach.

Keywords: mass transfer, multiple plunging jets, support vector machines, ecological sciences

Procedia PDF Downloads 464
10409 The Environmental Influence on Slow Learners' Learning Achievement

Authors: Niphattha Hannapha

Abstract:

This paper examines how the classroom environment influences slow learners’ learning achievement; it focuses on how seating patterns affect students’ behaviours and which patterns best contribute to students’ learning performance. The researcher studied how slow learners’ characteristics and seating patterns influenced their behaviours and performance at Ban Hin Lad School. As a nonparticipant observation, the target groups included 15 slow learners from Prathomsueksa (Grades) 4 and 5. Students’ behaviours were recorded during their learning activities in order to minimize their reading and written expression disorder in Thai language tutorials. The result showed four seating patterns and two behaviors which obstructed students’ learning. The average of both behaviours mostly occurred when students were seated with patterns 1 (the seat facing the door, with the corridor alongside) and 3 (the seat alongside the door, facing the aisle) respectively. Seating patterns 1 and 3 demonstrated visibility (the front and side) of a walking path with two-way movement. However, seating patterns 2 (seating with the door alongside and the aisle at the back) and 4 (sitting with the door at the back and the aisle alongside) demonstrated visibility (the side) of a walking path with one-way movement. In Summary, environmental design is important to enhance concentration in slow learners who have reading and writing disabilities. This study suggests that students should be seated where they can have the least visibility of movement to help them increase continuous learning. That means they can have a better chance of developing reading and writing abilities in comparison with other patterns of seating.

Keywords: slow learning, interior design, interior environment, classroom

Procedia PDF Downloads 214
10408 Evaluating Distance and Blended Learning during COVID-19: Experiences and Innovations from High School and Secondary Educators

Authors: Azzeddine Atibi, Khadija El Kababi, Salim Ahmed, Mohamed Radid

Abstract:

The primary aim of the present study is to undertake an extensive comparative examination of distance learning and blended learning modalities, with a particular focus on assessing their efficacy during the period of confinement imposed by the COVID-19 pandemic. This investigation is grounded in the firsthand experiences of educators at the high school and secondary levels across both private and public educational institutions. To gather the necessary data, we designed and distributed a meticulously crafted survey to these educators, soliciting detailed accounts of their professional experiences throughout this challenging period. The survey's objectives include elucidating the specific difficulties faced by teachers, as well as highlighting the innovative pedagogical strategies they developed in response to these challenges. By synthesizing the insights gained from this survey, we aim to foster an exchange of experiences among educators and to generate informed recommendations that will guide future educational reforms. Ultimately, this study aspires to contribute to the ongoing discourse on optimizing educational practices in the face of unprecedented disruptions.

Keywords: distance learning, blended learning, covid 19, secondary/ high school, teachingperformance, evaluation

Procedia PDF Downloads 34
10407 Distributed Coverage Control by Robot Networks in Unknown Environments Using a Modified EM Algorithm

Authors: Mohammadhosein Hasanbeig, Lacra Pavel

Abstract:

In this paper, we study a distributed control algorithm for the problem of unknown area coverage by a network of robots. The coverage objective is to locate a set of targets in the area and to minimize the robots’ energy consumption. The robots have no prior knowledge about the location and also about the number of the targets in the area. One efficient approach that can be used to relax the robots’ lack of knowledge is to incorporate an auxiliary learning algorithm into the control scheme. A learning algorithm actually allows the robots to explore and study the unknown environment and to eventually overcome their lack of knowledge. The control algorithm itself is modeled based on game theory where the network of the robots use their collective information to play a non-cooperative potential game. The algorithm is tested via simulations to verify its performance and adaptability.

Keywords: distributed control, game theory, multi-agent learning, reinforcement learning

Procedia PDF Downloads 459
10406 Assessing Online Learning Paths in an Learning Management Systems Using a Data Mining and Machine Learning Approach

Authors: Alvaro Figueira, Bruno Cabral

Abstract:

Nowadays, students are used to be assessed through an online platform. Educators have stepped up from a period in which they endured the transition from paper to digital. The use of a diversified set of question types that range from quizzes to open questions is currently common in most university courses. In many courses, today, the evaluation methodology also fosters the students’ online participation in forums, the download, and upload of modified files, or even the participation in group activities. At the same time, new pedagogy theories that promote the active participation of students in the learning process, and the systematic use of problem-based learning, are being adopted using an eLearning system for that purpose. However, although there can be a lot of feedback from these activities to student’s, usually it is restricted to the assessments of online well-defined tasks. In this article, we propose an automatic system that informs students of abnormal deviations of a 'correct' learning path in the course. Our approach is based on the fact that by obtaining this information earlier in the semester, may provide students and educators an opportunity to resolve an eventual problem regarding the student’s current online actions towards the course. Our goal is to prevent situations that have a significant probability to lead to a poor grade and, eventually, to failing. In the major learning management systems (LMS) currently available, the interaction between the students and the system itself is registered in log files in the form of registers that mark beginning of actions performed by the user. Our proposed system uses that logged information to derive new one: the time each student spends on each activity, the time and order of the resources used by the student and, finally, the online resource usage pattern. Then, using the grades assigned to the students in previous years, we built a learning dataset that is used to feed a machine learning meta classifier. The produced classification model is then used to predict the grades a learning path is heading to, in the current year. Not only this approach serves the teacher, but also the student to receive automatic feedback on her current situation, having past years as a perspective. Our system can be applied to online courses that integrate the use of an online platform that stores user actions in a log file, and that has access to other student’s evaluations. The system is based on a data mining process on the log files and on a self-feedback machine learning algorithm that works paired with the Moodle LMS.

Keywords: data mining, e-learning, grade prediction, machine learning, student learning path

Procedia PDF Downloads 122
10405 The Importance of Working Memory, Executive and Attention Functions in Attention Deficit Hyperactivity Disorder and Learning Disabilities Diagnostics

Authors: Dorottya Horváth, Tímea Harmath-Tánczos

Abstract:

Attention deficit hyperactivity disorder (ADHD) and learning disabilities are common neurocognitive disorders that can have a significant impact on a child's academic performance. ADHD is characterized by inattention, hyperactivity, and impulsivity, while learning disabilities are characterized by difficulty with specific academic skills, such as reading, writing, or math. The aim of this study was to investigate the working memory, executive, and attention functions of neurotypical children and children with ADHD and learning disabilities in order to fill the gaps in the Hungarian mean test scores of these cognitive functions in children with neurocognitive disorders. Another aim was to specify the neuropsychological differential diagnostic toolkit in terms of the relationships and peculiarities between these cognitive functions. The research question addressed in this study was: How do the working memory, executive, and attention functions of neurotypical children compare to those of children with ADHD and learning disabilities? A self-administered test battery was used as a research tool. Working memory was measured with the Non-Word Repetition Test, the Listening Span Test, the Digit Span Test, and the Reverse Digit Span Test; executive function with the Letter Fluency, Semantic Fluency, and Verb Fluency Tests; and attentional concentration with the d2-R Test. The data for this study was collected from 115 children aged 9-14 years. The children were divided into three groups: neurotypical children (n = 44), children with ADHD without learning disabilities (n = 23), and children with ADHD with learning disabilities (n = 48). The data was analyzed using a variety of statistical methods, including t-tests, ANOVAs, and correlational analyses. The results showed that the performance of children with neurocognitive involvement in working memory, executive functions, and attention was significantly lower than the performance of neurotypical children. However, the results of children with ADHD and ADHD with learning disabilities did not show a significant difference. The findings of this study are important because they provide new insights into the cognitive profiles of children with ADHD and learning disabilities and suggest that working memory, executive functions, and attention are all impaired in children with neurocognitive involvement, regardless of whether they have ADHD or learning disabilities. This information can be used to develop more effective diagnostic and treatment strategies for these disorders.

Keywords: ADHD, attention functions, executive functions, learning disabilities, working memory

Procedia PDF Downloads 95
10404 A Smart Sensor Network Approach Using Affordable River Water Level Sensors

Authors: Dian Zhang, Brendan Heery, Maria O’Neill, Ciprian Briciu-Burghina, Noel E. O’Connor, Fiona Regan

Abstract:

Recent developments in sensors, wireless data communication and the cloud computing have brought the sensor web to a whole new generation. The introduction of the concept of ‘Internet of Thing (IoT)’ has brought the sensor research into a new level, which involves the developing of long lasting, low cost, environment friendly and smart sensors; new wireless data communication technologies; big data analytics algorithms and cloud based solutions that are tailored to large scale smart sensor network. The next generation of smart sensor network consists of several layers: physical layer, where all the smart sensors resident and data pre-processes occur, either on the sensor itself or field gateway; data transmission layer, where data and instructions exchanges happen; the data process layer, where meaningful information is extracted and organized from the pre-process data stream. There are many definitions of smart sensor, however, to summarize all these definitions, a smart sensor must be Intelligent and Adaptable. In future large scale sensor network, collected data are far too large for traditional applications to send, store or process. The sensor unit must be intelligent that pre-processes collected data locally on board (this process may occur on field gateway depends on the sensor network structure). In this case study, three smart sensing methods, corresponding to simple thresholding, statistical model and machine learning based MoPBAS method, are introduced and their strength and weakness are discussed as an introduction to the smart sensing concept. Data fusion, the integration of data and knowledge from multiple sources, are key components of the next generation smart sensor network. For example, in the water level monitoring system, weather forecast can be extracted from external sources and if a heavy rainfall is expected, the server can send instructions to the sensor notes to, for instance, increase the sampling rate or switch on the sleeping mode vice versa. In this paper, we describe the deployment of 11 affordable water level sensors in the Dublin catchment. The objective of this paper is to use the deployed river level sensor network at the Dodder catchment in Dublin, Ireland as a case study to give a vision of the next generation of a smart sensor network for flood monitoring to assist agencies in making decisions about deploying resources in the case of a severe flood event. Some of the deployed sensors are located alongside traditional water level sensors for validation purposes. Using the 11 deployed river level sensors in a network as a case study, a vision of the next generation of smart sensor network is proposed. Each key component of the smart sensor network is discussed, which hopefully inspires the researchers who are working in the sensor research domain.

Keywords: smart sensing, internet of things, water level sensor, flooding

Procedia PDF Downloads 381
10403 Pre-Service Teachers’ Experiences and Attitude towards Children’s Problem Solving Strategies in Early Mathematics Learning

Authors: Temitayo Ogunsanwo

Abstract:

Problem-solving is an important way of learning way of learning because it propels children to use previous experiences to deal with new situations. The purpose of this study is to find out the attitude of pre-service teachers to problem-solving as a strategy for promoting early mathematics learning in children. This qualitative study employed a descriptive design to investigate the experiences of twenty second-year undergraduate early childhood education Pre-service teachers in a teaching practice and their attitude towards five-year-old children’s problem-solving strategies in mathematics. Pre-service teachers were exposed to different strategies for teaching children how to solve problems in mathematics. They were taken through a micro teaching in class using different strategies to teach problem-solving in different topics in the five-year-old mathematics curriculum. The students were then made to teach five-year-olds in neighbouring schools for three weeks, working in pairs, observing and recording children’s problem-solving activities and strategies. After the three weeks exercise, their experiences and attitude towards children’s problem-solving strategies were collected using open-ended questions and analysed in themes. Findings were discussed.

Keywords: attitude, early mathematics learning, experience, pre-service teachers, problem-solving, strategies

Procedia PDF Downloads 348
10402 Mammographic Multi-View Cancer Identification Using Siamese Neural Networks

Authors: Alisher Ibragimov, Sofya Senotrusova, Aleksandra Beliaeva, Egor Ushakov, Yuri Markin

Abstract:

Mammography plays a critical role in screening for breast cancer in women, and artificial intelligence has enabled the automatic detection of diseases in medical images. Many of the current techniques used for mammogram analysis focus on a single view (mediolateral or craniocaudal view), while in clinical practice, radiologists consider multiple views of mammograms from both breasts to make a correct decision. Consequently, computer-aided diagnosis (CAD) systems could benefit from incorporating information gathered from multiple views. In this study, the introduce a method based on a Siamese neural network (SNN) model that simultaneously analyzes mammographic images from tri-view: bilateral and ipsilateral. In this way, when a decision is made on a single image of one breast, attention is also paid to two other images – a view of the same breast in a different projection and an image of the other breast as well. Consequently, the algorithm closely mimics the radiologist's practice of paying attention to the entire examination of a patient rather than to a single image. Additionally, to the best of our knowledge, this research represents the first experiments conducted using the recently released Vietnamese dataset of digital mammography (VinDr-Mammo). On an independent test set of images from this dataset, the best model achieved an AUC of 0.87 per image. Therefore, this suggests that there is a valuable automated second opinion in the interpretation of mammograms and breast cancer diagnosis, which in the future may help to alleviate the burden on radiologists and serve as an additional layer of verification.

Keywords: breast cancer, computer-aided diagnosis, deep learning, multi-view mammogram, siamese neural network

Procedia PDF Downloads 138
10401 Effect of Open-Ended Laboratory toward Learners Performance in Environmental Engineering Course: Case Study of Civil Engineering at Universiti Malaysia Sabah

Authors: N. Bolong, J. Makinda, I. Saad

Abstract:

Laboratory activities have produced benefits in student learning. With current drives of new technology resources and evolving era of education methods, renewal status of learning and teaching in laboratory methods are in progress, for both learners and the educators. To enhance learning outcomes in laboratory works particularly in engineering practices and testing, learning via hands-on by instruction may not sufficient. This paper describes and compares techniques and implementation of traditional (expository) with open-ended laboratory (problem-based) for two consecutive cohorts studying environmental laboratory course in civil engineering program. The transition of traditional to problem-based findings and effect were investigated in terms of course assessment student feedback survey, course outcome learning measurement and student performance grades. It was proved that students have demonstrated better performance in their grades and 12% increase in the course outcome (CO) in problem-based open-ended laboratory style than traditional method; although in perception, students has responded less favorable in their feedback.

Keywords: engineering education, open-ended laboratory, environmental engineering lab

Procedia PDF Downloads 316
10400 Language and Culture Exchange: Tandem Language Learning for University Students

Authors: Hebe Wong, Luz Fernandez Calventos

Abstract:

Tandem language learning, a language exchange process based on the principles of autonomy and reciprocity, provides opportunities for interlocutors to learn each other’s language by communicating online or face-to-face. While much attention has been paid to the process and outcomes of tandem learning via email, little has been discussed about the effectiveness of face-to-face tandem learning on language and culture exchange for university students. The LACTS (Language and Culture Tandem Scheme), an 8-week project, was set up to study students’ perceptions of conducting tandem learning to assist their language and culture exchange. Students of both post-graduate and undergraduate programmes (N=103) from a Hong Kong SAR university were put in groups of 4 to 6 according to their availability and language preferences and met for an hour a week. While sample task sheets on a range of topics were provided to assist the language exchange, all groups were encouraged to take charge of their meeting format and choose their own topics. At the end of the project, a 19-item questionnaire, which included both open-and closed-ended questions investigating students’ perceptions of reciprocal teaching and cultural exchange, was administered. Thirty-minute individual interviews were conducted to elicit students’ views and experiences in the LACTS activities. Quantitative and qualitative data analysis showed that most students agreed that the project had enhanced their cultural awareness and helped create an inclusive and participatory learning environment. Significant differences were found in students’ confidence in speaking their targeted language after joining the scheme. The interviews also provided rich data on the variety of formats and leadership patterns in student-led meetings, which could shed light on student autonomy and future tandem language learning projects.

Keywords: autonomy, reciprocity, tandem language learning, university students

Procedia PDF Downloads 58
10399 PatchMix: Learning Transferable Semi-Supervised Representation by Predicting Patches

Authors: Arpit Rai

Abstract:

In this work, we propose PatchMix, a semi-supervised method for pre-training visual representations. PatchMix mixes patches of two images and then solves an auxiliary task of predicting the label of each patch in the mixed image. Our experiments on the CIFAR-10, 100 and the SVHN dataset show that the representations learned by this method encodes useful information for transfer to new tasks and outperform the baseline Residual Network encoders by on CIFAR 10 by 12% on ResNet 101 and 2% on ResNet-56, by 4% on CIFAR-100 on ResNet101 and by 6% on SVHN dataset on the ResNet-101 baseline model.

Keywords: self-supervised learning, representation learning, computer vision, generalization

Procedia PDF Downloads 89
10398 A Two Tailed Secretary Problem with Multiple Criteria

Authors: Alaka Padhye, S. P. Kane

Abstract:

The following study considers some variations made to the secretary problem (SP). In a multiple criteria secretary problem (MCSP), the selection of a unit is based on two independent characteristics. The units that appear before an observer are known say N, the best rank of a unit being N. A unit is selected, if it is better with respect to either first or second or both the characteristics. When the number of units is large and due to constraints like time and cost, the observer might want to stop earlier instead of inspecting all the available units. Let the process terminate at r2th unit where r1Keywords: joint distribution, marginal distribution, real ranks, secretary problem, selection criterion, two tailed secretary problem

Procedia PDF Downloads 271
10397 Research on Pilot Sequence Design Method of Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing System Based on High Power Joint Criterion

Authors: Linyu Wang, Jiahui Ma, Jianhong Xiang, Hanyu Jiang

Abstract:

For the pilot design of the sparse channel estimation model in Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) systems, the observation matrix constructed according to the matrix cross-correlation criterion, total correlation criterion and other optimization criteria are not optimal, resulting in inaccurate channel estimation and high bit error rate at the receiver. This paper proposes a pilot design method combining high-power sum and high-power variance criteria, which can more accurately estimate the channel. First, the pilot insertion position is designed according to the high-power variance criterion under the condition of equal power. Then, according to the high power sum criterion, the pilot power allocation is converted into a cone programming problem, and the power allocation is carried out. Finally, the optimal pilot is determined by calculating the weighted sum of the high power sum and the high power variance. Compared with the traditional pilot frequency, under the same conditions, the constructed MIMO-OFDM system uses the optimal pilot frequency for channel estimation, and the communication bit error rate performance obtains a gain of 6~7dB.

Keywords: MIMO-OFDM, pilot optimization, compressed sensing, channel estimation

Procedia PDF Downloads 149