Search results for: drug prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4192

Search results for: drug prediction

2752 Anti-Inflammatory and Analgesic Effects of Methanol Extract of Rhizophora racemosa Leaf in Albino Rats

Authors: Angalabiri-Owei E. Bekekeme, Brambaifa Nelson

Abstract:

In view of the peculiar environment of the Niger Delta, access to modern health care is limited, hence the inhabitants especially those in the swampy areas resorts to sourcing for alternatives cure for their ailments using plants commonly found in this area without scientific evaluation. Rhizophora racemosa, G. F. Meyer (Rhizophoraceae) is the most abundant mangrove plant in the Niger Delta Area of Nigeria. The plant has been observed to be used for relief of a toothache and dysmenorrhoea among some Ijaw communities in the region. This work has revealed the likely potential of the plant in drug discovery and development. The crude methanol extract at doses of 300 mg/kg and 600 mg/kg (intraperitoneal) were tested for analgesic effect using fresh egg albumin induced inflammatory pain and Randall–Sellito method to assess the pain threshold. The anti-inflammatory effect was also evaluated with the extract at doses of 300 mg/kg and 600 mg/kg (intraperitoneal) using acute inflammatory model; fresh egg albumin induced paw oedema and assessed using Plethysmometer in rats. The methanol extracts 300 mg/kg and 600 mg/kg exhibited a significant (P < 0.001) and dose-dependent analgesic activity compared with the negative control and a standard drug diclofenac using ANOVA with Least Significant Difference post hoc test as evidenced by increased pain threshold. Also, the extract significantly (P < 0.001) reduced the rat paw oedema induced by the sub plantar injection of fresh egg albumin when compared with the negative control and a standard diclofenac using above statistical methods. This study revealed that the plant possesses analgesic and anti-inflammatory activities hence provide scientific bases for use as medicine.

Keywords: analgesic, anti-inflammatory, plethysmometer, Rhizophora racemosa

Procedia PDF Downloads 357
2751 Estimation of Constant Coefficients of Bourgoyne and Young Drilling Rate Model for Drill Bit Wear Prediction

Authors: Ahmed Z. Mazen, Nejat Rahmanian, Iqbal Mujtaba, Ali Hassanpour

Abstract:

In oil and gas well drilling, the drill bit is an important part of the Bottom Hole Assembly (BHA), which is installed and designed to drill and produce a hole by several mechanisms. The efficiency of the bit depends on many drilling parameters such as weight on bit, rotary speed, and mud properties. When the bit is pulled out of the hole, the evaluation of the bit damage must be recorded very carefully to guide engineers in order to select the bits for further planned wells. Having a worn bit for hole drilling may cause severe damage to bit leading to cutter or cone losses in the bottom of hole, where a fishing job will have to take place, and all of these will increase the operating cost. The main factor to reduce the cost of drilling operation is to maximize the rate of penetration by analyzing real-time data to predict the drill bit wear while drilling. There are numerous models in the literature for prediction of the rate of penetration based on drilling parameters, mostly based on empirical approaches. One of the most commonly used approaches is Bourgoyne and Young model, where the rate of penetration can be estimated by the drilling parameters as well as a wear index using an empirical correlation, provided all the constants and coefficients are accurately determined. This paper introduces a new methodology to estimate the eight coefficients for Bourgoyne and Young model using the gPROMS parameters estimation GPE (Version 4.2.0). Real data collected form similar formations (12 ¼’ sections) in two different fields in Libya are used to estimate the coefficients. The estimated coefficients are then used in the equations and applied to nearby wells in the same field to predict the bit wear.

Keywords: Bourgoyne and Young model, bit wear, gPROMS, rate of penetration

Procedia PDF Downloads 154
2750 Resistance of Haemonchus spp. to Albendazole, Fenbendazole and Levamisole in 4 Goat Farms of Antioquia, Colombia

Authors: Jose D. Zapata-Torres, Esteban Naranjo-Gutiérrez, Angela M. Martínez-Valencia, Jenny J. Chaparro-Gutiérrez, David Villar-Argaiz

Abstract:

Reports of drug resistance have been made in every livestock host and to every anthelmintic class. In some regions of world, the extremely high prevalence of multi-drug resistance in nematodes of sheep and goats threatens the viability of small-ruminant industries. In the region of Antioquia, Colombia, no reports of nematode resistance have been documented due to a lack of veterinary diagnostic laboratories. The objective of this study was to evaluate the efficacy of albendazole, fenbendazole, and levamisole to control gastrointestinal nematodes in goat farms of Antioquia by doing fecal egg count reduction tests. A total of 139 crossbreed goats from four separate farms were sampled for feces prior to, and 14 days following anthelmintc treatments. Individual fecal egg counts were performed using the modified three chamber McMaster technique. The anthelmintics administered at day 0 were albendazole (farm 1, n=63), fenbendazole (farm 2, n=20), and levamisole (farm 3 and 4, n= 37, and 19). Larval cultures were used to identify the genus of nematodes using Baermann`s technique and the morphological keys for identification of L3 in small ruminants. There was no difference in fecal egg counts between 0 and 14, with means (±SD) of 1681,5 ± 2121,5 and 1715,12 ± 1895,4 epg (eggs per gram), respectively. The egg count reductions for each anthelmintic and farm were 25,86% for albendazole (farm 1), 0% for fenbendazole (farm 2), 0% (farm 3), and 5,5% (farm 4) for levamisole. The genus of nematodes identified was predominantly Haemonchus spp., with 70,27% and 82,81% for samples from day 0 and 14, respectively. These results provide evidence of a total state of resistance to 3 common anthelmintics. Further research is needed to design integrate management programs to control nematodes in small ruminants in Colombia.

Keywords: anthelmintics, goat, haemonchus, resistance

Procedia PDF Downloads 528
2749 In-Depth Analysis on Sequence Evolution and Molecular Interaction of Influenza Receptors (Hemagglutinin and Neuraminidase)

Authors: Dong Tran, Thanh Dac Van, Ly Le

Abstract:

Hemagglutinin (HA) and Neuraminidase (NA) play an important role in host immune evasion across influenza virus evolution process. The correlation between HA and NA evolution in respect to epitopic evolution and drug interaction has yet to be investigated. In this study, combining of sequence to structure evolution and statistical analysis on epitopic/binding site specificity, we identified potential therapeutic features of HA and NA that show specific antibody binding site of HA and specific binding distribution within NA active site of current inhibitors. Our approach introduces the use of sequence variation and molecular interaction to provide an effective strategy in establishing experimental based distributed representations of protein-protein/ligand complexes. The most important advantage of our method is that it does not require complete dataset of complexes but rather directly inferring feature interaction from sequence variation and molecular interaction. Using correlated sequence analysis, we additionally identified co-evolved mutations associated with maintaining HA/NA structural and functional variability toward immunity and therapeutic treatment. Our investigation on the HA binding specificity revealed unique conserved stalk domain interacts with unique loop domain of universal antibodies (CR9114, CT149, CR8043, CR8020, F16v3, CR6261, F10). On the other hand, NA inhibitors (Oseltamivir, Zaninamivir, Laninamivir) showed specific conserved residue contribution and similar to that of NA substrate (sialic acid) which can be exploited for drug design. Our study provides an important insight into rational design and identification of novel therapeutics targeting universally recognized feature of influenza HA/NA.

Keywords: influenza virus, hemagglutinin (HA), neuraminidase (NA), sequence evolution

Procedia PDF Downloads 164
2748 Formulation and Evaluation of Silibilin Loaded PLGA Nanoparticles for Cancer Therapy

Authors: Priya Patel, Paresh Patel, Mihir Raval

Abstract:

Silibinin, a flavanone as an antimicrotubular agent used in the treatment of cancer, was encapsulated in nanoparticles (NPs) of poly (lactide-co-glycolide) (PLGA) polymer using the spray-drying technique. The effects of various experimental parameters were optimized by box-behnken experimental design. Production yield, encapsulation efficiency and dissolution study along with characterization by scanning electron microscopy, DSC, FTIR followed by bioavailability study. Particle size and zeta potential were evaluated by using zetatrac particle size analyzer. Experimental design it was evaluated that inlet temperature and polymer concentration influence on the drug release. Feed flow rate impact on particle size. Results showed that spray drying technique yield 149 nm indicate nanosize range. The small size of the nanoparticle resulted in an enhanced cellular entry and greater bioavailability. Entrapment efficiency was found between 89.35% and 98.36%. Zeta potential shows good stability index of nanoparticle formulation. The in vitro release studies indicated the silibinin loaded PLGA nanoparticles provide controlled drug release over a period of 32 h. Pharmacokinetic studies demonstrated that after oral administration of silibinin-loaded PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 8.85-fold, compared to silibinin suspension as control hence, this investigation demonstrated the potential of the experimental design in understanding the effect of the formulation variables on the quality of silibinin loaded PLGA nanoparticles. These results describe an effective strategy of silibinin loaded PLGA nanoparticles and might provide a promising approach against the cancer.

Keywords: silibinin, cancer, nanoparticles, PLGA, bioavailability

Procedia PDF Downloads 429
2747 Utilizing Artificial Intelligence to Predict Post Operative Atrial Fibrillation in Non-Cardiac Transplant

Authors: Alexander Heckman, Rohan Goswami, Zachi Attia, Paul Friedman, Peter Noseworthy, Demilade Adedinsewo, Pablo Moreno-Franco, Rickey Carter, Tathagat Narula

Abstract:

Background: Postoperative atrial fibrillation (POAF) is associated with adverse health consequences, higher costs, and longer hospital stays. Utilizing existing predictive models that rely on clinical variables and circulating biomarkers, multiple societies have published recommendations on the treatment and prevention of POAF. Although reasonably practical, there is room for improvement and automation to help individualize treatment strategies and reduce associated complications. Methods and Results: In this retrospective cohort study of solid organ transplant recipients, we evaluated the diagnostic utility of a previously developed AI-based ECG prediction for silent AF on the development of POAF within 30 days of transplant. A total of 2261 non-cardiac transplant patients without a preexisting diagnosis of AF were found to have a 5.8% (133/2261) incidence of POAF. While there were no apparent sex differences in POAF incidence (5.8% males vs. 6.0% females, p=.80), there were differences by race and ethnicity (p<0.001 and 0.035, respectively). The incidence in white transplanted patients was 7.2% (117/1628), whereas the incidence in black patients was 1.4% (6/430). Lung transplant recipients had the highest incidence of postoperative AF (17.4%, 37/213), followed by liver (5.6%, 56/1002) and kidney (3.6%, 32/895) recipients. The AUROC in the sample was 0.62 (95% CI: 0.58-0.67). The relatively low discrimination may result from undiagnosed AF in the sample. In particular, 1,177 patients had at least 1 AI-ECG screen for AF pre-transplant above .10, a value slightly higher than the published threshold of 0.08. The incidence of POAF in the 1104 patients without an elevated prediction pre-transplant was lower (3.7% vs. 8.0%; p<0.001). While this supported the hypothesis that potentially undiagnosed AF may have contributed to the diagnosis of POAF, the utility of the existing AI-ECG screening algorithm remained modest. When the prediction for POAF was made using the first postoperative ECG in the sample without an elevated screen pre-transplant (n=1084 on account of n=20 missing postoperative ECG), the AUROC was 0.66 (95% CI: 0.57-0.75). While this discrimination is relatively low, at a threshold of 0.08, the AI-ECG algorithm had a 98% (95% CI: 97 – 99%) negative predictive value at a sensitivity of 66% (95% CI: 49-80%). Conclusions: This study's principal finding is that the incidence of POAF is rare, and a considerable fraction of the POAF cases may be latent and undiagnosed. The high negative predictive value of AI-ECG screening suggests utility for prioritizing monitoring and evaluation on transplant patients with a positive AI-ECG screening. Further development and refinement of a post-transplant-specific algorithm may be warranted further to enhance the diagnostic yield of the ECG-based screening.

Keywords: artificial intelligence, atrial fibrillation, cardiology, transplant, medicine, ECG, machine learning

Procedia PDF Downloads 136
2746 Predictors of Post-marketing Regulatory Actions Concerning Hepatotoxicity

Authors: Salwa M. Almomen, Mona A. Almaghrabi, Saja M. Alhabardi, Adel A. Alrwisan

Abstract:

Background: Hepatotoxicity is a major reason for medication withdrawal from the markets. Unfortunately, serious adverse hepatic effects can occur after marketing with limited indicators during clinical development. Therefore, finding possible predictors for hepatotoxicity might guide the monitoring program of various stakeholders. Methods: We examined the clinical review documents for drugs approved in the US from 2011 to 2016 to evaluate their hepatic safety profile. Predictors: we assessed whether these medications meet Hy’s Law with hepatotoxicity grade ≥ 3, labeled hepatic adverse effects at approval, or accelerated approval status. Outcome: post-marketing regulatory action related to hepatotoxicity, including product withdrawal or updates to warning, precaution, or adverse effects sections. Statistical analysis: drugs were included in the analysis from the time of approval until the end of 2019 or the first post-marketing regulatory action related to hepatotoxicity, whichever occurred first. The hazard ratio (HR) was estimated using Cox-regression analysis. Results: We included 192 medications in the study. We classified 48 drugs as having grade ≥ 3 hepatotoxicities, 43 had accelerated approval status, and 74 had labeled information about hepatotoxicity prior to marketing. The adjusted HRs for post-marketing regulatory action for products with grade ≥ 3 hepatotoxicity was 0.61 (95% confidence interval [CI], 0.17-2.23), 0.92 (95%CI, 0.29-2.93) for a drug approved via accelerated approval program, and was 0.91 (95%CI, 0.33-2.56) for drugs with labeled hepatotoxicity information at approval time. Conclusion: This study does not provide conclusive evidence on the association between post-marketing regulatory action and grade ≥ 3 hepatotoxicity, accelerated approval status, or availability of labeled information at approval due to sampling size and channeling bias.

Keywords: accelerated approvals, hepatic adverse effects, drug-induced liver injury, hepatotoxicity predictors, post-marketing withdrawal

Procedia PDF Downloads 152
2745 Monitoring of Cannabis Cultivation with High-Resolution Images

Authors: Levent Basayigit, Sinan Demir, Burhan Kara, Yusuf Ucar

Abstract:

Cannabis is mostly used for drug production. In some countries, an excessive amount of illegal cannabis is cultivated and sold. Most of the illegal cannabis cultivation occurs on the lands far from settlements. In farmlands, it is cultivated with other crops. In this method, cannabis is surrounded by tall plants like corn and sunflower. It is also cultivated with tall crops as the mixed culture. The common method of the determination of the illegal cultivation areas is to investigate the information obtained from people. This method is not sufficient for the determination of illegal cultivation in remote areas. For this reason, more effective methods are needed for the determination of illegal cultivation. Remote Sensing is one of the most important technologies to monitor the plant growth on the land. The aim of this study is to monitor cannabis cultivation area using satellite imagery. The main purpose of this study was to develop an applicable method for monitoring the cannabis cultivation. For this purpose, cannabis was grown as single or surrounded by the corn and sunflower in plots. The morphological characteristics of cannabis were recorded two times per month during the vegetation period. The spectral signature library was created with the spectroradiometer. The parcels were monitored with high-resolution satellite imagery. With the processing of satellite imagery, the cultivation areas of cannabis were classified. To separate the Cannabis plots from the other plants, the multiresolution segmentation algorithm was found to be the most successful for classification. WorldView Improved Vegetative Index (WV-VI) classification was the most accurate method for monitoring the plant density. As a result, an object-based classification method and vegetation indices were sufficient for monitoring the cannabis cultivation in multi-temporal Earthwiev images.

Keywords: Cannabis, drug, remote sensing, object-based classification

Procedia PDF Downloads 272
2744 Hydrodynamics Study on Planing Hull with and without Step Using Numerical Solution

Authors: Koe Han Beng, Khoo Boo Cheong

Abstract:

The rising interest of stepped hull design has been led by the demand of more efficient high-speed boat. At the same time, the need of accurate prediction method for stepped planing hull is getting more important. By understanding the flow at high Froude number is the key in designing a practical step hull, the study surrounding stepped hull has been done mainly in the towing tank which is time-consuming and costly for initial design phase. Here the feasibility of predicting hydrodynamics of high-speed planing hull both with and without step using computational fluid dynamics (CFD) with the volume of fluid (VOF) methodology is studied in this work. First the flow around the prismatic body is analyzed, the force generated and its center of pressure are compared with available experimental and empirical data from the literature. The wake behind the transom on the keel line as well as the quarter beam buttock line are then compared with the available data, this is important since the afterbody flow of stepped hull is subjected from the wake of the forebody. Finally the calm water performance prediction of a conventional planing hull and its stepped version is then analyzed. Overset mesh methodology is employed in solving the dynamic equilibrium of the hull. The resistance, trim, and heave are then compared with the experimental data. The resistance is found to be predicted well and the dynamic equilibrium solved by the numerical method is deemed to be acceptable. This means that computational fluid dynamics will be very useful in further study on the complex flow around stepped hull and its potential usage in the design phase.

Keywords: planing hulls, stepped hulls, wake shape, numerical simulation, hydrodynamics

Procedia PDF Downloads 282
2743 Application of Bayesian Model Averaging and Geostatistical Output Perturbation to Generate Calibrated Ensemble Weather Forecast

Authors: Muhammad Luthfi, Sutikno Sutikno, Purhadi Purhadi

Abstract:

Weather forecast has necessarily been improved to provide the communities an accurate and objective prediction as well. To overcome such issue, the numerical-based weather forecast was extensively developed to reduce the subjectivity of forecast. Yet the Numerical Weather Predictions (NWPs) outputs are unfortunately issued without taking dynamical weather behavior and local terrain features into account. Thus, NWPs outputs are not able to accurately forecast the weather quantities, particularly for medium and long range forecast. The aim of this research is to aid and extend the development of ensemble forecast for Meteorology, Climatology, and Geophysics Agency of Indonesia. Ensemble method is an approach combining various deterministic forecast to produce more reliable one. However, such forecast is biased and uncalibrated due to its underdispersive or overdispersive nature. As one of the parametric methods, Bayesian Model Averaging (BMA) generates the calibrated ensemble forecast and constructs predictive PDF for specified period. Such method is able to utilize ensemble of any size but does not take spatial correlation into account. Whereas space dependencies involve the site of interest and nearby site, influenced by dynamic weather behavior. Meanwhile, Geostatistical Output Perturbation (GOP) reckons the spatial correlation to generate future weather quantities, though merely built by a single deterministic forecast, and is able to generate an ensemble of any size as well. This research conducts both BMA and GOP to generate the calibrated ensemble forecast for the daily temperature at few meteorological sites nearby Indonesia international airport.

Keywords: Bayesian Model Averaging, ensemble forecast, geostatistical output perturbation, numerical weather prediction, temperature

Procedia PDF Downloads 280
2742 Residual Analysis and Ground Motion Prediction Equation Ranking Metrics for Western Balkan Strong Motion Database

Authors: Manuela Villani, Anila Xhahysa, Christopher Brooks, Marco Pagani

Abstract:

The geological structure of Western Balkans is strongly affected by the collision between Adria microplate and the southwestern Euroasia margin, resulting in a considerably active seismic region. The Harmonization of Seismic Hazard Maps in the Western Balkan Countries Project (BSHAP) (2007-2011, 2012-2015) by NATO supported the preparation of new seismic hazard maps of the Western Balkan, but when inspecting the seismic hazard models produced later by these countries on a national scale, significant differences in design PGA values are observed in the border, for instance, North Albania-Montenegro, South Albania- Greece, etc. Considering the fact that the catalogues were unified and seismic sources were defined within BSHAP framework, obviously, the differences arise from the Ground Motion Prediction Equations selection, which are generally the component with highest impact on the seismic hazard assessment. At the time of the project, a modest database was present, namely 672 three-component records, whereas nowadays, this strong motion database has increased considerably up to 20,939 records with Mw ranging in the interval 3.7-7 and epicentral distance distribution from 0.47km to 490km. Statistical analysis of the strong motion database showed the lack of recordings in the moderate-to-large magnitude and short distance ranges; therefore, there is need to re-evaluate the Ground Motion Prediction Equation in light of the recently updated database and the new generations of GMMs. In some cases, it was observed that some events were more extensively documented in one database than the other, like the 1979 Montenegro earthquake, with a considerably larger number of records in the BSHAP Analogue SM database when compared to ESM23. Therefore, the strong motion flat-file provided from the Harmonization of Seismic Hazard Maps in the Western Balkan Countries Project was merged with the ESM23 database for the polygon studied in this project. After performing the preliminary residual analysis, the candidate GMPE-s were identified. This process was done using the GMPE performance metrics available within the SMT in the OpenQuake Platform. The Likelihood Model and Euclidean Distance Based Ranking (EDR) were used. Finally, for this study, a GMPE logic tree was selected and following the selection of candidate GMPEs, model weights were assigned using the average sample log-likelihood approach of Scherbaum.

Keywords: residual analysis, GMPE, western balkan, strong motion, openquake

Procedia PDF Downloads 88
2741 Quantum Dot – DNA Conjugates for Biological Applications

Authors: A. Banerjee, C. Grazon, B. Nadal, T. Pons, Y. Krishnan, B. Dubertret

Abstract:

Quantum Dots (QDs) have emerged as novel fluorescent probes for biomedical applications. The photophysical properties of QDs such as broad absorption, narrow emission spectrum, reduced blinking, and enhanced photostability make them advantageous over organic fluorophores. However, for some biological applications, QDs need to be first targeted to specific intracellular locations. It parallel, base pairing properties and biocompatibility of DNA has been extensively used for biosensing, targetting and intracellular delivery of numerous bioactive agents. The combination of the photophysical properties of QDs and targettability of DNA has yielded fluorescent, stable and targetable nanosensors. QD-DNA conjugates have used in drug delivery, siRNA, intracellular pH sensing and several other applications; and continue to be an active area of research. In this project, a novel method to synthesise QD-DNA conjugates and their applications in bioimaging are investigated. QDs are first solubilized in water using a thiol based amphiphilic co-polymer and, then conjugated to amine functionalized DNA using a heterobifunctional linker. The conjugates are purified by size exclusion chromatography and characterized by UV-Vis absorption and fluorescence spectroscopy, electrophoresis and microscopy. Parameters that influence the conjugation yield such as reducing agents, the excess of salt and pH have been investigated in detail. In optimized reaction conditions, up to 12 single-stranded DNA (15 mer length) can be conjugated per QD. After conjugation, the QDs retain their colloidal stability and high quantum yield; and the DNA is available for hybridization. The reaction has also been successfully tested on QDs emitting different colors and on Gold nanoparticles and therefore highly generalizable. After extensive characterization and robust synthesis of QD-DNA conjugates in vitro, the physical properties of these conjugates in cellular milieu are being invistigated. Modification of QD surface with DNA appears to remarkably alter the fate of QD inside cells and can have potential implications in therapeutic applications.

Keywords: bioimaging, cellular targeting, drug delivery, photostability

Procedia PDF Downloads 423
2740 An Exploratory Investigation into the Quality of Life of People with Multi-Drug Resistant Pulmonary Tuberculosis (MDR-PTB) Using the ICF Core Sets: A Preliminary Investigation

Authors: Shamila Manie, Soraya Maart, Ayesha Osman

Abstract:

Introduction: People diagnosed with multidrug resistant pulmonary tuberculosis (MDR-PTB) is subjected to prolonged hospitalization in South Africa. It has thus become essential for research to shift its focus from a purely medical approach, but to include social and environmental factors when looking at the impact of the disease on those affected. Aim: To explore the factors affecting individuals with multi-drug resistant pulmonary tuberculosis during long-term hospitalization using the comprehensive ICF core-sets for obstructive pulmonary disease (OPD) and cardiopulmonary (CPR) conditions at Brooklyn Chest Hospital (BCH). Methods: A quantitative descriptive, cross-sectional study design was utilized. A convenient sample of 19 adults at Brooklyn Chest Hospital were interviewed. Results: Most participants reported a decrease in exercise tolerance levels (b455: n=11). However it did not limit participation. Participants reported that a lack of privacy in the environment (e155) was a barrier to health. The presence of health professionals (e355) and the provision of skills development services (e585) are facilitators to health and well-being. No differences exist in the functional ability of HIV positive and negative participants in this sample. Conclusion: The ICF Core Sets appeared valid in identifying the barriers and facilitators experienced by individuals with MDR-PTB admitted to BCH. The hospital environment must be improved to add to the QoL of those admitted, especially improving privacy within the wards. Although the social grant is seen as a facilitator, greater emphasis must be placed on preparing individuals to be economically active in the labour for when they are discharged.

Keywords: multidrug resistant tuberculosis, MDR ICF core sets, health-related quality of life (HRQoL), hospitalization

Procedia PDF Downloads 347
2739 Antibacterial Activity of Copper Nanoparticles on Vancomycin Resistant Staphylococcus Aureus in Vitro and Animal Models

Authors: Sina Gharevali

Abstract:

Staphylococcus aureus is one of the most important factors for nosocomial infections and infections acquired in a hospital setting role as is. Drug-resistant bacteria methicillin, which in 1961 was reported in many parts of the world, Made the role as the last drug, vancomycin, in the treatment of infections caused by the Staphylococcus aureus chain be taken into consideration. The aim of this study was to evaluate the antimicrobial effects of copper nanoparticles and compared it with antibiotics on Staphylococcus aureus resistant to vancomycin in vitro and animal model. In this study, this test was performed, and the most effective antibiotic for vancomycin-resistant Staphylococcus aureus was determined by disk diffusion method. After various concentrations of copper nanoparticles and antibiotics were prepared and vancomycin resistant Staphylococcus aureus bacteria with serial dilution method for determining antibiotic ciprofloxacin. Minimum Inhibitory Concentration and Minimum Bactericidal Concentrationcopper nanoparticles was performed. The agar dilution method for bacterial growth in different concentrations of copper nanoparticles and antibiotics ciprofloxacin was performed. The agar dilution method for bacterial growth in different concentrations of copper nanoparticles and antibiotics ciprofloxacin was performed. Then the broth dilution method for the antibiotic ciprofloxacin, nano-particles, and nano-particles of copper and copper-established antibiotic synergy MIC and MBC were obtained. MBC was obtained from the experimental animal model test method, and the results were compared. The results showed that copper nanoparticles compared with the antibiotic ciprofloxacin in vitro and animal model more effective in inhibiting the growth of Staphylococcus aureus resistant to vancomycin and ciprofloxacin and extent of the impact of the Synthetic effect of lower copper nanoparticles. Which can then be used to treat clinical research as a candidate.

Keywords: nanoparticles, copper, staphylococcus, aureus

Procedia PDF Downloads 96
2738 Patterns of Problem Behavior of Out-Of-School Adolescents and Gender Difference in South Korea

Authors: Jaeyoung Lee, Minji Je

Abstract:

Objectives: The adolescents not attending school are named out-of-school adolescents. They are more vulnerable to health management and are likely to be exposed to a number of risk factors. This study was conducted to investigate the problem behavior of out-of-school adolescents and analyze the difference caused by gender. Methods: In this study, the problem behaviors of out-of-school adolescents, the vulnerable class, were defined in 8 types and based on this definition, the survey on run away from home, drop out, prostitution, violence, internet game addiction, theft, drug addiction, and smoking was conducted. The study was conducted in a total of 507 out-of-school adolescents, including 342 males, and 165 females. The type, frequency and start time of the 8 problem behaviors were identified. The collected data were analyzed with chi-square test and t-test using SPSS statistics 22. Results: Among the problem behaviors of the subjects, violence ( =17.41, p < .001), internet game addiction ( =16.14, p < .001), theft ( =22.48, p < .001), drug addiction ( =4.17, p=.041), and smoking ( =3.90, p=.048) were more significantly high in male out-of-school adolescents than female out-of-school adolescents. In addition, the frequency of the problem behavior was higher in male out-of-school adolescents with statistical significance than in female out-of-school adolescents (t=5.08, p= < .001). In terms of the start time of the problem behavior, only internet game addiction was higher in male out-of-school adolescents with the statistical significance than in female out-of-school adolescents ( =6.22, p=.032). No statistically significant difference was found in other problem behaviors (p > .05). Conclusions: In this study, it was found that gender difference in problem behaviors of out-of-school adolescents exists, and its frequency and difference of types were identified. When the social countermeasures were provided for those adolescents, a distinguished approach is required depending on the patterns of problem behavior and gender. When preparing policy alternatives and interventions for out-of-school adolescents, it is required to reflect the results of this study.

Keywords: addictive behavior, adolescent, gender, problem behavior

Procedia PDF Downloads 205
2737 Cirrhosis Mortality Prediction as Classification using Frequent Subgraph Mining

Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride

Abstract:

In this work, we use machine learning and novel data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. To the best of our knowledge, this is the first work to apply modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.

Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning

Procedia PDF Downloads 134
2736 Tuberculosis Outpatient Treatment in the Context of Reformation of the Health Care System

Authors: Danylo Brindak, Viktor Liashko, Olexander Chepurniy

Abstract:

Despite considerable experience in implementation of the best international approaches and services within response to epidemy of multi-drug resistant tuberculosis, the results of situation analysis indicate the presence of faults in this area. In 2014, Ukraine (for the first time) was included in the world’s five countries with the highest level of drug-resistant tuberculosis. The effectiveness of its treatment constitutes only 35% in the country. In this context, the increase in allocation of funds to control the epidemic of multidrug-resistant tuberculosis does not produce perceptible positive results. During 2001-2016, only the Global Fund to fight AIDS, Tuberculosis, and Malaria allocated to Ukraine more than USD 521,3 million for programs of tuberculosis and HIV/AIDS control. However, current conditions in post-Semashko system create little motivation for rational use of resources or cost control at inpatient TB facilities. There is no motivation to reduce overdue hospitalization and to target resources to priority sectors of modern tuberculosis control, including a model of care focused on the patient. In the presence of a line-item budget at medical institutions, based on the input factors as the ratios of beds and staff, there is a passive disposal of budgetary funds by health care institutions and their employees who have no motivation to improve quality and efficiency of service provision. Outpatient treatment of tuberculosis is being implemented in Ukraine since 2011 and has many risks, namely creation of parallel systems, low consistency through dependence on funding for the project, reduced the role of the family doctor, the fragmentation of financing, etc. In terms of reforming approaches to health system financing, which began in Ukraine in late 2016, NGO Infection Control in Ukraine conducted piloting of a new, motivating method of remuneration of employees in primary health care. The innovative aspect of this funding mechanism is cost according to results of treatment. The existing method of payment on the basis of the standard per inhabitant (per capita ratio) was added with motivating costs according to results of work. The effectiveness of such treatment of TB patients at the outpatient stage is 90%, while in whole on the basis of a current system the effectiveness of treatment of newly diagnosed pulmonary TB with positive swab is around 60% in the country. Even though Ukraine has 5.24 TB beds per 10 000 citizens. Implemented pilot model of ambulatory treatment will be used for the creation of costs system according to results of activities, the integration of TB and primary health and social services and their focus on achieving results, the reduction of inpatient treatment of tuberculosis.

Keywords: health care reform, multi-drug resistant tuberculosis, outpatient treatment efficiency, tuberculosis

Procedia PDF Downloads 147
2735 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction

Authors: Yan Zhang

Abstract:

Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.

Keywords: Internet of Things, machine learning, predictive maintenance, streaming data

Procedia PDF Downloads 386
2734 Efficient Synthesis of Highly Functionalized Biologically Important Spirocarbocyclic Oxindoles via Hauser Annulation

Authors: Kanduru Lokesh, Venkitasamy Kesavan

Abstract:

The unique structural features of spiro-oxindoles with diverse biological activities have made them privileged structures in new drug discovery. The key structural characteristic of these compounds is the spiro ring fused at the C-3 position of the oxindole core with varied heterocyclic motifs. Structural diversification of heterocyclic scaffolds to synthesize new chemical entities as pharmaceuticals and agrochemicals is one of the important goals of synthetic organic chemists. Nitrogen and oxygen containing heterocycles are by far the most widely occurring privileged structures in medicinal chemistry. The structural complexity and distinct three-dimensional arrangement of functional groups of these privileged structures are generally responsible for their specificity against biological targets. Structurally diverse compound libraries have proved to be valuable assets for drug discovery against challenging biological targets. Thus, identifying a new combination of substituents at C-3 position on oxindole moiety is of great importance in drug discovery to improve the efficiency and efficacy of the drugs. The development of suitable methodology for the synthesis of spiro-oxindole compounds has attracted much interest often in response to the significant biological activity displayed by the both natural and synthetic compounds. So creating structural diversity of oxindole scaffolds is need of the decade and formidable challenge. A general way to improve synthetic efficiency and also to access diversified molecules is through the annulation reactions. Annulation reactions allow the formation of complex compounds starting from simple substrates in a single transformation consisting of several steps in an ecologically and economically favorable way. These observations motivated us to develop the annulation reaction protocol to enable the synthesis of a new class of spiro-oxindole motifs which in turn would enable the enhancement of molecular diversity. As part of our enduring interest in the development of novel, efficient synthetic strategies to enable the synthesis of biologically important oxindole fused spirocarbocyclic systems, We have developed an efficient methodology for the construction of highly functionalized spirocarbocyclic oxindoles through [4+2] annulation of phthalides via Hauser annulation. functionalized spirocarbocyclic oxindoles was accomplished for the first time in the literature using Hauser annulation strategy. The reaction between methyleneindolinones and arylsulfonylphthalides catalyzed by cesium carbonate led to the access of new class of biologically important spiro[indoline-3,2'-naphthalene] derivatives in very good yields. The synthetic utility of the annulated product was further demonstrated by fluorination Using NFSI as a fluorinating agent to furnish corresponding fluorinated product.

Keywords: Hauser-Kraus annulation, spiro carbocyclic oxindoles, oxindole-ester, fluoridation

Procedia PDF Downloads 198
2733 A Multi-Dimensional Neural Network Using the Fisher Transform to Predict the Price Evolution for Algorithmic Trading in Financial Markets

Authors: Cristian Pauna

Abstract:

Trading the financial markets is a widespread activity today. A large number of investors, companies, public of private funds are buying and selling every day in order to make profit. Algorithmic trading is the prevalent method to make the trade decisions after the electronic trading release. The orders are sent almost instantly by computers using mathematical models. This paper will present a price prediction methodology based on a multi-dimensional neural network. Using the Fisher transform, the neural network will be instructed for a low-latency auto-adaptive process in order to predict the price evolution for the next period of time. The model is designed especially for algorithmic trading and uses the real-time price series. It was found that the characteristics of the Fisher function applied at the nodes scale level can generate reliable trading signals using the neural network methodology. After real time tests it was found that this method can be applied in any timeframe to trade the financial markets. The paper will also include the steps to implement the presented methodology into an automated trading system. Real trading results will be displayed and analyzed in order to qualify the model. As conclusion, the compared results will reveal that the neural network methodology applied together with the Fisher transform at the nodes level can generate a good price prediction and can build reliable trading signals for algorithmic trading.

Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, neural network

Procedia PDF Downloads 160
2732 A Development of a Simulation Tool for Production Planning with Capacity-Booking at Specialty Store Retailer of Private Label Apparel Firms

Authors: Erika Yamaguchi, Sirawadee Arunyanrt, Shunichi Ohmori, Kazuho Yoshimoto

Abstract:

In this paper, we suggest a simulation tool to make a decision of monthly production planning for maximizing a profit of Specialty store retailer of Private label Apparel (SPA) firms. Most of SPA firms are fabless and make outsourcing deals for productions with factories of their subcontractors. Every month, SPA firms make a booking for production lines and manpower in the factories. The booking is conducted a few months in advance based on a demand prediction and a monthly production planning at that time. However, the demand prediction is updated month by month, and the monthly production planning would change to meet the latest demand prediction. Then, SPA firms have to change the capacities initially booked within a certain range to suit to the monthly production planning. The booking system is called “capacity-booking”. These days, though it is an issue for SPA firms to make precise monthly production planning, many firms are still conducting the production planning by empirical rules. In addition, it is also a challenge for SPA firms to match their products and factories with considering their demand predictabilities and regulation abilities. In this paper, we suggest a model for considering these two issues. An objective is to maximize a total profit of certain periods, which is sales minus costs of production, inventory, and capacity-booking penalty. To make a better monthly production planning at SPA firms, these points should be considered: demand predictabilities by random trends, previous and next month’s production planning of the target month, and regulation abilities of the capacity-booking. To decide matching products and factories for outsourcing, it is important to consider seasonality, volume, and predictability of each product, production possibility, size, and regulation ability of each factory. SPA firms have to consider these constructions and decide orders with several factories per one product. We modeled these issues as a linear programming. To validate the model, an example of several computational experiments with a SPA firm is presented. We suppose four typical product groups: basic, seasonal (Spring / Summer), seasonal (Fall / Winter), and spot product. As a result of the experiments, a monthly production planning was provided. In the planning, demand predictabilities from random trend are reduced by producing products which are different product types. Moreover, priorities to produce are given to high-margin products. In conclusion, we developed a simulation tool to make a decision of monthly production planning which is useful when the production planning is set every month. We considered the features of capacity-booking, and matching of products and factories which have different features and conditions.

Keywords: capacity-booking, SPA, monthly production planning, linear programming

Procedia PDF Downloads 519
2731 In silico Analysis towards Identification of Host-Microbe Interactions for Inflammatory Bowel Disease Linked to Reactive Arthritis

Authors: Anukriti Verma, Bhawna Rathi, Shivani Sharda

Abstract:

Reactive Arthritis (ReA) is a disorder that causes inflammation in joints due to certain infections at distant sites in the body. ReA begins with stiffness, pain, and inflammation in these areas especially the ankles, knees, and hips. It gradually causes several complications such as conjunctivitis in the eyes, skin lesions in hand, feet and nails and ulcers in the mouth. Nowadays the diagnosis of ReA is based upon a differential diagnosis pattern. The parameters for differentiating ReA from other similar disorders include physical examination, history of the patient and a high index of suspicion. There are no standard lab tests or markers available for ReA hence the early diagnosis of ReA becomes difficult and the chronicity of disease increases with time. It is reported that enteric disorders such as Inflammatory Bowel Disease (IBD) that is inflammation in gastrointestinal tract namely Crohn’s Disease (CD) and Ulcerative Colitis (UC) are reported to be linked with ReA. Several microorganisms are found such as Campylobacter, Salmonella, Shigella and Yersinia causing IBD leading to ReA. The aim of our study was to perform the in-silico analysis in order to find interactions between microorganisms and human host causing IBD leading to ReA. A systems biology approach for metabolic network reconstruction and simulation was used to find the essential genes of the reported microorganisms. Interactomics study was used to find the interactions between the pathogen genes and human host. Genes such as nhaA (pathogen), dpyD (human), nagK (human) and kynU (human) were obtained that were analysed further using the functional, pathway and network analysis. These genes can be used as putative drug targets and biomarkers in future for early diagnosis, prevention, and treatment of IBD leading to ReA.

Keywords: drug targets, inflammatory bowel disease, reactive arthritis, systems biology

Procedia PDF Downloads 275
2730 Targeted Delivery of Docetaxel Drug Using Cetuximab Conjugated Vitamin E TPGS Micelles Increases the Anti-Tumor Efficacy and Inhibit Migration of MDA-MB-231 Triple Negative Breast Cancer

Authors: V. K. Rajaletchumy, S. L. Chia, M. I. Setyawati, M. S. Muthu, S. S. Feng, D. T. Leong

Abstract:

Triple negative breast cancers (TNBC) can be classified as one of the most aggressive with a high rate of local recurrences and systematic metastases. TNBCs are insensitive to existing hormonal therapy or targeted therapies such as the use of monoclonal antibodies, due to the lack of oestrogen receptor (ER) and progesterone receptor (PR) and the absence of overexpression of human epidermal growth factor receptor 2 (HER2) compared with other types of breast cancers. The absence of targeted therapies for selective delivery of therapeutic agents into tumours, led to the search for druggable targets in TNBC. In this study, we developed a targeted micellar system of cetuximab-conjugated micelles of D-α-tocopheryl polyethylene glycol succinate (vitamin E TPGS) for targeted delivery of docetaxel as a model anticancer drug for the treatment of TNBCs. We examined the efficacy of our micellar system in xenograft models of triple negative breast cancers and explored the effect of the micelles on post-treatment tumours in order to elucidate the mechanism underlying the nanomedicine treatment in oncology. The targeting micelles were found preferentially accumulated in tumours immediately after the administration of the micelles compare to normal tissue. The fluorescence signal gradually increased up to 12 h at the tumour site and sustained for up to 24 h, reflecting the increases in targeted micelles (TPFC) micelles in MDA-MB-231/Luc cells. In comparison, for the non-targeting micelles (TPF), the fluorescence signal was evenly distributed all over the body of the mice. Only a slight increase in fluorescence at the chest area was observed after 24 h post-injection, reflecting the moderate uptake of micelles by the tumour. The successful delivery of docetaxel into tumour by the targeted micelles (TPDC) exhibited a greater degree of tumour growth inhibition than Taxotere® after 15 days of treatment. The ex vivo study has demonstrated that tumours treated with targeting micelles exhibit enhanced cell cycle arrest and attenuated proliferation compared with the control and with those treated non-targeting micelles. Furthermore, the ex vivo investigation revealed that both the targeting and non-targeting micellar formulations shows significant inhibition of cell migration with migration indices reduced by 0.098- and 0.28-fold, respectively, relative to the control. Overall, both the in vivo and ex vivo data increased the confidence that our micellar formulations effectively targeted and inhibited EGF-overexpressing MDA-MB-231 tumours.

Keywords: biodegradable polymers, cancer nanotechnology, drug targeting, molecular biomaterials, nanomedicine

Procedia PDF Downloads 281
2729 Preliminary Assessment for Protective Effect of Rhodiola rosea in Chemically Induced Ulcerative Colitis

Authors: Santram Lodhi, Alok Pal Jain, Awesh K. Yadav, Gopal Rai

Abstract:

Rhodiola rosea L. (Crassulaceae) is commonly known as golden root or rose root. It is a perennial herbaceous plant and most investigated species of the genus Rhodiola. Rhodiola rosea contains flavonoids, terpenoids, phenylpropanoid glycosides and phenylethanol derivatives in the roots of the plant. The objective of present study was to investigate the protective effect of hydroalcoholic extract from Rhodiola rosea roots in DSS induced colitis in mice. The ulcerative colitis was induced by DSS (3%, w/v) in mice and estimated weight loss and stool consistency. Various parameters including Colon length, spleen weights and ulcer index were also measured. The histological observations were observed by H&E staining. Effect of hydroalcoholic extract on various antioxidant parameter of rat colon such as tissue myeloperoxidase (MPO), reduced GSH, SOD concentrations and lipid peroxidation were determined. Pro-inflammatory mediators, such as tumour necrosis factor-α (TNF-α) and nitric oxide (NO) were determined by ELISA. In DSS induced group, mice body weight decreased gradually as compared to the control group. Redness and edema were observed in the colons intensely and scores representing inflammation in this group. The extract treated showed with tissue levels of TNF-α, IL-6 and MPO activity were significantly (p<0.05) increased. The mice treated with higher doses of hydroalcoholic extract (300 mg/kg) significantly reduced the activity compared with standard drug sulfasalazine (100 mg/kg. B.wt). Conclusion: Results of this study were suggested that the efficacy of hydroalcoholic extract, especially at the higher dose, was similar to that of standard drug, which concerned its potential application as a natural medicine for the treatment of ulcerative colitis.

Keywords: phenylpropanoid, Rhodiola rosea, sulfasalazin, ulcerative colitis

Procedia PDF Downloads 244
2728 Fatigue Life Prediction under Variable Loading Based a Non-Linear Energy Model

Authors: Aid Abdelkrim

Abstract:

A method of fatigue damage accumulation based upon application of energy parameters of the fatigue process is proposed in the paper. Using this model is simple, it has no parameter to be determined, it requires only the knowledge of the curve W–N (W: strain energy density N: number of cycles at failure) determined from the experimental Wöhler curve. To examine the performance of nonlinear models proposed in the estimation of fatigue damage and fatigue life of components under random loading, a batch of specimens made of 6082 T 6 aluminium alloy has been studied and some of the results are reported in the present paper. The paper describes an algorithm and suggests a fatigue cumulative damage model, especially when random loading is considered. This work contains the results of uni-axial random load fatigue tests with different mean and amplitude values performed on 6082T6 aluminium alloy specimens. The proposed model has been formulated to take into account the damage evolution at different load levels and it allows the effect of the loading sequence to be included by means of a recurrence formula derived for multilevel loading, considering complex load sequences. It is concluded that a ‘damaged stress interaction damage rule’ proposed here allows a better fatigue damage prediction than the widely used Palmgren–Miner rule, and a formula derived in random fatigue could be used to predict the fatigue damage and fatigue lifetime very easily. The results obtained by the model are compared with the experimental results and those calculated by the most fatigue damage model used in fatigue (Miner’s model). The comparison shows that the proposed model, presents a good estimation of the experimental results. Moreover, the error is minimized in comparison to the Miner’s model.

Keywords: damage accumulation, energy model, damage indicator, variable loading, random loading

Procedia PDF Downloads 396
2727 The Effect of the Combination of Methotrexate Nanoparticles and TiO2 on Breast Cancer

Authors: Nusaiba Al-Nemrawi, Belal Al-Husein

Abstract:

Methotrexate (MTX) is a stoichiometric inhibitor of dihydrofolate reductase, which is essential for DNA synthesis. MTX is a chemotherapeutic agent used for treating many types of cancer cells. However, cells’ resistant to MTX is very common and its pharmacokinetic behavior is highly problematic. of MTX within tumor cells, we propose encapsulation of antitumor drugs in nanoparticulated systems. Chitosan (CS) is a naturally occurring polymer that is biocompatibe, biodegradable, non-toxic, cationic and bioadhesive. CS nanoparticles (CS-NPs) have been used as drug carrier for targeted delivery. Titanium dioxide (TiO2), a natural mineral oxide, which is used in biomaterials due to its high stability and antimicrobial and anticorrosive properties. TiO2 showed a potential as a tumor suppressor. In this study a new formulation of MTX loaded in CS NPs (CS-MTX NPs) and coated with Titanium oxide (TiO2) was prepared. The mean particle size, zeta potential, polydispersity index were measured. The interaction between CS NPs and TiO2 NPs was confirmed using FTIR and XRD. CS-MTX NPs was studied in vitro using the tumor cell line MCF-7 (human breast cancer). The results showed that CS-MTX has a size around 169 nm and as they were coated with TiO2, the size ranged between and depending on the ratio of CS-MTX to TiO2 ratio used in the preparation. All NPs (uncoated and coated carried positive charges and were monodispersed. The entrapment efficacy was around 65%. Both FTIR and XRD proved that TiO2 interacted with CS-MTX NPs. The drug invitro release was controlled and sustained over days. Finally, the studied in vitro using the tumor cell line MCF-7 suggested that combining nanomaterials with anticancer drugs CS-MTX NPs may be more effective than free MTX for cancer treatment. In conclusion, the combination of CS-MTX NPs and TiO2 NPs showed excellent time-dependent in vitro antitumor behavior, therefore, can be employed as a promising anticancer agent to attain efficient results towards MCF-7 cells.

Keywords: Methotrexate, Titanium dioxide, Chitosan nanoparticles, cancer

Procedia PDF Downloads 95
2726 Low-Density Lipoproteins Mediated Delivery of Paclitaxel and MRI Imaging Probes for Personalized Medicine Applications

Authors: Sahar Rakhshan, Simonetta Geninatti Crich, Diego Alberti, Rachele Stefania

Abstract:

The combination of imaging and therapeutic agents in the same smart nanoparticle is a promising option to perform a minimally invasive imaging guided therapy. In this study, Low density lipoproteins (LDL), one of the most attractive biodegradable and biocompatible nanoparticles, were used for the simultaneous delivery of Paclitaxel (PTX), a hydrophobic antitumour drug and an amphiphilic contrast agent, Gd-AAZTA-C17, in B16-F10 melanoma cell line. These cells overexpress LDL receptors, as assessed by Flow cytometry analysis. PTX and Gd-AAZTA-C17 loaded LDLs (LDL-PTX-Gd) have been prepared, characterized and their stability was assessed under 72 h incubation at 37 ◦C and compared to LDL loaded with Gd-AAZTA-C17 (LDL-Gd) and LDL-PTX. The cytotoxic effect of LDL-PTX-Gd was evaluated by MTT assay. The anti-tumour drug loaded into LDLs showed a significantly higher toxicity on B16-F10 cells with respect to the commercially available formulation Paclitaxel Kabi (PTX Kabi) used in clinical applications. It was possible to demonstrate a high uptake of LDL-Gd in B16-F10 cells. As a consequence of the high cell uptake, melanoma cells showed significantly high cytotoxic effect when incubated in the presence of PTX (LDL-PTX-Gd). Furthermore, B16-F10 have been used to perform Magnetic Resonance Imaging. By the analysis of the image signal intensity, it was possible to extrapolate the amount of internalized PTX indirectly by the decrease of relaxation times caused by Gd, proportional to its concentration. Finally, the treatment with PTX loaded LDL on B16-F10 tumour bearing mice resulted in a marked reduction of tumour growth compared to the administration of PTX Kabi alone. In conclusion, LDLs are selectively taken-up by tumour cells and can be successfully exploited for the selective delivery of Paclitaxel and imaging agents.

Keywords: low density lipoprotein, melanoma cell lines, MRI, paclitaxel, personalized medicine application, theragnostic System

Procedia PDF Downloads 125
2725 Characterization of the GntR Family Transcriptional Regulator Rv0792c: A Potential Drug Target for Mycobacterium tuberculosis

Authors: Thanusha D. Abeywickrama, Inoka C. Perera, Genji Kurisu

Abstract:

Tuberculosis, considered being as the ninth leading cause of death worldwide, cause from a single infectious agent M. tuberculosis and the drug resistance nature of this bacterium is a continuing threat to the world. Therefore TB preventing treatment is expanding, where this study designed to analyze the regulatory mechanism of GntR transcriptional regulator gene Rv0792c, which lie between several genes codes for some hypothetical proteins, a monooxygenase and an oxidoreductase. The gene encoding Rv0792c was cloned into pET28a and expressed protein was purified to near homogeneity by Nickel affinity chromatography. It was previously reported that the protein binds within the intergenic region (BS region) between Rv0792c gene and monooxygenase (Rv0793). This resulted in binding of three protein molecules with the BS region suggesting tight control of monooxygenase as well as its own gene. Since monooxygenase plays a key role in metabolism, this gene may have a global regulatory role. The natural ligand for this regulator is still under investigation. In relation to the Rv0792 protein structure, a Circular Dichroism (CD) spectrum was carried out to determine its secondary structure elements. Percentage-wise, 17.4% Helix, 21.8% Antiparallel, 5.1% Parallel, 12.3% turn and 43.5% other were revealed from CD spectrum data under room temperature. Differential Scanning Calorimetry (DSC) was conducted to assess the thermal stability of Rv0792, which the melting temperature of protein is 57.2 ± 0.6 °C. The graph of heat capacity (Cp) versus temperature for the best fit was obtained for non-two-state model, which concludes the folding of Rv0792 protein occurs through stable intermediates. Peak area (∆HCal ) and Peak shape (∆HVant ) was calculated from the graph and ∆HCal / ∆HVant was close to 0.5, suggesting dimeric nature of the protein.

Keywords: CD spectrum, DSC analysis, GntR transcriptional regulator, protein structure

Procedia PDF Downloads 222
2724 Development of Immuno-Modulators: Application of Molecular Dynamics Simulation

Authors: Ruqaiya Khalil, Saman Usmani, Zaheer Ul-Haq

Abstract:

The accurate characterization of ligand binding affinity is indispensable for designing molecules with optimized binding affinity. Computational tools help in many directions to predict quantitative correlations between protein-ligand structure and their binding affinities. Molecular dynamics (MD) simulation is a modern state-of-the-art technique to evaluate the underlying basis of ligand-protein interactions by characterizing dynamic and energetic properties during the event. Autoimmune diseases arise from an abnormal immune response of the body against own tissues. The current regimen for the described condition is limited to immune-modulators having compromised pharmacodynamics and pharmacokinetics profiles. One of the key player mediating immunity and tolerance, thus invoking autoimmunity is Interleukin-2; a cytokine influencing the growth of T cells. Molecular dynamics simulation techniques are applied to seek insight into the inhibitory mechanisms of newly synthesized compounds that manifested immunosuppressant potentials during in silico pipeline. In addition to estimation of free energies associated with ligand binding, MD simulation yielded us a great deal of information about ligand-macromolecule interactions to evaluate the pattern of interactions and the molecular basis of inhibition. The present study is a continuum of our efforts to identify interleukin-2 inhibitors of both natural and synthetic origin. Herein, we report molecular dynamics simulation studies of Interluekin-2 complexed with different antagonists previously reported by our group. The study of protein-ligand dynamics enabled us to gain a better understanding of the contribution of different active site residues in ligand binding. The results of the study will be used as the guide to rationalize the fragment based synthesis of drug-like interleukin-2 inhibitors as immune-modulators.

Keywords: immuno-modulators, MD simulation, protein-ligand interaction, structure-based drug design

Procedia PDF Downloads 262
2723 The Effects of Seasonal Variation on the Microbial-N Flow to the Small Intestine and Prediction of Feed Intake in Grazing Karayaka Sheep

Authors: Mustafa Salman, Nurcan Cetinkaya, Zehra Selcuk, Bugra Genc

Abstract:

The objectives of the present study were to estimate the microbial-N flow to the small intestine and to predict the digestible organic matter intake (DOMI) in grazing Karayaka sheep based on urinary excretion of purine derivatives (xanthine, hypoxanthine, uric acid, and allantoin) by the use of spot urine sampling under field conditions. In the trial, 10 Karayaka sheep from 2 to 3 years of age were used. The animals were grazed in a pasture for ten months and fed with concentrate and vetch plus oat hay for the other two months (January and February) indoors. Highly significant linear and cubic relationships (P<0.001) were found among months for purine derivatives index, purine derivatives excretion, purine derivatives absorption, microbial-N and DOMI. Through urine sampling and the determination of levels of excreted urinary PD and Purine Derivatives / Creatinine ratio (PDC index), microbial-N values were estimated and they indicated that the protein nutrition of the sheep was insufficient. In conclusion, the prediction of protein nutrition of sheep under the field conditions may be possible with the use of spot urine sampling, urinary excreted PD and PDC index. The mean purine derivative levels in spot urine samples from sheep were highest in June, July and October. Protein nutrition of pastured sheep may be affected by weather changes, including rainfall. Spot urine sampling may useful in modeling the feed consumption of pasturing sheep. However, further studies are required under different field conditions with different breeds of sheep to develop spot urine sampling as a model.

Keywords: Karayaka sheep, spot sampling, urinary purine derivatives, PDC index, microbial-N, feed intake

Procedia PDF Downloads 529