Search results for: data loss
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27823

Search results for: data loss

26383 Developing Guidelines for Public Health Nurse Data Management and Use in Public Health Emergencies

Authors: Margaret S. Wright

Abstract:

Background/Significance: During many recent public health emergencies/disasters, public health nursing data has been missing or delayed, potentially impacting the decision-making and response. Data used as evidence for decision-making in response, planning, and mitigation has been erratic and slow, decreasing the ability to respond. Methodology: Applying best practices in data management and data use in public health settings, and guided by the concepts outlined in ‘Disaster Standards of Care’ models leads to the development of recommendations for a model of best practices in data management and use in public health disasters/emergencies by public health nurses. As the ‘patient’ in public health disasters/emergencies is the community (local, regional or national), guidelines for patient documentation are incorporated in the recommendations. Findings: Using model public health nurses could better plan how to prepare for, respond to, and mitigate disasters in their communities, and better participate in decision-making in all three phases bringing public health nursing data to the discussion as part of the evidence base for decision-making.

Keywords: data management, decision making, disaster planning documentation, public health nursing

Procedia PDF Downloads 226
26382 An Embarrassingly Simple Semi-supervised Approach to Increase Recall in Online Shopping Domain to Match Structured Data with Unstructured Data

Authors: Sachin Nagargoje

Abstract:

Complete labeled data is often difficult to obtain in a practical scenario. Even if one manages to obtain the data, the quality of the data is always in question. In shopping vertical, offers are the input data, which is given by advertiser with or without a good quality of information. In this paper, an author investigated the possibility of using a very simple Semi-supervised learning approach to increase the recall of unhealthy offers (has badly written Offer Title or partial product details) in shopping vertical domain. The author found that the semisupervised learning method had improved the recall in the Smart Phone category by 30% on A=B testing on 10% traffic and increased the YoY (Year over Year) number of impressions per month by 33% at production. This also made a significant increase in Revenue, but that cannot be publicly disclosed.

Keywords: semi-supervised learning, clustering, recall, coverage

Procedia PDF Downloads 125
26381 Genodata: The Human Genome Variation Using BigData

Authors: Surabhi Maiti, Prajakta Tamhankar, Prachi Uttam Mehta

Abstract:

Since the accomplishment of the Human Genome Project, there has been an unparalled escalation in the sequencing of genomic data. This project has been the first major vault in the field of medical research, especially in genomics. This project won accolades by using a concept called Bigdata which was earlier, extensively used to gain value for business. Bigdata makes use of data sets which are generally in the form of files of size terabytes, petabytes, or exabytes and these data sets were traditionally used and managed using excel sheets and RDBMS. The voluminous data made the process tedious and time consuming and hence a stronger framework called Hadoop was introduced in the field of genetic sciences to make data processing faster and efficient. This paper focuses on using SPARK which is gaining momentum with the advancement of BigData technologies. Cloud Storage is an effective medium for storage of large data sets which is generated from the genetic research and the resultant sets produced from SPARK analysis.

Keywords: human genome project, Bigdata, genomic data, SPARK, cloud storage, Hadoop

Procedia PDF Downloads 259
26380 Lightweight Ceramics from Clay and Ground Corncobs

Authors: N.Quaranta, M. Caligaris, R. Varoli, A. Cristobal, M. Unsen, H. López

Abstract:

Corncobs are agricultural wastes and they can be used as fuel or as raw material in different industrial processes like cement manufacture, contaminant adsorption, chemical compound synthesis, etc. The aim of this work is to characterize this waste and analyze the feasibility of its use as a pore-forming material in the manufacture of lightweight ceramics for the civil construction industry. The characterization of raw materials is carried out by using various techniques: electron diffraction analysis X-ray, differential and gravimetric thermal analyses, FTIR spectroscopy, ecotoxicity evaluation, among others. The ground corncobs, particle size less than 2 mm, are mixed with clay up to 30% in volume and shaped by uniaxial pressure of 25 MPa, with 6% humidity, in moulds of 70mm x 40mm x 18mm. Then the green bodies are heat treated at 950°C for two hours following the treatment curves used in ceramic industry. The ceramic probes are characterized by several techniques: density, porosity and water absorption, permanent volumetric variation, loss on ignition, microscopies analysis, and mechanical properties. DTA-TGA analysis of corncobs shows in the range 20°-250°C a small loss in TGA curve and exothermic peaks at 250°-500°C. FTIR spectrum of the corncobs sample shows the characteristic pattern of this kind of organic matter with stretching vibration bands of adsorbed water, methyl groups, C–O and C–C bonds, and the complex form of the cellulose and hemicellulose glycosidic bonds. The obtained ceramic bodies present external good characteristics without loose edges and adequate properties for the market requirements. The porosity values of the sintered pieces are higher than those of the reference sample without waste addition. The results generally indicate that it is possible to use corncobs as porosity former in ceramic bodies without modifying the usual sintering temperatures employed in the industry.

Keywords: ceramic industry, biomass, recycling, hemicellulose glycosidic bonds

Procedia PDF Downloads 407
26379 Functional Analysis of Variants Implicated in Hearing Loss in a Cohort from Argentina: From Molecular Diagnosis to Pre-Clinical Research

Authors: Paula I. Buonfiglio, Carlos David Bruque, Lucia Salatino, Vanesa Lotersztein, Sebastián Menazzi, Paola Plazas, Ana Belén Elgoyhen, Viviana Dalamón

Abstract:

Hearing loss (HL) is the most prevalent sensorineural disorder affecting about 10% of the global population, with more than half due to genetic causes. About 1 in 500-1000 newborns present congenital HL. Most of the patients are non-syndromic with an autosomal recessive mode of inheritance. To date, more than 100 genes are related to HL. Therefore, the Whole-exome sequencing (WES) technique has become a cost-effective alternative approach for molecular diagnosis. Nevertheless, new challenges arise from the detection of novel variants, in particular missense changes, which can lead to a spectrum of genotype-to-phenotype correlations, which is not always straightforward. In this work, we aimed to identify the genetic causes of HL in isolated and familial cases by designing a multistep approach to analyze target genes related to hearing impairment. Moreover, we performed in silico and in vivo analyses in order to further study the effect of some of the novel variants identified in the hair cell function using the zebrafish model. A total of 650 patients were studied by Sanger Sequencing and Gap-PCR in GJB2 and GJB6 genes, respectively, diagnosing 15.5% of sporadic cases and 36% of familial ones. Overall, 50 different sequence variants were detected. Fifty of the undiagnosed patients with moderate HL were tested for deletions in STRC gene by Multiplex ligation-dependent probe amplification technique (MLPA), leading to 6% of diagnosis. After this initial screening, 50 families were selected to be analyzed by WES, achieving diagnosis in 44% of them. Half of the identified variants were novel. A missense variant in MYO6 gene detected in a family with postlingual HL was selected to be further analyzed. A protein modeling with AlphaFold2 software was performed, proving its pathogenic effect. In order to functionally validate this novel variant, a knockdown phenotype rescue assay in zebrafish was carried out. Injection of wild-type MYO6 mRNA in embryos rescued the phenotype, whereas using the mutant MYO6 mRNA (carrying c.2782C>A variant) had no effect. These results strongly suggest the deleterious effect of this variant on the mobility of stereocilia in zebrafish neuromasts, and hence on the auditory system. In the present work, we demonstrated that our algorithm is suitable for the sequential multigenic approach to HL in our cohort. These results highlight the importance of a combined strategy in order to identify candidate variants as well as the in silico and in vivo studies to analyze and prove their pathogenicity and accomplish a better understanding of the mechanisms underlying the physiopathology of the hearing impairment.

Keywords: diagnosis, genetics, hearing loss, in silico analysis, in vivo analysis, WES, zebrafish

Procedia PDF Downloads 99
26378 Ontology for a Voice Transcription of OpenStreetMap Data: The Case of Space Apprehension by Visually Impaired Persons

Authors: Said Boularouk, Didier Josselin, Eitan Altman

Abstract:

In this paper, we present a vocal ontology of OpenStreetMap data for the apprehension of space by visually impaired people. Indeed, the platform based on produsage gives a freedom to data producers to choose the descriptors of geocoded locations. Unfortunately, this freedom, called also folksonomy leads to complicate subsequent searches of data. We try to solve this issue in a simple but usable method to extract data from OSM databases in order to send them to visually impaired people using Text To Speech technology. We focus on how to help people suffering from visual disability to plan their itinerary, to comprehend a map by querying computer and getting information about surrounding environment in a mono-modal human-computer dialogue.

Keywords: TTS, ontology, open street map, visually impaired

Procedia PDF Downloads 301
26377 Magnitude of Infection and Associated factor in Open Tibial Fractures Treated Operatively at Addis Ababa Burn Emergency and Trauma Center April, 2023

Authors: Tuji Mohammed Sani

Abstract:

Back ground: An open tibial fracture is an injury where the fractured bone directly communicates with the outside environment. Due to the specific anatomical features of the tibia (limited soft tissue coverage), more than quarter of its fractures are classified as open, representing the most common open long-bone injuries. Open tibial fractures frequently cause significant bone comminution, periosteal stripping, soft tissue loss, contamination and are prone to bacterial entry with biofilm formation, which increases the risk of deep bone infection. Objective: The main objective of the study was to determine Prevalence of infection and its associated factors in surgically treated open tibial fracture in Addis Ababa Burn Emergency and Trauma (AaBET) center. Method: A facility based retrospective cross-sectional study was conducted among patient treated for open tibial fracture at AaBET center from September 2018 to September 2021. The data was collected from patient’s chart using structured data collection form, and Data was entered and analyzed using SPSS version 26. Bivariable and multiple binary logistic regression were fitted. Multicollinearity was checked among candidate variables using variance inflation factor and tolerance, which were less than 5 and greater than 0.2, respectively. Model adequacy were tested using Hosmer-Lemeshow goodness of fitness test (P=0.711). AOR at 95% CI was reported, and P-value < 0.05 was considered statistically significant. Result: This study found that 33.9% of the study participants had an infection. Initial IV antibiotic time (AOR=2.924, 95% CI:1.160- 7.370) and time of wound closure from injury (AOR=3.524, 95% CI: 1.798-6.908), injury to admission time (AOR=2.895, 95% CI: 1.402 – 5.977). and definitive fixation method (AOR=0.244, 95% CI: 0.113 – 0.4508) were the factors found to have a statistically significant association with the occurrence of infection. Conclusion: The rate of infection in open tibial fractures indicates that there is a need to improve the management of open tibial fracture treated at AaBET center. Time from injury to admission, time from injury to first debridement, wound closure time, and initial Intra Venous antibiotic time from the injury are an important factor that can be readily amended to improve the infection rate. Whether wound closed before seven days or not were more important factor associated with occurrences of infection.

Keywords: infection, open tibia, fracture, magnitude

Procedia PDF Downloads 87
26376 Design and Development of a Platform for Analyzing Spatio-Temporal Data from Wireless Sensor Networks

Authors: Walid Fantazi

Abstract:

The development of sensor technology (such as microelectromechanical systems (MEMS), wireless communications, embedded systems, distributed processing and wireless sensor applications) has contributed to a broad range of WSN applications which are capable of collecting a large amount of spatiotemporal data in real time. These systems require real-time data processing to manage storage in real time and query the data they process. In order to cover these needs, we propose in this paper a Snapshot spatiotemporal data model based on object-oriented concepts. This model allows saving storing and reducing data redundancy which makes it easier to execute spatiotemporal queries and save analyzes time. Further, to ensure the robustness of the system as well as the elimination of congestion from the main access memory we propose a spatiotemporal indexing technique in RAM called Captree *. As a result, we offer an RIA (Rich Internet Application) -based SOA application architecture which allows the remote monitoring and control.

Keywords: WSN, indexing data, SOA, RIA, geographic information system

Procedia PDF Downloads 259
26375 Collagen Deposition in Lung Parenchyma Driven by Depletion of LYVE-1+ Macrophages Protects Emphysema and Loss of Airway Function

Authors: Yinebeb Mezgebu Dagnachew, Hwee Ying Lim, Liao Wupeng, Sheau Yng Lim, Lim Sheng Jie Natalie, Veronique Angeli

Abstract:

Collagen is essential for maintaining lung structure and function, and its remodeling has been associated with respiratory diseases, including chronic obstructive pulmonary disease (COPD). However, the cellular mechanisms driving collagen remodeling and the functional implications of this process in the pathophysiology of pulmonary diseases remain poorly understood. Using a mouse model of Lyve-1 expressing macrophage depletion, we found that the absence of this subpopulation of tissue-resident macrophage led to the preferential deposition of type I collagen fibers around the alveoli and bronchi in the steady state. Further analysis by polarized light microscopy revealed that the collagen fibers accumulating in the lungs depleted of Lyve-1+ macrophages were thicker and crosslinked. A decrease in MMP-9 gene expression and proteolytic activity, together with an increase in Col1a1, Timp-3 and Lox gene expression, accompanied the collagen alterations. Next, we investigated the effect of the collagen remodeling on the pathophysiology of COPD and airway function in mouse lacking Lyve-1+ macrophage exposed chronically to cigarette smoke (CS), a well-established animal model of COPD. We showed that the deposition of collagen protected mouse against the destruction of alveoli (emphysema) and bronchi thickening after CS exposure and prevented loss of airway function. Thus, we demonstrate that interstitial Lyve-1+ macrophages regulate the composition, amount, and architecture of the collagen network in the lungs and that such collagen remodeling functionally impacts the development of COPD. This study further supports the potential of targeting collagen as a promising approach to treating respiratory diseases.

Keywords: lung, extracellular matrix, chronic obstructive pulmonary disease, matrix metalloproteinases, collagen

Procedia PDF Downloads 44
26374 Prediction of Marine Ecosystem Changes Based on the Integrated Analysis of Multivariate Data Sets

Authors: Prozorkevitch D., Mishurov A., Sokolov K., Karsakov L., Pestrikova L.

Abstract:

The current body of knowledge about the marine environment and the dynamics of marine ecosystems includes a huge amount of heterogeneous data collected over decades. It generally includes a wide range of hydrological, biological and fishery data. Marine researchers collect these data and analyze how and why the ecosystem changes from past to present. Based on these historical records and linkages between the processes it is possible to predict future changes. Multivariate analysis of trends and their interconnection in the marine ecosystem may be used as an instrument for predicting further ecosystem evolution. A wide range of information about the components of the marine ecosystem for more than 50 years needs to be used to investigate how these arrays can help to predict the future.

Keywords: barents sea ecosystem, abiotic, biotic, data sets, trends, prediction

Procedia PDF Downloads 123
26373 Machine Learning in Agriculture: A Brief Review

Authors: Aishi Kundu, Elhan Raza

Abstract:

"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.

Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting

Procedia PDF Downloads 110
26372 Event Driven Dynamic Clustering and Data Aggregation in Wireless Sensor Network

Authors: Ashok V. Sutagundar, Sunilkumar S. Manvi

Abstract:

Energy, delay and bandwidth are the prime issues of wireless sensor network (WSN). Energy usage optimization and efficient bandwidth utilization are important issues in WSN. Event triggered data aggregation facilitates such optimal tasks for event affected area in WSN. Reliable delivery of the critical information to sink node is also a major challenge of WSN. To tackle these issues, we propose an event driven dynamic clustering and data aggregation scheme for WSN that enhances the life time of the network by minimizing redundant data transmission. The proposed scheme operates as follows: (1) Whenever the event is triggered, event triggered node selects the cluster head. (2) Cluster head gathers data from sensor nodes within the cluster. (3) Cluster head node identifies and classifies the events out of the collected data using Bayesian classifier. (4) Aggregation of data is done using statistical method. (5) Cluster head discovers the paths to the sink node using residual energy, path distance and bandwidth. (6) If the aggregated data is critical, cluster head sends the aggregated data over the multipath for reliable data communication. (7) Otherwise aggregated data is transmitted towards sink node over the single path which is having the more bandwidth and residual energy. The performance of the scheme is validated for various WSN scenarios to evaluate the effectiveness of the proposed approach in terms of aggregation time, cluster formation time and energy consumed for aggregation.

Keywords: wireless sensor network, dynamic clustering, data aggregation, wireless communication

Procedia PDF Downloads 455
26371 Offshore Outsourcing: Global Data Privacy Controls and International Compliance Issues

Authors: Michelle J. Miller

Abstract:

In recent year, there has been a rise of two emerging issues that impact the global employment and business market that the legal community must review closer: offshore outsourcing and data privacy. These two issues intersect because employment opportunities are shifting due to offshore outsourcing and some States, like the United States, anti-outsourcing legislation has been passed or presented to retain jobs within the country. In addition, the legal requirements to retain the privacy of data as a global employer extends to employees and third party service provides, including services outsourced to offshore locations. For this reason, this paper will review the intersection of these two issues with a specific focus on data privacy.

Keywords: outsourcing, data privacy, international compliance, multinational corporations

Procedia PDF Downloads 414
26370 Weighted Data Replication Strategy for Data Grid Considering Economic Approach

Authors: N. Mansouri, A. Asadi

Abstract:

Data Grid is a geographically distributed environment that deals with data intensive application in scientific and enterprise computing. Data replication is a common method used to achieve efficient and fault-tolerant data access in Grids. In this paper, a dynamic data replication strategy, called Enhanced Latest Access Largest Weight (ELALW) is proposed. This strategy is an enhanced version of Latest Access Largest Weight strategy. However, replication should be used wisely because the storage capacity of each Grid site is limited. Thus, it is important to design an effective strategy for the replication replacement task. ELALW replaces replicas based on the number of requests in future, the size of the replica, and the number of copies of the file. It also improves access latency by selecting the best replica when various sites hold replicas. The proposed replica selection selects the best replica location from among the many replicas based on response time that can be determined by considering the data transfer time, the storage access latency, the replica requests that waiting in the storage queue and the distance between nodes. Simulation results utilizing the OptorSim show our replication strategy achieve better performance overall than other strategies in terms of job execution time, effective network usage and storage resource usage.

Keywords: data grid, data replication, simulation, replica selection, replica placement

Procedia PDF Downloads 263
26369 Evaluation of Satellite and Radar Rainfall Product over Seyhan Plain

Authors: Kazım Kaba, Erdem Erdi, M. Akif Erdoğan, H. Mustafa Kandırmaz

Abstract:

Rainfall is crucial data source for very different discipline such as agriculture, hydrology and climate. Therefore rain rate should be known well both spatial and temporal for any area. Rainfall is measured by using rain-gauge at meteorological ground stations traditionally for many years. At the present time, rainfall products are acquired from radar and satellite images with a temporal and spatial continuity. In this study, we investigated the accuracy of these rainfall data according to rain-gauge data. For this purpose, we used Adana-Hatay radar hourly total precipitation product (RN1) and Meteosat convective rainfall rate (CRR) product over Seyhan plain. We calculated daily rainfall values from RN1 and CRR hourly precipitation products. We used the data of rainy days of four stations located within range of the radar from October 2013 to November 2015. In the study, we examined two rainfall data over Seyhan plain and the correlation between the rain-gauge data and two raster rainfall data was observed lowly.

Keywords: meteosat, radar, rainfall, rain-gauge, Turkey

Procedia PDF Downloads 329
26368 Analysis of the Potential of Biomass Residues for Energy Production and Applications in New Materials

Authors: Sibele A. F. Leite, Bernno S. Leite, José Vicente H. D´Angelo, Ana Teresa P. Dell’Isola, Julio CéSar Souza

Abstract:

The generation of bioenergy is one of the oldest and simplest biomass applications and is one of the safest options for minimizing emissions of greenhouse gasses and replace the use of fossil fuels. In addition, the increasing development of technologies for energy biomass conversion parallel to the advancement of research in biotechnology and engineering has enabled new opportunities for exploitation of biomass. Agricultural residues offer great potential for energy use, and Brazil is in a prominent position in the production and export of agricultural products such as banana and rice. Despite the economic importance of the growth prospects of these activities and the increasing of the agricultural waste, they are rarely explored for energy and production of new materials. Brazil products almost 10.5 million tons/year of rice husk and 26.8 million tons/year of banana stem. Thereby, the aim of this study was to analysis the potential of biomass residues for energy production and applications in new materials. Rice husk (specify the type) and banana stem (specify the type) were characterized by physicochemical analyses using the following parameters: organic carbon, nitrogen (NTK), proximate analyses, FT-IR spectroscopy, thermogravimetric analyses (TG), calorific values and silica content. Rice husk and banana stem presented attractive superior calorific (from 11.5 to 13.7MJ/kg), and they may be compared to vegetal coal (21.25 MJ/kg). These results are due to the high organic matter content. According to the proximate analysis, biomass has high carbon content (fixed and volatile) and low moisture and ash content. In addition, data obtained by Walkley–Black method point out that most of the carbon present in the rice husk (50.5 wt%) and in banana stalk (35.5 wt%) should be understood as organic carbon (readily oxidizable). Organic matter was also detected by Kjeldahl method which gives the values of nitrogen (especially on the organic form) for both residues: 3.8 and 4.7 g/kg of rice husk and banana stem respectively. TG and DSC analyses support the previous results, as they can provide information about the thermal stability of the samples allowing a correlation between thermal behavior and chemical composition. According to the thermogravimetric curves, there were two main stages of mass-losses. The first and smaller one occurred below 100 °C, which was suitable for water losses and the second event occurred between 200 and 500 °C which indicates decomposition of the organic matter. At this broad peak, the main loss was between 250-350 °C, and it is because of sugar decomposition (components readily oxidizable). Above 350 °C, mass loss of the biomass may be associated with lignin decomposition. Spectroscopic characterization just provided qualitative information about the organic matter, but spectra have shown absorption bands around 1030 cm-1 which may be identified as species containing silicon. This result is expected for the rice husk and deserves further investigation to the stalk of banana, as it can bring a different perspective for this biomass residue.

Keywords: rice husk, banana stem, bioenergy, renewable feedstock

Procedia PDF Downloads 281
26367 Spatial Data Mining by Decision Trees

Authors: Sihem Oujdi, Hafida Belbachir

Abstract:

Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.

Keywords: C4.5 algorithm, decision trees, S-CART, spatial data mining

Procedia PDF Downloads 619
26366 Feeding Ecology and Habitat Preference of Red Panda in Dhorpatan Hunting Reserve, Nepal

Authors: Saroj Panthi

Abstract:

The red panda (Ailurus fulgens fulgens) is distributed throughout the Himalayas and is found in both protected and unprotected areas of Nepal. Loss and fragmentation of habitat threaten red panda population throughout its range, and as a consequence, it is listed as vulnerable on the IUCN Red List of Threatened Species. Despite this pressing situation, data on the ecology of the red panda in western Nepal are lacking. Our aim in the current study was to determine the distribution, associated habitats, and summer diet of the red panda in Dhorpatan Hunting Reserve (DHR), Nepal. Evidence of red pandas was found in all 7 blocks of the reserve, spanning an area of 345.8 km2, between elevations of 2800 m and 4000 m and predominantly (> 75%) in forests comprising plant communities dominated by Abies spectabilis, Acer caesium, Tsuga domusa, and Betula utilis, with ground cover of Arundinaria spp. The dominant plant found in scat of the red panda was Arundinaria spp. (81.7%), with Acer spp., B. utilis, and lichen also frequently present. Livestock grazing and human activities were significantly higher in habitats where signs of pandas were recorded than in areas where they were absent. This habitat overlap between the red panda and livestock potentially poses a major threat to the panda’s survival in the DHR, a fact that should be taken into account in devising management strategies for this threatened species.

Keywords: red panda, Dhorpatan hunting reserve, diet, habitat preference

Procedia PDF Downloads 348
26365 Scour Damaged Detection of Bridge Piers Using Vibration Analysis - Numerical Study of a Bridge

Authors: Solaine Hachem, Frédéric Bourquin, Dominique Siegert

Abstract:

The brutal collapse of bridges is mainly due to scour. Indeed, the soil erosion in the riverbed around a pier modifies the embedding conditions of the structure, reduces its overall stiffness and threatens its stability. Hence, finding an efficient technique that allows early scour detection becomes mandatory. Vibration analysis is an indirect method for scour detection that relies on real-time monitoring of the bridge. It tends to indicate the presence of a scour based on its consequences on the stability of the structure and its dynamic response. Most of the research in this field has focused on the dynamic behavior of a single pile and has examined the depth of the scour. In this paper, a bridge is fully modeled with all piles and spans and the scour is represented by a reduction in the foundation's stiffnesses. This work aims to identify the vibration modes sensitive to the rigidity’s loss in the foundations so that their variations can be considered as a scour indicator: the decrease in soil-structure interaction rigidity leads to a decrease in the natural frequencies’ values. By using the first-order perturbation method, the expression of sensitivity, which depends only on the selected vibration modes, is established to determine the deficiency of foundations stiffnesses. The solutions are obtained by using the singular value decomposition method for the regularization of the inverse problem. The propagation of uncertainties is also calculated to verify the efficiency of the inverse problem method. Numerical simulations describing different scenarios of scour are investigated on a simplified model of a real composite steel-concrete bridge located in France. The results of the modal analysis show that the modes corresponding to in-plane and out-of-plane piers vibrations are sensitive to the loss of foundation stiffness. While the deck bending modes are not affected by this damage.

Keywords: bridge’s piers, inverse problems, modal sensitivity, scour detection, vibration analysis

Procedia PDF Downloads 113
26364 [Keynote Talk]: Treatment Satisfaction and Safety of Sitagliptin versus Pioglitazone in Patients with Type 2 Diabetes Mellitus Inadequately Controlled on Metformin Monotherapy

Authors: Shahnaz Haque, Anand Shukla, Sunita Singh, Anil Kem

Abstract:

Introduction: Diabetes Mellitus is a chronic metabolic disease affecting millions worldwide. Metformin is the most commonly prescribed first line oral hypoglycemic drug for type 2 diabetes mellitus, but due to progressive worsening of blood glucose control during the natural history of type 2 diabetes, combination therapy usually becomes necessary. Objective: This study was designed to assess the treatment satisfaction between Sitagliptin versus Pioglitazone added to Metformin in patients with type 2 diabetes mellitus (T2DM). Methods: We conducted a prospective, open label, randomized, parallel group study in SIMS, Hapur, U.P. Eligible patients fulfilling inclusion criteria were randomized into two groups having 25 patients in each group using tab Sitagliptin 100mg, tab Pioglitazone 30mg added to ongoing tab Metformin (500mg) therapy for 16 weeks. The follow-up visits were on weeks 4,12 and 16. Result: 16 weeks later, addition of Sitagliptin 100mg compared to that of Pioglitazone 30 mg to ongoing Metformin therapy provided similar glycosylated hemoglobin (HbA1c) lowering efficacy in patients with T2DM with inadequate glycemic control on metformin monotherapy. Change in HbA1c in group1 was -0.656±0.21%(p<0.0001) whereas in group2 was -0.748±0.35%(p<0.0001). Hence decrease in HbA1c from baseline was more in group2. Both treatments were well tolerated with negligible risk of hypoglycaemia. Weight loss was observed with Sitagliptin in contrast to weight gain seen in Pioglitazone. Conclusion: In this study, Sitagliptin 100 mg along with metformin therapy in comparison to pioglitazone 30 mg plus metformin therapy was both effective, well-tolerated and improved glycemic control in both the groups. Addition of pioglitazone had cause oedema and weight gain to the patients whereas sitagliptin caused weight loss in its patients.

Keywords: sitagliptin, pioglitazone, metformin, type 2 diabetes mellitus

Procedia PDF Downloads 306
26363 Ecocriticism and Sustainable Development: A Study of Kamila Shamsie's a God in Every Stone

Authors: Shaista Maseeh

Abstract:

English Literature from the beginning itself has had psychological, social and environment concerns. Virgil, Shakespeare, John Milton, William Wordsworth to the most current Robert Hass have shown and proved their environmental and ecological interests as well as distress related to its loss. Pastoral literature is also one such genre that links literature with environment. Thanks to the contemporary literary theories that they successfully are relating Literature formally to the subjects other than written text. One of such literary theory is 'Ecocriticism.' It stands under the umbrella of the Economics term, Sustainable Development,' or it can also be understood as an ecological extension of it. Ecocriticism helps the reader to study the dynamic relation between literature and our degrading environment. It draws attention towards the ravaged condition of nature and animals, that how nature is exploited by human beings for their own benefit leaving nature at a repairable loss. For instance, deforestation is reducing the size of forest every year, injuring permanently flora, fauna and also the habitat of animals. This paper will study the ecological and environmental concerns in the latest novel by Pakistani British writer Kamila Shamsie, A God in every Stone (2014). The book is not only a literary masterpiece in elegant prose, but also a novel posing a lot of questions about 'nature and environment' in general and 'animals' in particular. It gives the glimpses of the interesting history of Temple of Zeus in Greece and Ancient Caria, and covers many episodes of history the Indian freedom struggle. In course of novel's narrative Kamila Shamsie poses disturbing question about environmental abuse, about how human beings are more 'beasts' than so call beasts, poor animals. She also glorifies the simplicity of past. The novel has enough instances to prove Shamsie's positive stand on saving the earth that is being more abused than used by human beings. This paper will provide an ecocritical approach to study A God in Every Stone (2014).

Keywords: animals, ecocriticism, environment, nature

Procedia PDF Downloads 435
26362 Artificial Neural Networks and Hidden Markov Model in Landslides Prediction

Authors: C. S. Subhashini, H. L. Premaratne

Abstract:

Landslides are the most recurrent and prominent disaster in Sri Lanka. Sri Lanka has been subjected to a number of extreme landslide disasters that resulted in a significant loss of life, material damage, and distress. It is required to explore a solution towards preparedness and mitigation to reduce recurrent losses associated with landslides. Artificial Neural Networks (ANNs) and Hidden Markov Model (HMMs) are now widely used in many computer applications spanning multiple domains. This research examines the effectiveness of using Artificial Neural Networks and Hidden Markov Model in landslides predictions and the possibility of applying the modern technology to predict landslides in a prominent geographical area in Sri Lanka. A thorough survey was conducted with the participation of resource persons from several national universities in Sri Lanka to identify and rank the influencing factors for landslides. A landslide database was created using existing topographic; soil, drainage, land cover maps and historical data. The landslide related factors which include external factors (Rainfall and Number of Previous Occurrences) and internal factors (Soil Material, Geology, Land Use, Curvature, Soil Texture, Slope, Aspect, Soil Drainage, and Soil Effective Thickness) are extracted from the landslide database. These factors are used to recognize the possibility to occur landslides by using an ANN and HMM. The model acquires the relationship between the factors of landslide and its hazard index during the training session. These models with landslide related factors as the inputs will be trained to predict three classes namely, ‘landslide occurs’, ‘landslide does not occur’ and ‘landslide likely to occur’. Once trained, the models will be able to predict the most likely class for the prevailing data. Finally compared two models with regards to prediction accuracy, False Acceptance Rates and False Rejection rates and This research indicates that the Artificial Neural Network could be used as a strong decision support system to predict landslides efficiently and effectively than Hidden Markov Model.

Keywords: landslides, influencing factors, neural network model, hidden markov model

Procedia PDF Downloads 387
26361 Data-Driven Dynamic Overbooking Model for Tour Operators

Authors: Kannapha Amaruchkul

Abstract:

We formulate a dynamic overbooking model for a tour operator, in which most reservations contain at least two people. The cancellation rate and the timing of the cancellation may depend on the group size. We propose two overbooking policies, namely economic- and service-based. In an economic-based policy, we want to minimize the expected oversold and underused cost, whereas, in a service-based policy, we ensure that the probability of an oversold situation does not exceed the pre-specified threshold. To illustrate the applicability of our approach, we use tour package data in 2016-2018 from a tour operator in Thailand to build a data-driven robust optimization model, and we tested the proposed overbooking policy in 2019. We also compare the data-driven approach to the conventional approach of fitting data into a probability distribution.

Keywords: applied stochastic model, data-driven robust optimization, overbooking, revenue management, tour operator

Procedia PDF Downloads 138
26360 Rule of Natural Synthetic Chemical on Lead Immobilization in Polluted Sandy Soils

Authors: Saud S. AL Oud

Abstract:

Soil contamination can have dire consequences, such as loss of ecosystem and agricultural productivity, diminished food chain quality, tainted water resources, economic loss, and human and animal illness. In recent years, attention has focused on the development of in situ immobilization methods that are generally less expensive and disruptive to the natural landscape, hydrology, and ecosystems than are conventional excavation treatments, and disposal methods. Soft, inexpensive, and efficient agents were used in the present research to immobilize Pb in polluted sandy soil. Five agents, either naturally occurring or chemically prepared, were used for this purpose. These agents include; iron ore (72% Fe2O3), cement, a mixture of calcite and shale rich in aluminum (CASH), and two chemically prepared amorphous materials of Al- and Fe-gel. These agents were selected due to their ability to specifically adsorb heavy metals onto their surface OH functional groups, which provide permanent immobilization of metal pollutants and reduce the fraction that is potentially mobile or bioavailable. The efficiency of these agents in immobilizing Pb were examined in a laboratory experiment, in which two rates (0.5 and 1.0 %) of tested agents were added to the polluted soils containing total contents of Pb ranging from 17.4-49.8 mg/kg. The results show that all immobilizing agents were succeed in minimizing the mobile form of Pb as extracted by 0.5 N HNO3. The extracted Pb decreased with increasing addition rate of immobilizing agents. At addition rate of 0.5%, HNO3 extractable-Pb varied widely depending on the agents type and were found to represent 21-67% of the initial values. All agents were able to reduce mobile Pb to levels lower than that (2.0 mg/kg) reported for non polluted soil, particularly for soils had initials of mobile Pb less than 10 mg/kg. Both iron oxide and CASH had the highest efficiency in immobilizing Pb, followed by cement, then amorphous materials of Fe and Al hydroxides.

Keywords: soil, synthetic chemical, lead, immobilization, polluted

Procedia PDF Downloads 243
26359 Modeling and Statistical Analysis of a Soap Production Mix in Bejoy Manufacturing Industry, Anambra State, Nigeria

Authors: Okolie Chukwulozie Paul, Iwenofu Chinwe Onyedika, Sinebe Jude Ebieladoh, M. C. Nwosu

Abstract:

The research work is based on the statistical analysis of the processing data. The essence is to analyze the data statistically and to generate a design model for the production mix of soap manufacturing products in Bejoy manufacturing company Nkpologwu, Aguata Local Government Area, Anambra state, Nigeria. The statistical analysis shows the statistical analysis and the correlation of the data. T test, Partial correlation and bi-variate correlation were used to understand what the data portrays. The design model developed was used to model the data production yield and the correlation of the variables show that the R2 is 98.7%. However, the results confirm that the data is fit for further analysis and modeling. This was proved by the correlation and the R-squared.

Keywords: General Linear Model, correlation, variables, pearson, significance, T-test, soap, production mix and statistic

Procedia PDF Downloads 451
26358 Understanding the Effect of Fall Armyworm and Integrated Pest Management Practices on the Farm Productivity and Food Security in Malawi

Authors: Innocent Pangapanga, Eric Mungatana

Abstract:

Fall armyworm (FAW) (Spodoptera frugiperda), an invasive lepidopteran pest, has caused substantial yield loss since its first detection in September 2016, thereby threatening the farm productivity food security and poverty reduction initiatives in Malawi. Several stakeholders, including households, have adopted chemical pesticides to control FAW without accounting for its costs on welfare, health and the environment. Thus, this study has used panel data endogenous switching regression model to investigate the impact of FAW and the integrated pest management (IPM) –related practices on-farm productivity and food security. The study finds that FAW substantively reduces farm productivity by seven (7) percent and influences the adoption of IPM –related practices, namely, intercropping, mulching, and agroforestry, by 6 percent, ceteris paribus. Interestingly, multiple adoptions of the IPM -related practices noticeably increase farm productivity by 21 percent. After accounting for potential endogeneity through the endogenous switching regression model, the IPM practices further demonstrate tenfold more improvement on food security, implying the role of the IPM –related practices in containing the effect of FAW at the household level.

Keywords: hunger, invasive fall army worms, integrated pest management practices, farm productivity, endogenous switching regression

Procedia PDF Downloads 144
26357 Helping the Development of Public Policies with Knowledge of Criminal Data

Authors: Diego De Castro Rodrigues, Marcelo B. Nery, Sergio Adorno

Abstract:

The project aims to develop a framework for social data analysis, particularly by mobilizing criminal records and applying descriptive computational techniques, such as associative algorithms and extraction of tree decision rules, among others. The methods and instruments discussed in this work will enable the discovery of patterns, providing a guided means to identify similarities between recurring situations in the social sphere using descriptive techniques and data visualization. The study area has been defined as the city of São Paulo, with the structuring of social data as the central idea, with a particular focus on the quality of the information. Given this, a set of tools will be validated, including the use of a database and tools for visualizing the results. Among the main deliverables related to products and the development of articles are the discoveries made during the research phase. The effectiveness and utility of the results will depend on studies involving real data, validated both by domain experts and by identifying and comparing the patterns found in this study with other phenomena described in the literature. The intention is to contribute to evidence-based understanding and decision-making in the social field.

Keywords: social data analysis, criminal records, computational techniques, data mining, big data

Procedia PDF Downloads 91
26356 Optimization of Real Time Measured Data Transmission, Given the Amount of Data Transmitted

Authors: Michal Kopcek, Tomas Skulavik, Michal Kebisek, Gabriela Krizanova

Abstract:

The operation of nuclear power plants involves continuous monitoring of the environment in their area. This monitoring is performed using a complex data acquisition system, which collects status information about the system itself and values of many important physical variables e.g. temperature, humidity, dose rate etc. This paper describes a proposal and optimization of communication that takes place in teledosimetric system between the central control server responsible for the data processing and storing and the decentralized measuring stations, which are measuring the physical variables. Analyzes of ongoing communication were performed and consequently the optimization of the system architecture and communication was done.

Keywords: communication protocol, transmission optimization, data acquisition, system architecture

Procedia PDF Downloads 522
26355 Evaluating Generative Neural Attention Weights-Based Chatbot on Customer Support Twitter Dataset

Authors: Sinarwati Mohamad Suhaili, Naomie Salim, Mohamad Nazim Jambli

Abstract:

Sequence-to-sequence (seq2seq) models augmented with attention mechanisms are playing an increasingly important role in automated customer service. These models, which are able to recognize complex relationships between input and output sequences, are crucial for optimizing chatbot responses. Central to these mechanisms are neural attention weights that determine the focus of the model during sequence generation. Despite their widespread use, there remains a gap in the comparative analysis of different attention weighting functions within seq2seq models, particularly in the domain of chatbots using the Customer Support Twitter (CST) dataset. This study addresses this gap by evaluating four distinct attention-scoring functions—dot, multiplicative/general, additive, and an extended multiplicative function with a tanh activation parameter — in neural generative seq2seq models. Utilizing the CST dataset, these models were trained and evaluated over 10 epochs with the AdamW optimizer. Evaluation criteria included validation loss and BLEU scores implemented under both greedy and beam search strategies with a beam size of k=3. Results indicate that the model with the tanh-augmented multiplicative function significantly outperforms its counterparts, achieving the lowest validation loss (1.136484) and the highest BLEU scores (0.438926 under greedy search, 0.443000 under beam search, k=3). These results emphasize the crucial influence of selecting an appropriate attention-scoring function in improving the performance of seq2seq models for chatbots. Particularly, the model that integrates tanh activation proves to be a promising approach to improve the quality of chatbots in the customer support context.

Keywords: attention weight, chatbot, encoder-decoder, neural generative attention, score function, sequence-to-sequence

Procedia PDF Downloads 79
26354 Evolving Credit Scoring Models using Genetic Programming and Language Integrated Query Expression Trees

Authors: Alexandru-Ion Marinescu

Abstract:

There exist a plethora of methods in the scientific literature which tackle the well-established task of credit score evaluation. In its most abstract form, a credit scoring algorithm takes as input several credit applicant properties, such as age, marital status, employment status, loan duration, etc. and must output a binary response variable (i.e. “GOOD” or “BAD”) stating whether the client is susceptible to payment return delays. Data imbalance is a common occurrence among financial institution databases, with the majority being classified as “GOOD” clients (clients that respect the loan return calendar) alongside a small percentage of “BAD” clients. But it is the “BAD” clients we are interested in since accurately predicting their behavior is crucial in preventing unwanted loss for loan providers. We add to this whole context the constraint that the algorithm must yield an actual, tractable mathematical formula, which is friendlier towards financial analysts. To this end, we have turned to genetic algorithms and genetic programming, aiming to evolve actual mathematical expressions using specially tailored mutation and crossover operators. As far as data representation is concerned, we employ a very flexible mechanism – LINQ expression trees, readily available in the C# programming language, enabling us to construct executable pieces of code at runtime. As the title implies, they model trees, with intermediate nodes being operators (addition, subtraction, multiplication, division) or mathematical functions (sin, cos, abs, round, etc.) and leaf nodes storing either constants or variables. There is a one-to-one correspondence between the client properties and the formula variables. The mutation and crossover operators work on a flattened version of the tree, obtained via a pre-order traversal. A consequence of our chosen technique is that we can identify and discard client properties which do not take part in the final score evaluation, effectively acting as a dimensionality reduction scheme. We compare ourselves with state of the art approaches, such as support vector machines, Bayesian networks, and extreme learning machines, to name a few. The data sets we benchmark against amount to a total of 8, of which we mention the well-known Australian credit and German credit data sets, and the performance indicators are the following: percentage correctly classified, area under curve, partial Gini index, H-measure, Brier score and Kolmogorov-Smirnov statistic, respectively. Finally, we obtain encouraging results, which, although placing us in the lower half of the hierarchy, drive us to further refine the algorithm.

Keywords: expression trees, financial credit scoring, genetic algorithm, genetic programming, symbolic evolution

Procedia PDF Downloads 122