Search results for: cumulative exposure model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18763

Search results for: cumulative exposure model

17323 Application of Low Frequency Ac Magnetic Field for Controlled Delivery of Drugs by Magnetic Nanoparticles

Authors: K. Yu Vlasova, M. A. Abakumov, H. Wishwarsao, M. Sokolsky, N. V. Nukolova, A. G. Majouga, Y. I. Golovin, N. L. Klyachko, A. V. Kabanov

Abstract:

Introduction:Nowadays pharmaceutical medicine is aimed to create systems for combined therapy, diagnostic, drug delivery and controlled release of active molecules to target cells. Magnetic nanoparticles (MNPs) are used to achieve this aim. MNPs can be applied in molecular diagnostics, magnetic resonance imaging (T1/T2 contrast agents), drug delivery, hyperthermia and could improve therapeutic effect of drugs. The most common drug containers, containing MNPs, are liposomes, micelles and polymeric molecules bonded to the MNPs surface. Usually superparamagnetic nanoparticles are used (the general diameter is about 5-6 nm) and all effects of high frequency magnetic field (MF) application are based on Neel relaxation resulting in heating of surrounded media. In this work we try to develop a new method to improve drug release from MNPs under super low frequency MF. We suppose that under low frequency MF exposures the Brown’s relaxation dominates and MNPs rotation could occur leading to conformation changes and release of bioactive molecules immobilized on MNPs surface.The aim of this work was to synthesize different systems with active drug (biopolymers coated MNPs nanoclusters with immobilized enzymes and doxorubicin (Dox) loaded magnetic liposomes/micelles) and investigate the effect of super low frequency MF on these drug containers. Methods: We have synthesized MNPs of magnetite with magnetic core diameter 7-12 nm . The MNPs were coated with block-copolymer of polylysine and polyethylene glycol. Superoxide dismutase 1 (SOD1) was electrostatically adsorbed on the surface of the clusters. Liposomes were prepared as follow: MNPs, phosphatidylcholine and cholesterol were dispersed in chloroform, dried to get film and then dispersed in distillated water, sonicated. Dox was added to the solution, pH was adjusted to 7.4 and excess of drug was removed by centrifugation through 3 kDa filters. Results: Polylysine coated MNPs formed nanosized clusters (as observed by TEM) with intensity average diameter of 112±5 nm and zeta potential 12±3 mV. After low frequency AC MF exposure we observed change of immobilized enzyme activity and hydrodynamic size of clusters. We suppose that the biomolecules (enzymes) are released from the MNPs surface followed with additional aggregation of complexes at the MF in medium. Centrifugation of the nanosuspension after AC MF exposures resulted in increase of positive charge of clusters and change in enzyme concentration in comparison with control sample without MF, thus confirming desorption of negatively charged enzyme from the positively charged surface of MNPs. Dox loaded magnetic liposomes had average diameter of 160±8 nm and polydispersity index (PDI) 0.25±0.07. Liposomes were stable in DW and PBS at pH=7.4 at 370C during a week. After MF application (10 min of exposure, 50 Hz, 230 mT) diameter of liposomes raised to 190±10 nm and PDI was 0.38±0.05. We explain this by destroying and/or reorganization of lipid bilayer, that leads to changes in release of drug in comparison with control without MF exposure. Conclusion: A new application of low frequency AC MF for drug delivery and controlled drug release was shown. Investigation was supported by RSF-14-13-00731 grant, K1-2014-022 grant.

Keywords: magnetic nanoparticles, low frequency magnetic field, drug delivery, controlled drug release

Procedia PDF Downloads 482
17322 A Research Agenda for Learner Models for Adaptive Educational Digital Learning Environments

Authors: Felix Böck

Abstract:

Nowadays, data about learners and their digital activities are collected, which could help educational institutions to better understand learning processes, improve them and be able to provide better learning assistance. In this research project, custom knowledge- and data-driven recommendation algorithms will be used to offer students in higher education integrated learning assistance. The pre-requisite for this is a learner model that is as comprehensive as possible, which should first be created and then kept up-to-date largely automatically for being able to individualize and personalize the learning experience. In order to create such a learner model, a roadmap is presented that describes the individual phases up to the creation and evaluation of the finished model. The methodological process for the research project is disclosed, and the research question of how learners can be supported in their learning with personalized, customized learning recommendations is explored.

Keywords: research agenda, user model, learner model, higher education, adaptive educational digital learning environments, personalized learning paths, recommendation system, adaptation, personalization

Procedia PDF Downloads 17
17321 Derivation of Bathymetry from High-Resolution Satellite Images: Comparison of Empirical Methods through Geographical Error Analysis

Authors: Anusha P. Wijesundara, Dulap I. Rathnayake, Nihal D. Perera

Abstract:

Bathymetric information is fundamental importance to coastal and marine planning and management, nautical navigation, and scientific studies of marine environments. Satellite-derived bathymetry data provide detailed information in areas where conventional sounding data is lacking and conventional surveys are inaccessible. The two empirical approaches of log-linear bathymetric inversion model and non-linear bathymetric inversion model are applied for deriving bathymetry from high-resolution multispectral satellite imagery. This study compares these two approaches by means of geographical error analysis for the site Kankesanturai using WorldView-2 satellite imagery. Based on the Levenberg-Marquardt method calibrated the parameters of non-linear inversion model and the multiple-linear regression model was applied to calibrate the log-linear inversion model. In order to calibrate both models, Single Beam Echo Sounding (SBES) data in this study area were used as reference points. Residuals were calculated as the difference between the derived depth values and the validation echo sounder bathymetry data and the geographical distribution of model residuals was mapped. The spatial autocorrelation was calculated by comparing the performance of the bathymetric models and the results showing the geographic errors for both models. A spatial error model was constructed from the initial bathymetry estimates and the estimates of autocorrelation. This spatial error model is used to generate more reliable estimates of bathymetry by quantifying autocorrelation of model error and incorporating this into an improved regression model. Log-linear model (R²=0.846) performs better than the non- linear model (R²=0.692). Finally, the spatial error models improved bathymetric estimates derived from linear and non-linear models up to R²=0.854 and R²=0.704 respectively. The Root Mean Square Error (RMSE) was calculated for all reference points in various depth ranges. The magnitude of the prediction error increases with depth for both the log-linear and the non-linear inversion models. Overall RMSE for log-linear and the non-linear inversion models were ±1.532 m and ±2.089 m, respectively.

Keywords: log-linear model, multi spectral, residuals, spatial error model

Procedia PDF Downloads 297
17320 New Employee on-Boarding Program: Effective Tool for Reducing the Prevalence of Workplace Injuries/Accidents

Authors: U. Ugochukwu, J. Lee, P. Conley

Abstract:

According to a recent survey by the UT Southwestern Workplace Safety Committee, the three most common on-the-job injuries reported by workers at the medical center are musculoskeletal injuries, slip-and-fall injuries and repetitive motion injuries. Last year alone, of the 650 documented workplace injuries and accidents, 45% were seen in employees in their first-two years of employment. UT Southwestern New Employee On-Boarding program was created and modeled to follows OSHA’s model that consist of: determining if training is needed, identifying training needs, identifying goals and objectives, developing learning activities, conducting the training, evaluating program effectiveness, and improving the program. The hospital’s management best practices were recreated to limit and control workplace injuries and accidents. Regular trainings and workshops on workplace safety and compliance were initiated for new employees. Various computer workstations were evaluated and recommendations were made to reduce musculoskeletal disorders. Post exposure protocols and workers protection programs were remodeled for infectious agents and chemicals used in the hospital, and medical surveillance programs were updated, for every emerging threat, to ensure they are in compliance with the US policy, regulatory and standard setting organizations. If ignorance of specific job hazards and of proper work practices is to blame for this higher injury rate, then training will help to provide a solution. Use of this program in training activities is just one of many ways UT Southwestern complied with the OSHA standards that relate to training while enhancing the safety and health of their employees.

Keywords: ergonomics, hazard, on-boarding, surveillance, workplace

Procedia PDF Downloads 330
17319 Synthesis and Thermoluminescence Investigations of Doped LiF Nanophosphor

Authors: Pooja Seth, Shruti Aggarwal

Abstract:

Thermoluminescence dosimetry (TLD) is one of the most effective methods for the assessment of dose during diagnostic radiology and radiotherapy applications. In these applications monitoring of absorbed dose is essential to prevent patient from undue exposure and to evaluate the risks that may arise due to exposure. LiF based thermoluminescence (TL) dosimeters are promising materials for the estimation, calibration and monitoring of dose due to their favourable dosimetric characteristics like tissue-equivalence, high sensitivity, energy independence and dose linearity. As the TL efficiency of a phosphor strongly depends on the preparation route, it is interesting to investigate the TL properties of LiF based phosphor in nanocrystalline form. LiF doped with magnesium (Mg), copper (Cu), sodium (Na) and silicon (Si) in nanocrystalline form has been prepared using chemical co-precipitation method. Cubical shape LiF nanostructures are formed. TL dosimetry properties have been investigated by exposing it to gamma rays. TL glow curve structure of nanocrystalline form consists of a single peak at 419 K as compared to the multiple peaks observed in microcrystalline form. A consistent glow curve structure with maximum TL intensity at annealing temperature of 573 K and linear dose response from 0.1 to 1000 Gy is observed which is advantageous for radiotherapy application. Good reusability, low fading (5 % over a month) and negligible residual signal (0.0019%) are observed. As per photoluminescence measurements, wide emission band at 360 nm - 550 nm is observed in an undoped LiF. However, an intense peak at 488 nm is observed in doped LiF nanophosphor. The phosphor also exhibits the intense optically stimulated luminescence. Nanocrystalline LiF: Mg, Cu, Na, Si phosphor prepared by co-precipitation method showed simple glow curve structure, linear dose response, reproducibility, negligible residual signal, good thermal stability and low fading. The LiF: Mg, Cu, Na, Si phosphor in nanocrystalline form has tremendous potential in diagnostic radiology, radiotherapy and high energy radiation application.

Keywords: thermoluminescence, nanophosphor, optically stimulated luminescence, co-precipitation method

Procedia PDF Downloads 404
17318 A Low Order Thermal Envelope Model for Heat Transfer Characteristics of Low-Rise Residential Buildings

Authors: Nadish Anand, Richard D. Gould

Abstract:

A simplistic model is introduced for determining the thermal characteristics of a Low-rise Residential (LRR) building and then predicts the energy usage by its Heating Ventilation & Air Conditioning (HVAC) system according to changes in weather conditions which are reflected in the Ambient Temperature (Outside Air Temperature). The LRR buildings are treated as a simple lump for solving the heat transfer problem and the model is derived using the lumped capacitance model of transient conduction heat transfer from bodies. Since most contemporary HVAC systems have a thermostat control which will have an offset temperature and user defined set point temperatures which define when the HVAC system will switch on and off. The aim is to predict without any error the Body Temperature (i.e. the Inside Air Temperature) which will estimate the switching on and off of the HVAC system. To validate the mathematical model derived from lumped capacitance we have used EnergyPlus simulation engine, which simulates Buildings with considerable accuracy. We have predicted through the low order model the Inside Air Temperature of a single house kept in three different climate zones (Detroit, Raleigh & Austin) and different orientations for summer and winter seasons. The prediction error from the model for the same day as that of model parameter calculation has showed an error of < 10% in winter for almost all the orientations and climate zones. Whereas the prediction error is only <10% for all the orientations in the summer season for climate zone at higher latitudes (Raleigh & Detroit). Possible factors responsible for the large variations are also noted in the work, paving way for future research.

Keywords: building energy, energy consumption, energy+, HVAC, low order model, lumped capacitance

Procedia PDF Downloads 266
17317 Acoustic Modeling of a Data Center with a Hot Aisle Containment System

Authors: Arshad Alfoqaha, Seth Bard, Dustin Demetriou

Abstract:

A new multi-physics acoustic modeling approach using ANSYS Mechanical FEA and FLUENT CFD methods is developed for modeling servers mounted to racks, such as IBM Z and IBM Power Systems, in data centers. This new approach allows users to determine the thermal and acoustic conditions that people are exposed to within the data center. The sound pressure level (SPL) exposure for a human working inside a hot aisle containment system inside the data center is studied. The SPL is analyzed at the noise source, at the human body, on the rack walls, on the containment walls, and on the ceiling and flooring plenum walls. In the acoustic CFD simulation, it is assumed that a four-inch diameter sphere with monopole acoustic radiation, placed in the middle of each rack, provides a single-source representation of all noise sources within the rack. Ffowcs Williams & Hawkings (FWH) acoustic model is employed. The target frequency is 1000 Hz, and the total simulation time for the transient analysis is 1.4 seconds, with a very small time step of 3e-5 seconds and 10 iterations to ensure convergence and accuracy. A User Defined Function (UDF) is developed to accurately simulate the acoustic noise source, and a Dynamic Mesh is applied to ensure acoustic wave propagation. Initial validation of the acoustic CFD simulation using a closed-form solution for the spherical propagation of an acoustic point source is performed.

Keywords: data centers, FLUENT, acoustics, sound pressure level, SPL, hot aisle containment, IBM

Procedia PDF Downloads 176
17316 Design, Analysis and Simulation of a Lightweight Fire-Resistant Door

Authors: Zainab Fadhil Al Toki, Nader Ghareeb

Abstract:

This study investigates how lightweight a fire resistance door will perform with under types of insulation materials. Data is initially collected from various websites, scientific books and research papers. Results show that different layers of insulation in a single door can perform better than one insulator. Furthermore, insulation materials that are lightweight, high strength and low thermal conductivity are the most preferred for fire-rated doors. Whereas heavy weight, low strength, and high thermal conductivity are least preferred for fire resistance doors. Fire-rated door specifications, theoretical test methodology, structural analysis, and comparison between five different models with diverse layers insulations are presented. Five different door models are being investigated with different insulation materials and arrangements. Model 1 contains an air gap between door layers. Model 2 includes phenolic foam, mild steel and polyurethane. Model 3 includes phenolic foam and glass wool. Model 4 includes polyurethane and glass wool. Model 5 includes only rock wool between the door layers. It is noticed that model 5 is the most efficient model, and its design is simple compared to other models. For this model, numerical calculations are performed to check its efficiency and the results are compared to data from experiments for validation. Good agreement was noticed.

Keywords: fire resistance, insulation, strength, thermal conductivity, lightweight, layers

Procedia PDF Downloads 51
17315 Value Co-Creation Model for Relationships Management

Authors: Kolesnik Nadezda A.

Abstract:

The research aims to elaborate inter-organizational network relationships management model to maximize value co-creation. We propose a network management framework that requires evaluation of network partners with respect to their position and role in network; and elaboration of appropriate relationship development strategy with partners in network. Empirical research and approval is based on the case study method, including structured in-depth interviews with the companies from b2b market.

Keywords: inter-organizational networks, value co-creation, model, B2B market

Procedia PDF Downloads 456
17314 Effect of Media Reputation on Financial Performance and Abnormal Returns of Corporate Social Responsibility Winner

Authors: Yu-Chen Wei, Dan-Leng Wang

Abstract:

This study examines whether the reputation from media press affect the financial performance and market abnormal returns around the announcement of corporate social responsibility (CSR) award in the Taiwan Stock Market. The differences between this study and prior literatures are that the media reputation of media coverage and net optimism are constructed by using content analyses. The empirical results show the corporation which won CSR awards could promote financial performance next year. The media coverage and net optimism related to CSR winner are higher than the non-CSR companies prior and after the CSR award is announced, and the differences are significant, but the difference would decrease when the day was closing to announcement. We propose that non-CSR companies may try to manipulate media press to increase the coverage and positive image received by investors compared to the CSR winners. The cumulative real returns and abnormal returns of CSR winners did not significantly higher than the non-CSR samples however the leading returns of CSR winners would higher after the award announcement two months. The comparisons of performances between CSR and non-CSR companies could be the consideration of portfolio management for mutual funds and investors.

Keywords: corporate social responsibility, financial performance, abnormal returns, media, reputation management

Procedia PDF Downloads 434
17313 The Use of Stochastic Gradient Boosting Method for Multi-Model Combination of Rainfall-Runoff Models

Authors: Phanida Phukoetphim, Asaad Y. Shamseldin

Abstract:

In this study, the novel Stochastic Gradient Boosting (SGB) combination method is addressed for producing daily river flows from four different rain-runoff models of Ohinemuri catchment, New Zealand. The selected rainfall-runoff models are two empirical black-box models: linear perturbation model and linear varying gain factor model, two conceptual models: soil moisture accounting and routing model and Nedbør-Afrstrømnings model. In this study, the simple average combination method and the weighted average combination method were used as a benchmark for comparing the results of the novel SGB combination method. The models and combination results are evaluated using statistical and graphical criteria. Overall results of this study show that the use of combination technique can certainly improve the simulated river flows of four selected models for Ohinemuri catchment, New Zealand. The results also indicate that the novel SGB combination method is capable of accurate prediction when used in a combination method of the simulated river flows in New Zealand.

Keywords: multi-model combination, rainfall-runoff modeling, stochastic gradient boosting, bioinformatics

Procedia PDF Downloads 339
17312 A Data-Driven Agent Based Model for the Italian Economy

Authors: Michele Catalano, Jacopo Di Domenico, Luca Riccetti, Andrea Teglio

Abstract:

We develop a data-driven agent based model (ABM) for the Italian economy. We calibrate the model for the initial condition and parameters. As a preliminary step, we replicate the Monte-Carlo simulation for the Austrian economy. Then, we evaluate the dynamic properties of the model: the long-run equilibrium and the allocative efficiency in terms of disequilibrium patterns arising in the search and matching process for final goods, capital, intermediate goods, and credit markets. In this perspective, we use a randomized initial condition approach. We perform a robustness analysis perturbing the system for different parameter setups. We explore the empirical properties of the model using a rolling window forecast exercise from 2010 to 2022 to observe the model’s forecasting ability in the wake of the COVID-19 pandemic. We perform an analysis of the properties of the model with a different number of agents, that is, with different scales of the model compared to the real economy. The model generally displays transient dynamics that properly fit macroeconomic data regarding forecasting ability. We stress the model with a large set of shocks, namely interest policy, fiscal policy, and exogenous factors, such as external foreign demand for export. In this way, we can explore the most exposed sectors of the economy. Finally, we modify the technology mix of the various sectors and, consequently, the underlying input-output sectoral interdependence to stress the economy and observe the long-run projections. In this way, we can include in the model the generation of endogenous crisis due to the implied structural change, technological unemployment, and potential lack of aggregate demand creating the condition for cyclical endogenous crises reproduced in this artificial economy.

Keywords: agent-based models, behavioral macro, macroeconomic forecasting, micro data

Procedia PDF Downloads 69
17311 Frequency of Gastrointestinal Manifestations in Systemic Sclerosis and Impact of Rituximab Treatment

Authors: Liudmila Garzanova, Lidia Ananyeva, Olga Koneva, Olga Ovsyannikova, Oxana Desinova, Mayya Starovoytova, Rushana Shayahmetova

Abstract:

Objectives. Gastrointestinal involvement is one of the most common manifestations of systemic sclerosis (SSc). The aim of our study was to assess the frequency of gastrointestinal manifestations in SSc patients (pts) with interstitial lung disease (ILD) and their changes to rituximab (RTX) therapy. Methods. There were 103 pts with SSc in this study. The mean follow-up period was 12.6±10.7 months. The mean age was 47±12.9 years, females - 87 pts (84%), and the diffuse cutaneous subset of the disease 55 pts (53%). The mean disease duration was 6.2±5.5 years. All pts had ILD and were positive for ANA. 67% of them were positive for anti-topoisomerase-1. All patients received prednisolone at a dose of 11.3±4.5 mg/day, and immunosuppressants at inclusion received 47% of them. Pts received RTX due to the ineffectiveness of previous therapy for ILD. The cumulative mean dose of RTX was 1.7±0.6 grams. 90% of pts received omeprazole at a dose of 20-40 mg/day. Results. At inclusion, dysphagia was observed in 76 pts (74%), early satiety or vomiting in 32 pts (31%), and diarrhea in 20 pts (19%). We didn't observe any changes in gastrointestinal manifestation during RTX therapy. There was a decrease in the number of pts with dysphagia from 76 (74%) to 66 (64%), but it was insignificant. The number of pts with early satiety or vomiting and diarrhea didn't change. Conclusion. In our study, gastrointestinal involvement was observed in most of the pts with SSc-ILD. We didn't find any significant changes in gastrointestinal manifestations during RTX therapy. RXT does not worsen gastrointestinal manifestations in SSc-ILD.

Keywords: systemic sclerosis, dysphagia, rituximab, gastrointestinal manifestations

Procedia PDF Downloads 82
17310 Active Power Control of PEM Fuel Cell System Power Generation Using Adaptive Neuro-Fuzzy Controller

Authors: Khaled Mammar

Abstract:

This paper presents an application of adaptive neuro-fuzzy controller for PEM fuel cell system. The model proposed for control include a fuel cell stack model, reformer model and DC/AC inverter model. Furthermore, a Fuzzy Logic (FLC) and adaptive neuro-fuzzy controllers are used to control the active power of PEM fuel cell system. The controllers modify the hydrogen flow feedback from the terminal load. The validity of the controller is verified when the fuel cell system model is used in conjunction with the ANFIS controller to predict the response of the active power. Simulation results confirmed the high-performance capability of the neuo-fuzzy to control power generation.

Keywords: fuel cell, PEMFC, modeling, simulation, Fuzzy Logic Controller, FLC, adaptive neuro-fuzzy controller, ANFIS

Procedia PDF Downloads 459
17309 Population Pharmacokinetics of Levofloxacin and Moxifloxacin, and the Probability of Target Attainment in Ethiopian Patients with Multi-Drug Resistant Tuberculosis

Authors: Temesgen Sidamo, Prakruti S. Rao, Eleni Akllilu, Workineh Shibeshi, Yumi Park, Yong-Soon Cho, Jae-Gook Shin, Scott K. Heysell, Stellah G. Mpagama, Ephrem Engidawork

Abstract:

The fluoroquinolones (FQs) are used off-label for the treatment of multidrug-resistant tuberculosis (MDR-TB), and for evaluation in shortening the duration of drug-susceptible TB in recently prioritized regimens. Within the class, levofloxacin (LFX) and moxifloxacin (MXF) play a substantial role in ensuring success in treatment outcomes. However, sub-therapeutic plasma concentrations of either LFX or MXF may drive unfavorable treatment outcomes. To the best of our knowledge, the pharmacokinetics of LFX and MXF in Ethiopian patients with MDR-TB have not yet been investigated. Therefore, the aim of this study was to develop a population pharmacokinetic (PopPK) model of levofloxacin (LFX) and moxifloxacin (MXF) and assess the percent probability of target attainment (PTA) as defined by the ratio of the area under the plasma concentration-time curve over 24-h (AUC0-24) and the in vitro minimum inhibitory concentration (MIC) (AUC0-24/MIC) in Ethiopian MDR-TB patients. Steady-state plasma was collected from 39 MDR-TB patients enrolled in the programmatic treatment course and the drug concentrations were determined using optimized liquid chromatography-tandem mass spectrometry. In addition, the in vitro MIC of the patients' pretreatment clinical isolates was determined. PopPK and simulations were run at various doses, and PK parameters were estimated. The effect of covariates on the PK parameters and the PTA for maximum mycobacterial kill and resistance prevention was also investigated. LFX and MXF both fit in a one-compartment model with adjustments. The apparent volume of distribution (V) and clearance (CL) of LFX were influenced by serum creatinine (Scr), whereas the absorption constant (Ka) and V of MXF were influenced by Scr and BMI, respectively. The PTA for LFX maximal mycobacterial kill at the critical MIC of 0.5 mg/L was 29%, 62%, and 95% with the simulated 750 mg, 1000 mg, and 1500 mg doses, respectively, whereas the PTA for resistance prevention at 1500 mg was only 4.8%, with none of the lower doses achieving this target. At the critical MIC of 0.25 mg/L, there was no difference in the PTA (94.4%) for maximum bacterial kill among the simulated doses of MXF (600 mg, 800 mg, and 1000 mg), but the PTA for resistance prevention improved proportionately with dose. Standard LFX and MXF doses may not provide adequate drug exposure. LFX PopPK is more predictable for maximum mycobacterial kill, whereas MXF's resistance prevention target increases with dose. Scr and BMI are likely to be important covariates in dose optimization or therapeutic drug monitoring (TDM) studies in Ethiopian patients.

Keywords: population PK, PTA, moxifloxacin, levofloxacin, MDR-TB patients, ethiopia

Procedia PDF Downloads 120
17308 Numerical Investigation of Wastewater ‎Rheological Characteristics on Flow Field ‎Inside a Sewage Network

Authors: Seyed-Mohammad-Kazem Emami, Behrang Saki, Majid Mohammadian

Abstract:

The wastewater flow field inside a sewage network including pipe and ‎manhole was investigated using a Computational Fluid Dynamics ‎‎(CFD) model. The numerical model is developed by incorporating a ‎rheological model to calculate the viscosity of wastewater fluid by ‎means of open source toolbox OpenFOAM. The rheological ‎properties of prepared wastewater fluid suspensions are first measured ‎using a BrookField LVDVII Pro+ viscometer with an enhanced UL ‎adapter and then correlated the suitable rheological viscosity model ‎values from the measured rheological properties. The results show the ‎significant effects of rheological characteristics of wastewater fluid on ‎the flow domain of sewer system. Results were compared and ‎discussed with the commonly used Newtonian model to evaluate the ‎differences for velocity profile, pressure and shear stress. ‎

Keywords: Non-Newtonian flows, Wastewater, Numerical simulation, Rheology, Sewage Network

Procedia PDF Downloads 131
17307 Effects of the Air Supply Outlets Geometry on Human Comfort inside Living Rooms: CFD vs. ADPI

Authors: Taher M. Abou-deif, Esmail M. El-Bialy, Essam E. Khalil

Abstract:

The paper is devoted to numerically investigating the influence of the air supply outlets geometry on human comfort inside living looms. A computational fluid dynamics model is developed to examine the air flow characteristics of a room with different supply air diffusers. The work focuses on air flow patterns, thermal behavior in the room with few number of occupants. As an input to the full-scale 3-D room model, a 2-D air supply diffuser model that supplies direction and magnitude of air flow into the room is developed. Air distribution effect on thermal comfort parameters was investigated depending on changing the air supply diffusers type, angles and velocity. Air supply diffusers locations and numbers were also investigated. The pre-processor Gambit is used to create the geometric model with parametric features. Commercially available simulation software “Fluent 6.3” is incorporated to solve the differential equations governing the conservation of mass, three momentum and energy in the processing of air flow distribution. Turbulence effects of the flow are represented by the well-developed two equation turbulence model. In this work, the so-called standard k-ε turbulence model, one of the most widespread turbulence models for industrial applications, was utilized. Basic parameters included in this work are air dry bulb temperature, air velocity, relative humidity and turbulence parameters are used for numerical predictions of indoor air distribution and thermal comfort. The thermal comfort predictions through this work were based on ADPI (Air Diffusion Performance Index),the PMV (Predicted Mean Vote) model and the PPD (Percentage People Dissatisfied) model, the PMV and PPD were estimated using Fanger’s model.

Keywords: thermal comfort, Fanger's model, ADPI, energy effeciency

Procedia PDF Downloads 410
17306 Modelling of Pervaporation Separation of Butanol from Aqueous Solutions Using Polydimethylsiloxane Mixed Matrix Membranes

Authors: Arian Ebneyamini, Hoda Azimi, Jules Thibaults, F. Handan Tezel

Abstract:

In this study, a modification of Hennepe model for pervaporation separation of butanol from aqueous solutions using Polydimethylsiloxane (PDMS) mixed matrix membranes has been introduced and validated by experimental data. The model was compared to the original Hennepe model and few other models which are applicable for membrane gas separation processes such as Maxwell, Lewis Nielson and Pal. Theoretical modifications for non-ideal interface morphology have been offered to predict the permeability in case of interface void, interface rigidification and pore-blockage. The model was in a good agreement with experimental data.

Keywords: butanol, PDMS, modeling, pervaporation, mixed matrix membranes

Procedia PDF Downloads 221
17305 Estimation of the Pore Electrical Conductivity Using Dielectric Sensors

Authors: Fethi Bouksila, Magnus Persson, Ronny Berndtsson, Akissa Bahri

Abstract:

Under salinity conditions, we evaluate the performance of Hilhost (2000) model to predict pore electrical conductivity ECp from dielectric permittivity and bulk electrical conductivity (ECa) using Time and Frequency Domain Reflectometry sensors (TDR, FDR). Using FDR_WET sensor, RMSE of ECp was 4.15 dS m-1. By replacing the standard soil parameter (K0) in Hilhost model by K0-ECa relationship, the RMSE of ECp decreased to 0.68 dS m-1. WET sensor could give similar accuracy to estimate ECp than TDR if calibrated values of K0 were used instead of standard values in Hilhost model.

Keywords: hilhost model, soil salinity, time domain reflectometry, frequency domain reflectometry, dielectric methods

Procedia PDF Downloads 135
17304 Data Model to Predict Customize Skin Care Product Using Biosensor

Authors: Ashi Gautam, Isha Shukla, Akhil Seghal

Abstract:

Biosensors are analytical devices that use a biological sensing element to detect and measure a specific chemical substance or biomolecule in a sample. These devices are widely used in various fields, including medical diagnostics, environmental monitoring, and food analysis, due to their high specificity, sensitivity, and selectivity. In this research paper, a machine learning model is proposed for predicting the suitability of skin care products based on biosensor readings. The proposed model takes in features extracted from biosensor readings, such as biomarker concentration, skin hydration level, inflammation presence, sensitivity, and free radicals, and outputs the most appropriate skin care product for an individual. This model is trained on a dataset of biosensor readings and corresponding skin care product information. The model's performance is evaluated using several metrics, including accuracy, precision, recall, and F1 score. The aim of this research is to develop a personalised skin care product recommendation system using biosensor data. By leveraging the power of machine learning, the proposed model can accurately predict the most suitable skin care product for an individual based on their biosensor readings. This is particularly useful in the skin care industry, where personalised recommendations can lead to better outcomes for consumers. The developed model is based on supervised learning, which means that it is trained on a labeled dataset of biosensor readings and corresponding skin care product information. The model uses these labeled data to learn patterns and relationships between the biosensor readings and skin care products. Once trained, the model can predict the most suitable skin care product for an individual based on their biosensor readings. The results of this study show that the proposed machine learning model can accurately predict the most appropriate skin care product for an individual based on their biosensor readings. The evaluation metrics used in this study demonstrate the effectiveness of the model in predicting skin care products. This model has significant potential for practical use in the skin care industry for personalised skin care product recommendations. The proposed machine learning model for predicting the suitability of skin care products based on biosensor readings is a promising development in the skin care industry. The model's ability to accurately predict the most appropriate skin care product for an individual based on their biosensor readings can lead to better outcomes for consumers. Further research can be done to improve the model's accuracy and effectiveness.

Keywords: biosensors, data model, machine learning, skin care

Procedia PDF Downloads 97
17303 An Equivalent Circuit Model Approach for Battery Pack Simulation in a Hybrid Electric Vehicle System Powertrain

Authors: Suchitra Sivakumar, Hajime Shingyouchi, Toshinori Okajima, Kyohei Yamaguchi, Jin Kusaka

Abstract:

The progressing need for powertrain electrification calls for more accurate and reliable simulation models. A battery pack serves as the most vital component for energy storage in an electrified powertrain. Hybrid electric vehicles (HEV) do not behave the same way as they age, and there are several environmental factors that account for the degradation of the battery on a system level. Therefore, in this work, a battery model was proposed to study the state of charge (SOC) variation and the internal dynamic changes that contribute to aging and performance degradation in HEV batteries. An equivalent circuit battery model (ECM) is built using MATLAB Simulink to investigate the output characteristics of the lithium-ion battery. The ECM comprises of circuit elements like a voltage source, a series resistor and a parallel RC network connected in series. A parameter estimation study is conducted on the ECM to study the dependencies of the circuit elements with the state of charge (SOC) and the terminal voltage of the battery. The battery model is extended to simulate the temperature dependence of the individual battery cell and the battery pack with the environment. The temperature dependence model accounts for the heat loss due to internal resistance build up in the battery pack during charging, discharging, and due to atmospheric temperature. The model was validated for a lithium-ion battery pack with an independent drive cycle showing a voltage accuracy of 4% and SOC accuracy of about 2%.

Keywords: battery model, hybrid electric vehicle, lithium-ion battery, thermal model

Procedia PDF Downloads 298
17302 4P-Model of Information Terrorism

Authors: Nataliya Venelinova

Abstract:

The paper proposes a new interdisciplinary model of reconsidering the role of mass communication effects by coverage of terrorism. The idea of 4P model is based on the synergy, created by the information strategy of threat, predominantly used by terrorist groups, the effects of mediating the symbolic action of the terrorist attacks or the taking of responsibility of any attacks, and the reshaped public perception for security after the attacks being mass communicated. The paper defines the mass communication cycle of terrorism, which leads not only to re-agenda setting of the societies, but also spirally amplifying the effect of propagating fears by over-informing on terrorism attacks. This finally results in the outlining of the so called 4P-model of information terrorism: mass propaganda, panic, paranoia and pandemic.

Keywords: information terrorism, mass communication cycle, public perception, security

Procedia PDF Downloads 173
17301 On Disaggregation and Consolidation of Imperfect Quality Shipments in an Extended EPQ Model

Authors: Hung-Chi Chang

Abstract:

For an extended EPQ model with random yield, the existent study revealed that both the disaggregating and consolidating shipment policies for the imperfect quality items are independent of holding cost, and recommended a model with economic benefit by comparing the least total cost for each of the three models investigated. To better capture the real situation, we generalize the existent study to include different holding costs for perfect and imperfect quality items. Through analysis, we show that the above shipment policies are dependent on holding costs. Furthermore, we derive a simple decision rule solely based on the thresholds of problem parameters to select a superior model. The results are illustrated analytically and numerically.

Keywords: consolidating shipments, disaggregating shipments, EPQ, imperfect quality, inventory

Procedia PDF Downloads 376
17300 Comparative Study of Radiation Protection in a Hospital Environment

Authors: Lahoucine Zaama, Sanae Douama

Abstract:

In this work, we present the results of a dosimetry study in a Moroccan radiology department . The results are compared with those of a similar study in France. Furthermore, it determines the coefficient of transmission of the lead sheets of different thicknesses depending on the voltage (KV) in a direct exposure. The objective of this study is to choose the thickness of the radiation means to determine the leaf sample sealed with the smallest percentage value radiation transmission, and that in the context of optimization. Thus the comparison among the studies is essential to consider conduct studies and research in this framework to achieve the goal of optimization.

Keywords: radiology, dosimetry, radiation, dose, transmission

Procedia PDF Downloads 494
17299 Recurrent Wheezing and Associated Factors among 6-Year-Old Children in Adama Comprehensive Specialized Hospital Medical College

Authors: Samrawit Tamrat Gebretsadik

Abstract:

Recurrent wheezing is a common respiratory symptom among children, often indicative of underlying airway inflammation and hyperreactivity. Understanding the prevalence and associated factors of recurrent wheezing in specific age groups is crucial for targeted interventions and improved respiratory health outcomes. This study aimed to investigate the prevalence and associated factors of recurrent wheezing among 6-year-old children attending Adama Comprehensive Specialized Hospital Medical College in Ethiopia. A cross-sectional study design was employed, involving structured interviews with parents/guardians, medical records review, and clinical examination of children. Data on demographic characteristics, environmental exposures, family history of respiratory diseases, and socioeconomic status were collected. Logistic regression analysis was used to identify factors associated with recurrent wheezing. The study included X 6-year-old children, with a prevalence of recurrent wheezing found to be Y%. Environmental exposures, including tobacco smoke exposure (OR = Z, 95% CI: X-Y), indoor air pollution (OR = Z, 95% CI: X-Y), and presence of pets at home (OR = Z, 95% CI: X-Y), were identified as significant risk factors for recurrent wheezing. Additionally, a family history of asthma or allergies (OR = Z, 95% CI: X-Y) and low socioeconomic status (OR = Z, 95% CI: X-Y) were associated with an increased likelihood of recurrent wheezing. The impact of recurrent wheezing on the quality of life of affected children and their families was also assessed. Children with recurrent wheezing experienced a higher frequency of respiratory symptoms, increased healthcare utilization, and decreased physical activity compared to their non-wheezing counterparts. In conclusion, recurrent wheezing among 6-year-old children attending Adama Comprehensive Specialized Hospital Medical College is associated with various environmental, genetic, and socioeconomic factors. These findings underscore the importance of targeted interventions aimed at reducing exposure to known triggers and improving respiratory health outcomes in this population. Future research should focus on longitudinal studies to further elucidate the causal relationships between risk factors and recurrent wheezing and evaluate the effectiveness of preventive strategies.

Keywords: wheezing, inflammation, respiratory, crucial

Procedia PDF Downloads 53
17298 Composite Forecasts Accuracy for Automobile Sales in Thailand

Authors: Watchareeporn Chaimongkol

Abstract:

In this paper, we compare the statistical measures accuracy of composite forecasting model to estimate automobile customer demand in Thailand. A modified simple exponential smoothing and autoregressive integrate moving average (ARIMA) forecasting model is built to estimate customer demand of passenger cars, instead of using information of historical sales data. Our model takes into account special characteristic of the Thai automobile market such as sales promotion, advertising and publicity, petrol price, and interest rate for loan. We evaluate our forecasting model by comparing forecasts with actual data using six accuracy measurements, mean absolute percentage error (MAPE), geometric mean absolute error (GMAE), symmetric mean absolute percentage error (sMAPE), mean absolute scaled error (MASE), median relative absolute error (MdRAE), and geometric mean relative absolute error (GMRAE).

Keywords: composite forecasting, simple exponential smoothing model, autoregressive integrate moving average model selection, accuracy measurements

Procedia PDF Downloads 362
17297 Synthesis and Two-Photon Polymerization of a Cytocompatibility Tyramine Functionalized Hyaluronic Acid Hydrogel That Mimics the Chemical, Mechanical, and Structural Characteristics of Spinal Cord Tissue

Authors: James Britton, Vijaya Krishna, Manus Biggs, Abhay Pandit

Abstract:

Regeneration of the spinal cord after injury remains a great challenge due to the complexity of this organ. Inflammation and gliosis at the injury site hinder the outgrowth of axons and hence prevent synaptic reconnection and reinnervation. Hyaluronic acid (HA) is the main component of the spinal cord extracellular matrix and plays a vital role in cell proliferation and axonal guidance. In this study, we have synthesized and characterized a photo-cross-linkable HA-tyramine (tyr) hydrogel from a chemical, mechanical, electrical, biological and structural perspective. From our experimentation, we have found that HA-tyr can be synthesized with controllable degrees of tyramine substitution using click chemistry. The complex modulus (G*) of HA-tyr can be tuned to mimic the mechanical properties of the native spinal cord via optimization of the photo-initiator concentration and UV exposure. We have examined the degree of tyramine-tyramine covalent bonding (polymerization) as a function of UV exposure and photo-initiator use via Photo and Nuclear magnetic resonance spectroscopy. Both swelling and enzymatic degradation assays were conducted to examine the resilience of our 3D printed hydrogel constructs in-vitro. Using a femtosecond 780nm laser, the two-photon polymerization of HA-tyr hydrogel in the presence of riboflavin photoinitiator was optimized. A laser power of 50mW and scan speed of 30,000 μm/s produced high-resolution spatial patterning within the hydrogel with sustained mechanical integrity. Using dorsal root ganglion explants, the cytocompatibility of photo-crosslinked HA-tyr was assessed. Using potentiometry, the electrical conductivity of photo-crosslinked HA-tyr was assessed and compared to that of native spinal cord tissue as a function of frequency. In conclusion, we have developed a biocompatible hydrogel that can be used for photolithographic 3D printing to fabricate tissue engineered constructs for neural tissue regeneration applications.

Keywords: 3D printing, hyaluronic acid, photolithography, spinal cord injury

Procedia PDF Downloads 152
17296 Uncertainty of the Brazilian Earth System Model for Solar Radiation

Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Deivid Pires, Rafael Haag, Elton Gimenez Rossini

Abstract:

This study evaluated the uncertainties involved in the solar radiation projections generated by the Brazilian Earth System Model (BESM) of the Weather and Climate Prediction Center (CPTEC) belonging to Coupled Model Intercomparison Phase 5 (CMIP5), with the aim of identifying efficiency in the projections for solar radiation of said model and in this way establish the viability of its use. Two different scenarios elaborated by Intergovernmental Panel on Climate Change (IPCC) were evaluated: RCP 4.5 (with more optimistic contour conditions) and 8.5 (with more pessimistic initial conditions). The method used to verify the accuracy of the present model was the Nash coefficient and the Statistical bias, as it better represents these atmospheric patterns. The BESM showed a tendency to overestimate the data ​​of solar radiation projections in most regions of the state of Rio Grande do Sul and through the validation methods adopted by this study, BESM did not present a satisfactory accuracy.

Keywords: climate changes, projections, solar radiation, uncertainty

Procedia PDF Downloads 250
17295 Optimal Pressure Control and Burst Detection for Sustainable Water Management

Authors: G. K. Viswanadh, B. Rajasekhar, G. Venkata Ramana

Abstract:

Water distribution networks play a vital role in ensuring a reliable supply of clean water to urban areas. However, they face several challenges, including pressure control, pump speed optimization, and burst event detection. This paper combines insights from two studies to address these critical issues in Water distribution networks, focusing on the specific context of Kapra Municipality, India. The first part of this research concentrates on optimizing pressure control and pump speed in complex Water distribution networks. It utilizes the EPANET- MATLAB Toolkit to integrate EPANET functionalities into the MATLAB environment, offering a comprehensive approach to network analysis. By optimizing Pressure Reduce Valves (PRVs) and variable speed pumps (VSPs), this study achieves remarkable results. In the Benchmark Water Distribution System (WDS), the proposed PRV optimization algorithm reduces average leakage by 20.64%, surpassing the previous achievement of 16.07%. When applied to the South-Central and East zone WDS of Kapra Municipality, it identifies PRV locations that were previously missed by existing algorithms, resulting in average leakage reductions of 22.04% and 10.47%. These reductions translate to significant daily Water savings, enhancing Water supply reliability and reducing energy consumption. The second part of this research addresses the pressing issue of burst event detection and localization within the Water Distribution System. Burst events are a major contributor to Water losses and repair expenses. The study employs wireless sensor technology to monitor pressure and flow rate in real time, enabling the detection of pipeline abnormalities, particularly burst events. The methodology relies on transient analysis of pressure signals, utilizing Cumulative Sum and Wavelet analysis techniques to robustly identify burst occurrences. To enhance precision, burst event localization is achieved through meticulous analysis of time differentials in the arrival of negative pressure waveforms across distinct pressure sensing points, aided by nodal matrix analysis. To evaluate the effectiveness of this methodology, a PVC Water pipeline test bed is employed, demonstrating the algorithm's success in detecting pipeline burst events at flow rates of 2-3 l/s. Remarkably, the algorithm achieves a localization error of merely 3 meters, outperforming previously established algorithms. This research presents a significant advancement in efficient burst event detection and localization within Water pipelines, holding the potential to markedly curtail Water losses and the concomitant financial implications. In conclusion, this combined research addresses critical challenges in Water distribution networks, offering solutions for optimizing pressure control, pump speed, burst event detection, and localization. These findings contribute to the enhancement of Water Distribution System, resulting in improved Water supply reliability, reduced Water losses, and substantial cost savings. The integrated approach presented in this paper holds promise for municipalities and utilities seeking to improve the efficiency and sustainability of their Water distribution networks.

Keywords: pressure reduce valve, complex networks, variable speed pump, wavelet transform, burst detection, CUSUM (Cumulative Sum), water pipeline monitoring

Procedia PDF Downloads 87
17294 An Empirical Investigation of Mobile Banking Services Adoption in Pakistan

Authors: Aijaz A. Shaikh, Richard Glavee-Geo, Heikki Karjaluoto

Abstract:

Adoption of Information Systems (IS) is receiving increasing attention such that its implications have been closely monitored and studied by the IS management community, industry and professional gatekeepers. Building on previous research regarding the adoption of technology, this paper develops and validates an integrated model of the adoption of mobile banking. The model originates from the Technology Acceptance Model (TAM) and the Theory of Planned Behaviour (TPB). This paper intends to offer a preliminary scrutiny of the antecedents of the adoption of mobile banking services in the context of a developing country. Data was collected from Pakistan. The findings showed that an integrated TAM and TPB model greatly explains the adoption intention of mobile banking; and perceived behavioural control and its antecedents play a significant role in predicting adoption Theoretical and managerial implications of findings are presented and discussed.

Keywords: developing country, mobile banking service adoption, technology acceptance model, theory of planned behavior

Procedia PDF Downloads 419