Search results for: acid soluble collagen
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3878

Search results for: acid soluble collagen

2438 Computational Studies of the Reactivity Descriptors and the Optoelectronic Properties on the Efficiency Free-Base- and Zn-Porphyrin-Sensitized Solar Cells

Authors: Soraya Abtouche, Zeyneb Ghoualem, Syrine Daoudi, Lina Ouldmohamed, Xavier Assfeld

Abstract:

This work reports density functional theory calculations of the optimized geometries, molecular reactivity, energy gap,and thermodynamic properties of the free base (H2P) and their Zn (II) metallated (ZnP), bearing one, two, or three carboxylic acid groups using the hybrid functional B3LYP, Cam-B3lYP, wb97xd with 6-31G(d,p) basis sets. When donating groups are attached to the molecular dye, the bond lengths are slightly decreased, which is important for the easy transfer of an electron from donating to the accepting group. For all dyes, the highest occupied molecular orbital/lowest occupied molecular orbital analysis results in positive outcomes upon electron injection to the semiconductor and subsequent dye regeneration by the electrolyte. The ionization potential increases with increasing conjugation; therefore, the compound dye attached to one carboxylic acid group has the highest ionization potential. The results show higher efficiencies of those sensitized with ZnP. These results have been explained, taking into account the electronic character of the metal ion, which acts as a mediator in the injection step, and, on the other hand, considering the number of anchoring groups to which it binds to the surface of TiO2.

Keywords: DSSC, porphyrin, TD-DFT, electronic properties, donor-acceptor groups

Procedia PDF Downloads 78
2437 Investigation of Corrosion Inhibition Potential of Acalypha chamaedrifolia Leaves Extract towards Mild Steel in Acid Medium

Authors: Stephen Eyije Abechi, Casimir Emmanuel Gimba, Zaharaddeen Nasiru Garba, Sani Shamsudeen, David Ebuka Authur

Abstract:

Corrosion inhibition of mild steel in acid medium using Acalypha chamaedrifolia leaves extract as potential green inhibitor was investigated. Gravimetric (weight loss) technique was used for the corrosion studies. Mild steel coupons of 2cm × 1cm × 0.27 cm dimensions were exposed for varying durations of between 24 to 120 hours, in 1M HCl medium containing a varying concentrations of the leaves extract (0.25g/L, - 1.25g/L). The results show that corrosion rates dropped from a value of 0.49 mgcm-2hr-1 for the uninhibited medium to a value of 0.15 mgcm-2hr-1 for the inhibited medium of 1M HCl in 0.25 g/l of the extract. Values of corrosion inhibition efficiencies of 70.38-85.11% were observed as the concentration of the inhibitor were increased from 0.25g/L, - 1.25g/L. Corrosion Inhibition was found to increase with increase in immersion time and temperature. The magnitude of the Ea indicates that the interaction between the metal surface and the inhibitor was chemisorptions. The Adsorption process fit into the Langmuir isotherm model with a correlation coefficient of 0.97. Evidence from molecular dynamics model shows that Methyl stearate (Line 5) and (3Z, 13Z)-2-methyloctadeca-3,13-dien-1-ol (line 11) were found to have the highest binding energy of -197.69 ± 3.12 and-194.56 ± 10.04 in kcal/mol respectively. The binding energy of these compounds indicates that they would be a very good corrosion inhibitor for mild steel and other Fe related materials.

Keywords: binding energy, corrosion, inhibitor, langmuir isotherm, mild steel

Procedia PDF Downloads 361
2436 Optimization of Bio-Diesel Production from Rubber Seed Oils

Authors: Pawit Tangviroon, Apichit Svang-Ariyaskul

Abstract:

Rubber seed oil is an attractive alternative feedstock for biodiesel production because it is not related to food-chain plant. Rubber seed oil contains large amount of free fatty acids, which causes problem in biodiesel production. Free fatty acids can react with alkaline catalyst in biodiesel production. Acid esterification is used as pre-treatment to convert unwanted compound to desirable biodiesel. Phase separation of oil and methanol occurs at low ratio of methanol to oil and causes low reaction rate and conversion. Acid esterification requires large excess of methanol in order to increase the miscibility of methanol in oil and accordingly, it is a more expensive separation process. In this work, the kinetics of esterification of rubber seed oil with methanol is developed from available experimental results. Reactive distillation process was designed by using Aspen Plus program. The effects of operating parameters such as feed ratio, molar reflux ratio, feed temperature, and feed stage are investigated in order to find the optimum conditions. Results show that the reactive distillation process is proved to be better than conventional process. It consumes less feed methanol and less energy while yielding higher product purity than the conventional process. This work can be used as a guideline for further development to industrial scale of biodiesel production using reactive distillation.

Keywords: biodiesel, reactive distillation, rubber seed oil, transesterification

Procedia PDF Downloads 351
2435 Protein Quality of Game Meat Hunted in Latvia

Authors: Vita Strazdina, Aleksandrs Jemeljanovs, Vita Sterna

Abstract:

Not all proteins have the same nutritional value, since protein quality strongly depends on its amino acid composition and digestibility. The meat of game animals could be a high protein source because of its well-balanced essential amino acids composition. Investigations about biochemical composition of game meat such as wild boar (Sus scrofa scrofa), roe deer (Capreolus capreolus) and beaver (Castor fiber) are not very much. Therefore, the aim of the investigation was evaluate protein composition of game meat hunted in Latvia. The biochemical analysis, evaluation of connective tissue and essential amino acids in meat samples were done, the amino acids score were calculate. Results of analysis showed that protein content 20.88-22.05% of all types of meat samples is not different statistically. The content of connective tissue from 1.3% in roe deer till 1.5% in beaver meat allowed classified game animal as high quality meat. The sum of essential amino acids in game meat samples were determined 7.05–8.26g100g-1. Roe deer meat has highest protein content and lowest content of connective tissues among game meat hunted in Latvia. Concluded that amino acid score for limiting amino acids phenylalanine and tyrosine is high and shows high biological value of game meat.

Keywords: dietic product, game meat, amino acids, scores

Procedia PDF Downloads 321
2434 Carboxyfullerene-Modified Titanium Dioxide Nanoparticles in Singlet Oxygen and Hydroxyl Radicals Scavenging Activity

Authors: Kai-Cheng Yang, Yen-Ling Chen, Er-Chieh Cho, Kuen-Chan Lee

Abstract:

Titanium dioxide nanomaterials offer superior protection for human skin against the full spectrum of ultraviolet light. However, some literature reviews indicated that it might be associated with adverse effects such as cytotoxicity or reactive oxygen species (ROS) due to their nanoscale. The surface of fullerene is covered with π electrons constituting aromatic structures, which can effectively scavenge large amount of radicals. Unfortunately, fullerenes are poor solubility in water, severe aggregation, and toxicity in biological applications when dispersed in solvent have imposed the limitations to the use of fullerenes. Carboxyfullerene acts as the scavenger of radicals for several years. Some reports indicate that carboxyfullerene not only decrease the concentration of free radicals in ambience but also prevent cells from reducing the number or apoptosis under UV irradiation. The aim of this study is to decorate fullerene –C70-carboxylic acid (C70-COOH) on the surface of titanium dioxide nanoparticles (P25) for the purpose of scavenging ROS during the irradiation. The modified material is prepared through the esterification of C70-COOH with P25 (P25/C70-COOH). The binding edge and structure are studied by using Transmission electron microscope (TEM) and Fourier transform infrared (FTIR). The diameter of P25 is about 30 nm and C70-COOH is found to be conjugated on the edge of P25 in aggregation morphology with the size of ca. 100 nm. In the next step, the FTIR was used to confirm the binding structure between P25 and C70-COOH. There are two new peaks are shown at 1427 and 1720 cm-1 for P25/C70-COOH, resulting from the C–C stretch and C=O stretch formed during esterification with dilute sulfuric acid. The IR results further confirm the chemically bonded interaction between C70-COOH and P25. In order to provide the evidence of scavenging radical ability of P25/C70-COOH, we chose pyridoxine (Vit.B6) and terephthalic acid (TA) to react with singlet oxygen and hydroxyl radicals. We utilized these chemicals to observe the radicals scavenging statement via detecting the intensity of ultraviolet adsorption or fluorescence emission. The UV spectra are measured by using different concentration of C70-COOH modified P25 with 1mM pyridoxine under UV irradiation for various duration times. The results revealed that the concentration of pyridoxine was increased when cooperating with P25/C70-COOH after three hours as compared with control (only P25). It indicates fewer radicals could be reacted with pyridoxine because of the absorption via P25/C70-COOH. The fluorescence spectra are observed by measuring P25/C70-COOH with 1mM terephthalic acid under UV irradiation for various duration times. The fluorescence intensity of TAOH was decreased in ten minutes when cooperating with P25/C70-COOH. Here, it was found that the fluorescence intensity was increased after thirty minutes, which could be attributed to the saturation of C70-COOH in the absorption of radicals. However, the results showed that the modified P25/C70-COOH could reduce the radicals in the environment. Therefore, we expect that P25/C70-COOH is a potential materials in using for antioxidant.

Keywords: titanium dioxide, fullerene, radical scavenging activity, antioxidant

Procedia PDF Downloads 404
2433 Solid State Fermentation: A Technological Alternative for Enriching Bioavailability of Underutilized Crops

Authors: Vipin Bhandari, Anupama Singh, Kopal Gupta

Abstract:

Solid state fermentation, an eminent bioconversion technique for converting many biological substrates into a value-added product, has proven its role in the biotransformation of crops by nutritionally enriching them. Hence, an effort was made for nutritional enhancement of underutilized crops viz. barnyard millet, amaranthus and horse gram based composite flour using SSF. The grains were given pre-treatments before fermentation and these pre-treatments proved quite effective in diminishing the level of antinutrients in grains and in improving their nutritional characteristics. The present study deals with the enhancement of nutritional characteristics of underutilized crops viz. barnyard millet, amaranthus and horsegram based composite flour using solid state fermentation (SSF) as the principle bioconversion technique to convert the composite flour substrate into a nutritionally enriched value added product. Response surface methodology was used to design the experiments. The variables selected for the fermentation experiments were substrate particle size, substrate blend ratio, fermentation time, fermentation temperature and moisture content having three levels of each. Seventeen designed experiments were conducted randomly to find the effect of these variables on microbial count, reducing sugar, pH, total sugar, phytic acid and water absorption index. The data from all experiments were analyzed using Design Expert 8.0.6 and the response functions were developed using multiple regression analysis and second order models were fitted for each response. Results revealed that pretreatments proved quite handful in diminishing the level of antinutrients and thus enhancing the nutritional value of the grains appreciably, for instance, there was about 23% reduction in phytic acid levels after decortication of barnyard millet. The carbohydrate content of the decorticated barnyard millet increased to 81.5% from initial value of 65.2%. Similarly popping and puffing of horsegram and amaranthus respectively greatly reduced the trypsin inhibitor activity. Puffing of amaranthus also reduced the tannin content appreciably. Bacillus subtilis was used as the inoculating specie since it is known to produce phytases in solid state fermentation systems. These phytases remarkably reduce the phytic acid content which acts as a major antinutritional factor in food grains. Results of solid state fermentation experiments revealed that phytic acid levels reduced appreciably when fermentation was allowed to continue for 72 hours at a temperature of 35°C. Particle size and substrate blend ratio also affected the responses positively. All the parameters viz. substrate particle size, substrate blend ratio, fermentation time, fermentation temperature and moisture content affected the responses namely microbial count, reducing sugar, pH, total sugar, phytic acid and water absorption index but the effect of fermentation time was found to be most significant on all the responses. Statistical analysis resulted in the optimum conditions (particle size 355µ, substrate blend ratio 50:20:30 of barnyard millet, amaranthus and horsegram respectively, fermentation time 68 hrs, fermentation temperature 35°C and moisture content 47%) for maximum reduction in phytic acid. The model F- value was found to be highly significant at 1% level of significance in case of all the responses. Hence, second order model could be fitted to predict all the dependent parameters. The effect of fermentation time was found to be most significant as compared to other variables.

Keywords: composite flour, solid state fermentation, underutilized crops, cereals, fermentation technology, food processing

Procedia PDF Downloads 327
2432 Bulk Amounts of Linear and Cyclic Polypeptides on Our Hand within a Short Time

Authors: Yu Zhang, Il Kim

Abstract:

Polypeptides with defined peptide sequences illustrate the power of remarkable applications in drug delivery, tissue engineering, sensing and catalysis. Especially the cyclic polypeptides, the distinctive topological architecture imparts many characteristic properties comparing to linear polypeptides. Here, a facile and highly efficient strategy for the synthesis of linear and cyclic polypeptides is reported using N-heterocyclic carbenes (NHCs)-mediated ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCA) in the presence or absence of primary amine initiator. The polymerization proceeds rapidly in a quasi-living manner, allowing access to linear and cyclic polypeptides of well-defined chain length and narrow polydispersity, as evidenced by nuclear magnetic resonance spectrum (1H NMR and 13C NMR spectra) and size exclusion chromatography (SEC) analysis. The cyclic architecture of the polypeptides was further verified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectra (MALDI-TOF MS) and electrospray ionization (ESI) mass spectra, as well as viscosity studies. This approach can also simplify workup procedures and make bulk scale synthesis possible, which thereby opens avenues for practical uses in diverse areas, opening up the new generation of polypeptide synthesis.

Keywords: α-amino acid N-carboxyanhydrides, living polymerization, polypeptides, N-heterocyclic carbenes, ring-opening polymerization

Procedia PDF Downloads 167
2431 Phytochemical Study and Biological Activity of Sage (Salvia officinalis L.)

Authors: Mekhaldi Abdelkader, Bouzned Ahcen, Djibaoui Rachid, Hamoum Hakim

Abstract:

This study presents an attempt to evaluate the antioxidant and antimicrobial activity of methanolic extract and essential oils prepared from the leaves of sage (Salvia officinalis L.). The content of polyphenols in the methanolic extract of the leaves from Salvia officinalis extract was determined by spectrophoto- metrically, calculated as gallic acid and catechin equivalent. Antioxidant activity was evaluated by free radical scavenging activity using 2,2-diphenylpicryl-1-picrylhydrazyl (DPPH) assay. The plant essential oil and methanol extract were also subjected to screenings for the evaluation of their antioxidant activities using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) test. While the plant essential oil showed only weak antioxidant activities, its methanol extract was considerably active in DPPH (IC50= 37.29µg/ml) test. Appreciable total phenolic content (31.25mg/g) was also detected for the plant methanol extract as gallic acid equivalent in the Folin–Ciocalteu test. The plant was also screened for its antimicrobial activity and good to moderate inhibitions were recorded for its essential oil and methanol extract against most of the tested microorganisms. The present investigation revealed that this plant has rich source of antioxidant properties. It is for this reason that sage has found increasing application in food formulations.

Keywords: antibacterial activity, antioxidant activity, flavonoid, polyphenol, salvia officinalis

Procedia PDF Downloads 409
2430 Utilization of Jackfruit Seed Flour (Artocarpus heterophyllus L.) as a Food Additive

Authors: C. S. D. S. Maduwage, P. W. Jeewanthi, W. A. J. P. Wijesinghe

Abstract:

This study investigated the use of Jackfruit Seed Flour (JSF) as a thickening agent in tomato sauce production. Lye peeled mature jackfruit seeds were used to obtain JSF. Flour was packed in laminated bags and stored for further studies. Three batches of tomato sauce samples were prepared according to the Sri Lankan Standards for tomato sauce by adding JSF, corn flour and without any thickening agent. Samples were stored at room temperature for 8 weeks in glass bottles. The physicochemical properties such as pH, total soluble solids, titratable acidity, and water activity were measured during the storage period. Microbial analysis and sensory evaluation were done to determine the quality of tomato sauce. JSF showed the role of a thickening agent in tomato sauce with lowest serum separation and highest viscosity during the storage period. This study concludes that JSF can be successfully used as a thickening agent in food industry.

Keywords: Jackfruit seed flour, food additive, thickening agent, tomato sauce

Procedia PDF Downloads 308
2429 Theoretical Study of Structural Parameters, Chemical Reactivity and Spectral and Thermodynamical Properties of Organometallic Complexes Containing Zinc, Nickel and Cadmium with Nitrilotriacetic Acid and Tea Ligands: Density Functional Theory Investigation

Authors: Nour El Houda Bensiradj, Nafila Zouaghi, Taha Bensiradj

Abstract:

The pollution of water resources is characterized by the presence of microorganisms, chemicals, or industrial waste. Generally, this waste generates effluents containing large quantities of heavy metals, making the water unsuitable for consumption and causing the death of aquatic life and associated biodiversity. Currently, it is very important to assess the impact of heavy metals in water pollution as well as the processes for treating and reducing them. Among the methods of water treatment and disinfection, we mention the complexation of metal ions using ligands which serve to precipitate and subsequently eliminate these ions. In this context, we are interested in the study of complexes containing heavy metals such as zinc, nickel, and cadmium, which are present in several industrial discharges and are discharged into water sources. We will use the ligands of triethanolamine (TEA) and nitrilotriacetic acid (NTA). The theoretical study is based on molecular modeling, using the density functional theory (DFT) implemented in the Gaussian 09 program. The geometric and energetic properties of the above complexes will be calculated. Spectral properties such as infrared, as well as reactivity descriptors, and thermodynamic properties such as enthalpy and free enthalpy will also be determined.

Keywords: heavy metals, NTA, TEA, DFT, IR, reactivity descriptors

Procedia PDF Downloads 101
2428 Nanocarriers Made of Amino Acid Based Biodegradable Polymers: Poly(Ester Amide) and Related Cationic and PEGylating Polymers

Authors: Sophio Kobauri, Temur Kantaria, Nina Kulikova, David Tugushi, Ramaz Katsarava

Abstract:

Polymeric nanoparticles-based drug delivery systems and therapeutics have a great potential in the treatment of a numerous diseases, due to they are characterizing the flexible properties which is giving possibility to modify their structures with a complex definition over their structures, compositions and properties. Important characteristics of the polymeric nanoparticles (PNPs) used as drug carriers are high particle’s stability, high carrier capacity, feasibility of encapsulation of both hydrophilic and hydrophobic drugs, and feasibility of variable routes of administration, including oral application and inhalation; NPs are especially effective for intracellular drug delivery since they penetrate into the cells’ interior though endocytosis. A variety of PNPs based drug delivery systems including charged and neutral, degradable and non-degradable polymers of both natural and synthetic origin have been developed. Among these huge varieties the biodegradable PNPs which can be cleared from the body after the fulfillment of their function could be considered as one of the most promising. For intracellular uptake it is highly desirable to have positively charged PNPs since they can penetrate deep into cell membranes. For long-lasting circulation of PNPs in the body it is important they have so called “stealth coatings” to protect them from the attack of immune system of the organism. One of the effective ways to render the PNPs “invisible” for immune system is their PEGylation which represent the process of pretreatment of polyethylene glycol (PEG) on the surface of PNPs. The present work deals with constructing PNPs from amino acid based biodegradable polymers – regular poly(ester amide) (PEA) composed of sebacic acid, leucine and 1,6-hexandiol (labeled as 8L6), cationic PEA composed of sebacic acid, arginine and 1,6-hexandiol (labeled as 8R6), and comb-like co-PEA composed of sebacic acid, malic acid, leucine and 1,6-hexandiol (labeled as PEG-PEA). The PNPs were fabricated using the polymer deposition/solvent displacement (nanoprecipitation) method. The regular PEA 8L6 form stable negatively charged (zeta-potential within 2-12 mV) PNPs of desired size (within 150-200 nm) in the presence of various surfactants (Tween 20, Tween 80, Brij 010, etc.). Blending the PEAs 8L6 and 8R6 gave the 130-140 nm sized positively charged PNPs having zeta-potential within +20 ÷ +28 mV depending 8L6/8R6 ratio. The PEGylating PEA PEG-PEA was synthesized by interaction of epoxy-co-PEA [8L6]0,5-[tES-L6]0,5 with mPEG-amine-2000 The stable and positively charged PNPs were fabricated using pure PEG-PEA as a surfactant. A firm anchoring of the PEG-PEA with 8L6/8R6 based PNPs (owing to a high afinity of the backbones of all three PEAs) provided good stabilization of the NPs. In vitro biocompatibility study of the new PNPs with four different stable cell lines: A549 (human), U-937 (human), RAW264.7 (murine), Hepa 1-6 (murine) showed they are biocompatible. Considering high stability and cell compatibility of the elaborated PNPs one can conclude that they are promising for subsequent therapeutic applications. This work was supported by the joint grant from the Science and Technology Center in Ukraine and Shota Rustaveli National Science Foundation of Georgia #6298 “New biodegradable cationic polymers composed of arginine and spermine-versatile biomaterials for various biomedical applications”.

Keywords: biodegradable poly(ester amide)s, cationic poly(ester amide), pegylating poly(ester amide), nanoparticles

Procedia PDF Downloads 121
2427 Physico-Chemical Characterization of Vegetable Oils from Oleaginous Seeds (Croton megalocarpus, Ricinus communis L., and Gossypium hirsutum L.)

Authors: Patrizia Firmani, Sara Perucchini, Irene Rapone, Raffella Borrelli, Stefano Chiaberge, Manuela Grande, Rosamaria Marrazzo, Alberto Savoini, Andrea Siviero, Silvia Spera, Fabio Vago, Davide Deriu, Sergio Fanutti, Alessandro Oldani

Abstract:

According to the Renewable Energy Directive II, the use of palm oil in diesel will be gradually reduced from 2023 and should reach zero in 2030 due to the deforestation caused by its production. Eni aims at finding alternative feedstocks for its biorefineries to eliminate the use of palm oil by 2023. Therefore, the ideal vegetable oils to be used in bio-refineries are those obtainable from plants that grow in marginal lands and with low impact on food-and-feed chain; hence, Eni research is studying the possibility of using oleaginous seeds, such as castor, croton, and cotton, to extract the oils to be exploited as feedstock in bio-refineries. To verify their suitability for the upgrading processes, an analytical protocol for their characterization has been drawn up and applied. The analytical characterizations include a step of water and ashes content determination, elemental analysis (CHNS analysis, X-Ray Fluorescence, Inductively Coupled Plasma - Optical Emission Spectroscopy, ICP– Mass Spectrometry), and total acid number determination. Gas chromatography coupled to flame ionization detector (GC-FID) is used to quantify the lipid content in terms of free fatty acids, mono-, di- and triacylglycerols, and fatty acids composition. Eventually, Nuclear Magnetic Resonance and Fourier Transform-Infrared spectroscopies are exploited with GC-MS and Fourier Transform-Ion Cyclotron Resonance to study the composition of the oils. This work focuses on the GC-FID analysis of the lipid fraction of these oils, as the main constituent and of greatest interest for bio-refinery processes. Specifically, the lipid component of the extracted oil was quantified after sample silanization and transmethylation: silanization allows the elution of high-boiling compounds and is useful for determining the quantity of free acids and glycerides in oils, while transmethylation leads to a mixture of fatty acid esters and glycerol, thus allowing to evaluate the composition of glycerides in terms of Fatty Acids Methyl Esters (FAME). Cotton oil was extracted from cotton oilcake, croton oil was obtained by seeds pressing and seeds and oilcake ASE extraction, while castor oil comes from seed pressing (not performed in Eni laboratories). GC-FID analyses reported that the cotton oil is 90% constituted of triglycerides and about 6% diglycerides, while free fatty acids are about 2%. In terms of FAME, C18 acids make up 70% of the total and linoleic acid is the major constituent. Palmitic acid is present at 17.5%, while the other acids are in low concentration (<1%). Both analyzes show the presence of non-gas chromatographable compounds. Croton oils from seed pressing and extraction mainly contain triglycerides (98%). Concerning FAME, the main component is linoleic acid (approx. 80%). Oilcake croton oil shows higher abundance of diglycerides (6% vs ca 2%) and a lower content of triglycerides (38% vs 98%) compared to the previous oils. Eventually, castor oil is mostly constituted of triacylglycerols (about 69%), followed by diglycerides (about 10%). About 85.2% of total FAME is ricinoleic acid, as a constituent of triricinolein, the most abundant triglyceride of castor oil. Based on the analytical results, these oils represent feedstocks of interest for possible exploitation as advanced biofuels.

Keywords: analytical protocol, biofuels, biorefinery, gas chromatography, vegetable oil

Procedia PDF Downloads 144
2426 Antioxidant Capacity of Different Broccoli Cultivars at Various Harvesting Dates

Authors: S. Graeff-Hönninger, J. Pfenning, V. Gutsal, S. Wolf, S. Zikeli, W. Claupein

Abstract:

Broccoli is considered as being a rich source of AOX like flavonoids, polyphenols, anthocyanins etc. and of major interest especially in the organic sector. However, AOX is environment dependent and often varies between cultivars. Aim of the study was to investigate the impact of cultivar and harvest date on AOX in broccoli. Activity of the AOX was determined using a Photochem®-Analyzer and a kit of reagent solutions for analysis. Results of the study showed that the lipid (ACL) and water-soluble antioxidant potential (AWC) of broccoli heads varied significantly between the four harvesting dates, but not among the different cultivars. The highest concentration of ACL was measured in broccoli heads harvested in September 2011, followed by heads harvested at the beginning of July in 2012. ACW was highest in heads harvested in October 2011. Lowest concentrations of ACW were measured in heads harvested in June 2012. Overall, the study indicated that the harvest date and thus growing conditions seem to be of high importance for final antioxidant capacity of broccoli.

Keywords: broccoli, open-pollinating, harvest date, epidemiological studies

Procedia PDF Downloads 425
2425 Synergetic Effect of Dietary Essential Amino Acids (Lysine and Methionine) on the Growth, Body Composition and Enzymes Activities of Genetically Male Tilapia

Authors: Noor Khan, Hira Waris

Abstract:

This study was conducted on genetically male tilapia (GMT) fry reared in glass aquarium for three months to examine the synergetic effect of essential amino acids (EAA) supplementation on growth, body composition, and enzyme activities. Fish having average body weight of 16.56 ± 0.42g were fed twice a day on artificial feed (20% crude protein) procured from Oryza Organics (commercial feed) supplemented with EAA; methionine (M) and lysine (L) designated as T1 (0.3%M and 2%L), T2 (0.6%M and 4%L), T3 (0.9%M and 6%L) and control without EAA. Significantly higher growth performance was observed in T1, followed by T2, T3, and control. The results revealed that whole-body dry matter and crude protein were significantly higher (p ≤ 0.05) in T3 (0.9% and 6%) feeding fish, while the crude fat was lower (p ≤ 0.05) in a similar group of fish. Additionally, protease, amylase, and lipase activities were also observed maximum (p ≤ 0.05) in response to T3 than other treatments and control. However, the EAA, especially lysine and methionine, were found significantly higher (p ≤ 0.05) in T1 compared to other treatments. Conclusively, the addition of EAA, methionine, and lysine in the feed not only enhanced the growth performance of GMT fry but also improved body proximate composition and essential amino acid profile.

Keywords: genetically male tilapia, body composition, digestive enzyme activities, amino acid profile

Procedia PDF Downloads 147
2424 Transcriptional Profiling of Developing Ovules in Litchi chinensis

Authors: Ashish Kumar Pathak, Ritika Sharma, Vishal Nath, Sudhir Pratap Singh, Rakesh Tuli

Abstract:

Litchi is a sub-tropical fruit crop with genotypes bearing delicious juicy fruits with variable seed size (bold to rudimentary size). Small seed size is a desirable trait in litchi, as it increases consumer acceptance and fruit processing. The biochemical activities in mid- stage ovules (e.g. 16, 20, 24 and 28 days after anthesis) determine the fate of seed and fruit development in litchi. Comprehensive ovule-specific transcriptome analysis was performed in two litchi genotypes with contrasting seed size to gain molecular insight on determinants of seed fates in litchi fruits. The transcriptomic data was de-novo assembled in 1,39,608 trinity transcripts, out of which 6,325 trinity transcripts were differentially expressed between the two contrasting genotypes. Differential transcriptional pattern was found among ovule development stages in contrasting litchi genotypes. The putative genes for salicylic acid, jasmonic acid and brassinosteroid pathway were down-regulated in ovules of small-seeded litchi. Embryogenesis, cell expansion, seed size and stress related trinity transcripts exhibited altered expression in small-seeded genotype. The putative regulators of seed maturation and seed storage were down-regulated in small-seed genotype.

Keywords: Litchi, seed, transcriptome, defence

Procedia PDF Downloads 244
2423 Polysaccharide Polyelectrolyte Complexation: An Engineering Strategy for the Development of Commercially Viable Sustainable Materials

Authors: Jeffrey M. Catchmark, Parisa Nazema, Caini Chen, Wei-Shu Lin

Abstract:

Sustainable and environmentally compatible materials are needed for a wide variety of volume commercial applications. Current synthetic materials such as plastics, fluorochemicals (such as PFAS), adhesives and resins in form of sheets, laminates, coatings, foams, fibers, molded parts and composites are used for countless products such as packaging, food handling, textiles, biomedical, construction, automotive and general consumer devices. Synthetic materials offer distinct performance advantages including stability, durability and low cost. These attributes are associated with the physical and chemical properties of these materials that, once formed, can be resistant to water, oils, solvents, harsh chemicals, salt, temperature, impact, wear and microbial degradation. These advantages become disadvantages when considering the end of life of these products which generate significant land and water pollution when disposed of and few are recycled. Agriculturally and biologically derived polymers offer the potential of remediating these environmental and life-cycle difficulties, but face numerous challenges including feedstock supply, scalability, performance and cost. Such polymers include microbial biopolymers like polyhydroxyalkanoates and polyhydroxbutirate; polymers produced using biomonomer chemical synthesis like polylactic acid; proteins like soy, collagen and casein; lipids like waxes; and polysaccharides like cellulose and starch. Although these materials, and combinations thereof, exhibit the potential for meeting some of the performance needs of various commercial applications, only cellulose and starch have both the production feedstock volume and cost to compete with petroleum derived materials. Over 430 million tons of plastic is produced each year and plastics like low density polyethylene cost ~$1500 to $1800 per ton. Over 400 million tons of cellulose and over 100 million tons of starch are produced each year at a volume cost as low as ~$500 to $1000 per ton with the capability of increased production. Cellulose and starches, however, are hydroscopic materials that do not exhibit the needed performance in most applications. Celluloses and starches can be chemically modified to contain positive and negative surface charges and such modified versions of these are used in papermaking, foods and cosmetics. Although these modified polysaccharides exhibit the same performance limitations, recent research has shown that composite materials comprised of cationic and anionic polysaccharides in polyelectrolyte complexation exhibit significantly improved performance including stability in diverse environments. Moreover, starches with added plasticizers can exhibit thermoplasticity, presenting the possibility of improved thermoplastic starches when comprised of starches in polyelectrolyte complexation. In this work, the potential for numerous volume commercial products based on polysaccharide polyelectrolyte complexes (PPCs) will be discussed, including the engineering design strategy used to develop them. Research results will be detailed including the development and demonstration of starch PPC compositions for paper coatings to replace PFAS; adhesives; foams for packaging, insulation and biomedical applications; and thermoplastic starches. In addition, efforts to demonstrate the potential for volume manufacturing with industrial partners will be discussed.

Keywords: biomaterials engineering, commercial materials, polysaccharides, sustainable materials

Procedia PDF Downloads 17
2422 Surface Modification of TiO2 Layer with Phosphonic Acid Monolayer in Perovskite Solar Cells: Effect of Chain Length and Terminal Functional Group

Authors: Seid Yimer Abate, Ding-Chi Huang, Yu-Tai Tao

Abstract:

In this study, charge extraction characteristics at the perovskite/TiO2 interface in the conventional perovskite solar cell is studied by interface engineering. Self-assembled monolayers of phosphonic acids with different chain length and terminal functional group were used to modify mesoporous TiO2 surface to modulate the surface property and interfacial energy barrier to investigate their effect on charge extraction and transport from the perovskite to the mp-TiO2 and then the electrode. The chain length introduces a tunnelling distance and the end group modulate the energy level alignment at the mp-TiO2 and perovskite interface. The work function of these SAM-modified mp-TiO2 varied from −3.89 eV to −4.61 eV, with that of the pristine mp-TiO2 at −4.19 eV. A correlation of charge extraction and transport with respect to the modification was attempted. The study serves as a guide to engineer ETL interfaces with simple SAMs to improve the charge extraction, carrier balance and device long term stability. In this study, a maximum PCE of ~16.09% with insignificant hysteresis was obtained, which is 17% higher than the standard device.

Keywords: Energy level alignment, Interface engineering, Perovskite solar cells, Phosphonic acid monolayer, Tunnelling distance

Procedia PDF Downloads 137
2421 Recovery of Copper and Gold by Delamination of Printed Circuit Boards Followed by Leaching and Solvent Extraction Process

Authors: Kamalesh Kumar Singh

Abstract:

Due to increasing trends of electronic waste, specially the ICT related gadgets, their green recycling is still a greater challenge. This article presents a two-stage, eco-friendly hydrometallurgical route for the recovery of gold from the delaminated metallic layers of waste mobile phone Printed Circuit Boards (PCBs). Initially, mobile phone PCBs are downsized (1x1 cm²) and treated with an organic solvent dimethylacetamide (DMA) for the separation of metallic fraction from non-metallic glass fiber. In the first stage, liberated metallic sheets are used for the selective dissolution of copper in an aqueous leaching reagent. Influence of various parameters such as type of leaching reagent, the concentration of the solution, temperature, time and pulp density are optimized for the effective leaching (almost 100%) of copper. Results have shown that 3M nitric acid is a suitable reagent for copper leaching at room temperature and considering chemical features, gold remained in solid residue. In the second stage, the separated residue is used for the recovery of gold by using sulphuric acid with a combination of halide salt. In this halide leaching, Cl₂ or Br₂ is generated as an in-situ oxidant to improve the leaching of gold. Results have shown that almost 92 % of gold is recovered at the optimized parameters.

Keywords: printed circuit boards, delamination, leaching, solvent extraction, recovery

Procedia PDF Downloads 56
2420 Chemometric Analysis of Raw Milk Quality Originating from Conventional and Organic Dairy Farming in AP Vojvodina, Serbia

Authors: Sanja Podunavac-Kuzmanović, Denis Kučević, Strahinja Kovačević, Milica Karadžić, Lidija Jevrić

Abstract:

The present study describes the application of chemometric methods in analysis of milk samples which were collected in a conventional dairy farm and an organic dairy farm in AP Vojvodina, Republic of Serbia. The chemometric analysis included the application of univariate regression modeling and Analysis of Variance (ANOVA) method. The ANOVA was used in order to determine the differences in fatty acids content in the milk samples from conventional and organic farm. The results of the ANOVA testing indicate that there is a highly statistically significant difference between the content of fatty acid (saturated fatty acid vs. unsaturated fatty acids) in different dairy farming. Besides, the linear univariate models have been obtained as a result of modeling the linear relationships between the milk fat content and saturated fatty acids content, and the linear relationships between the milk fat content and unsaturated fatty acids content. The models obtained on the basis of the milk samples which originate from the organic farming are statistically better than the models based on the milk samples from conventional farming.

Keywords: hemometrics, milk, organic farming, quality control

Procedia PDF Downloads 237
2419 Elucidation of the Sequential Transcriptional Activity in Escherichia coli Using Time-Series RNA-Seq Data

Authors: Pui Shan Wong, Kosuke Tashiro, Satoru Kuhara, Sachiyo Aburatani

Abstract:

Functional genomics and gene regulation inference has readily expanded our knowledge and understanding of gene interactions with regards to expression regulation. With the advancement of transcriptome sequencing in time-series comes the ability to study the sequential changes of the transcriptome. This method presented here works to augment existing regulation networks accumulated in literature with transcriptome data gathered from time-series experiments to construct a sequential representation of transcription factor activity. This method is applied on a time-series RNA-Seq data set from Escherichia coli as it transitions from growth to stationary phase over five hours. Investigations are conducted on the various metabolic activities in gene regulation processes by taking advantage of the correlation between regulatory gene pairs to examine their activity on a dynamic network. Especially, the changes in metabolic activity during phase transition are analyzed with focus on the pagP gene as well as other associated transcription factors. The visualization of the sequential transcriptional activity is used to describe the change in metabolic pathway activity originating from the pagP transcription factor, phoP. The results show a shift from amino acid and nucleic acid metabolism, to energy metabolism during the transition to stationary phase in E. coli.

Keywords: Escherichia coli, gene regulation, network, time-series

Procedia PDF Downloads 372
2418 Assessment of the Performance of Fly Ash Based Geo-Polymer Concrete under Sulphate and Acid Attack

Authors: Talakokula Visalakshi

Abstract:

Concrete is the most commonly used construction material across the globe, its usage is second only to water. It is prepared using ordinary Portland cement whose production contributes to 5-8% of total carbon emission in the world. On the other hand the fly ash by product from the power plants is produced in huge quantities is termed as waste and disposed in landfills. In order to address the above issues mentioned, it is essential that other forms of binding material must be developed in place of cement to make concrete. The geo polymer concrete is one such alternative developed by Davidovits in 1980’s. Geopolymer do not form calcium-silicate hydrates for matrix formation and strength but undergo polycondensation of silica and alumina precursors to attain structural strength. Its setting mechanism depends upon polymerization rather than hydration. As a result it is able to achieve its strength in 3-5 days whereas concrete requires about a month to do the same. The objective of this research is to assess the performance of geopolymer concrete under sulphate and acid attack. The assessment is done based on the experiments conducted on geopolymer concrete. The expected outcomes include that if geopolymer concrete is more durable than normal concrete, then it could be a competitive replacement option of concrete and can lead to significant reduction of carbon foot print and have a positive impact on the environment. Fly ash based geopolymer concrete offers an opportunity to completely remove the cement content from concrete thereby making the concrete a greener and future construction material.

Keywords: fly ash, geo polymer, geopolymer concrete, construction material

Procedia PDF Downloads 488
2417 The Influence of Temperature on the Corrosion and Corrosion Inhibition of Steel in Hydrochloric Acid Solution: Thermodynamic Study

Authors: Fatimah Al-Hayazi, Ehteram. A. Noor, Aisha H. Moubaraki

Abstract:

The inhibitive effect of Securigera securidaca seed extract (SSE) on mild steel corrosion in 1 M HCl solution has been studied by weight loss and electrochemical techniques at four different temperatures. All techniques studied provided data that the studied extract does well at all temperatures, and its inhibitory action increases with increasing its concentration. SEM images indicate thin-film formation on mild steel when corroded in solutions containing 1 g L-1 of inhibitor either at low or high temperatures. The polarization studies showed that SSE acts as an anodic inhibitor. Both polarization and impedance techniques show an acceleration behaviour for SSE at concentrations ≤ 0.1 g L-1 at all temperatures. At concentrations ≥ 0.1 g L-1, the efficiency of SSE is dramatically increased with increasing concentration, and its value does not change appreciably with increasing temperature. It was found that all adsorption data obeyed Temkin adsorption isotherm. Kinetic activation and thermodynamic adsorption parameters are evaluated and discussed. The results revealed an endothermic corrosion process with an associative activation mechanism, while a comprehensive adsorption mechanism for SSE on mild steel surfaces is suggested, in which both physical and chemical adsorption are involved in the adsorption process. A good correlation between inhibitor constituents and their inhibitory action was obtained.

Keywords: corrosion, inhibition of steel, hydrochloric acid, thermodynamic study

Procedia PDF Downloads 100
2416 Extraction and Identification of Natural Antioxidants from Liquorices (Glycyrrhiza glabra) and Carob (Ceratonia siliqua) and Its Application in El-Mewled El-Nabawy Sweets (Sesames and Folia)

Authors: Mervet A. El-sherif, Ginat M El-sherif, Kadry H Tolba

Abstract:

The objective of this study was to determine, identify and investigate the effects of natural antioxidants of licorice and carob. Besides, their effects as powder and antioxidant extracts addition on refined sunflower oil stability as natural antioxidants were evaluated. Total polyphenol contents as total phenols, total carotenoids and total tannins were 353.93mg/100g (gallic acid), 10.62mg/100g (carotenoids) and 83.33mg/100g (tannic acid), respectively in licorice, while in carob, it was 186.07, 18.66 and 106.67, respectively. Polyphenol compounds of the studied licorice and carob extracts were determined and identified by HPLC. The stability of refined sunflower oil (which determined by peroxide value and Rancimat) was increased with increasing the level of polyphenols extracts addition. Also, our study shows the effect of addition of these polyphenols extracts to El-mewled El-nabawy sweets fortified by full cream milk powder (sesames and folia). We found that, licorice and carob as powder and polyphenols extracts were delayed the rancidity of sesame and peanut significantly. That encourages using licorice and carob as powder and polyphenols extracts as a good natural antioxidants source instead of synthetic antioxidants.

Keywords: licorice, carob, natural antioxidants, antioxidant activity, applications

Procedia PDF Downloads 436
2415 Static Characterization of a Bio-Based Sandwich in a Humid Environment

Authors: Zeineb Kesentini, Abderrahim El Mahi, Jean Luc Rebiere, Rachid El Guerjouma, Moez Beyaoui, Mohamed Haddar

Abstract:

Industries’ attention has been drawn to green and sustainable materials as a result of the present energy deficit and environmental damage. Sandwiches formed of auxetic structures made up of periodic cells are also being investigated by industry. Several tests have emphasized the exceptional properties of these materials. In this study, the sandwich's core is a one-cell auxetic core. Among plant fibers, flax fibers are chosen because of their good mechanical properties comparable to those of glass fibers. Poly (lactic acid) (PLA), as a green material, is available from starch, and its production process requires fewer fossil resources than petroleum-based plastics. A polylactic acid (PLA) reinforced with flax fiber filament was employed in this study. The manufacturing process used to manufacture the test specimens is 3D printing. The major drawback of a 100% bio-based material is its low resistance to moisture absorption. In this study, a sandwich based on PLA / flax with an auxetic core is characterized statically for different periods of immersion in water. Bending tests are carried out on the composite sandwich for three immersion time. Results are compared to those of non immersed specimens. It is found that non aged sandwich has the ultimate bending stiffness.

Keywords: auxetic, bending tests, biobased composite, sandwich structure, 3D printing

Procedia PDF Downloads 153
2414 Deep Eutectic Solvent/ Polyimide Blended Membranes for Anaerobic Digestion Gas Separation

Authors: Glemarie C. Hermosa, Sheng-Jie You, Chien Chih Hu

Abstract:

Efficient separation technologies are required for the removal of carbon dioxide from natural gas streams. Membrane-based natural gas separation has emerged as one of the fastest growing technologies, due to the compactness, higher energy efficiency and economic advantages which can be reaped. The removal of Carbon dioxide from gas streams using membrane technology will also give the advantage like environmental friendly process compared to the other technologies used in gas separation. In this study, Polyimide membranes, which are mostly used in the separation of gases, are blended with a new kind of solvent: Deep Eutectic Solvents or simply DES. The three types of DES are used are choline chloride based mixed with three different hydrogen bond donors: Lactic acid, N-methylurea and Urea. The blending of the DESs to Polyimide gave out high permeability performance. The Gas Separation performance for all the membranes involving CO2/CH4 showed low performance while for CO2/N2 surpassed the performance of some studies. Among the three types of DES used the solvent Choline Chloride/Lactic acid exhibited the highest performance for both Gas Separation applications. The values are 10.5 for CO2/CH4 selectivity and 60.5 for CO2/N2. The separation results for CO2/CH4 may be due to the viscosity of the DESs affecting the morphology of the fabricated membrane thus also impacts the performance. DES/blended Polyimide membranes fabricated are novel and have the potential of a low-cost and environmental friendly application for gas separation.

Keywords: deep eutectic solvents, gas separation, polyimide blends, polyimide membranes

Procedia PDF Downloads 310
2413 Genetically Modified Fuel-Ethanol Industrial Yeast Strains as Biocontrol Agents

Authors: Patrícia Branco, Catarina Prista, Helena Albergaria

Abstract:

Industrial fuel-ethanol fermentations are carried out under non-sterile conditions, which favors the development of microbial contaminants, leading to huge economic losses. Wild yeasts such as Brettanomyces bruxellensis and lactic acid bacteria are the main contaminants of industrial bioethanol fermentation, affecting Saccharomyces cerevisiae performance and decreasing ethanol yields and productivity. In order to control microbial contaminations, the fuel-ethanol industry uses different treatments, including acid washing and antibiotics. However, these control measures carry environmental risks such as acid toxicity and the rise of antibiotic-resistant bacteria. Therefore, it is crucial to develop and apply less toxic and more environmentally friendly biocontrol methods. In the present study, an industrial fuel-ethanol starter, S. cerevisiae Ethanol-Red, was genetically modified to over-express AMPs with activity against fuel-ethanol microbial contaminants and evaluated regarding its biocontrol effect during mixed-culture alcoholic fermentations artificially contaminated with B. bruxellensis. To achieve this goal, S. cerevisiae Ethanol-Red strain was transformed with a plasmid containing the AMPs-codifying genes, i.e., partial sequences of TDH1 (925-963 bp) and TDH2/3 (925-963 bp) and a geneticin resistance marker. The biocontrol effect of those genetically modified strains was evaluated against B. bruxellensis and compared with the antagonistic effect exerted by the modified strain with an empty plasmid (without the AMPs-codifying genes) and the non-modified strain S. cerevisiae Ethanol-Red. For that purpose, mixed-culture alcoholic fermentations were performed in a synthetic must use the modified S. cerevisiae Ethanol-Red strains together with B. bruxellensis. Single-culture fermentations of B. bruxellensis strains were also performed as a negative control of the antagonistic effect exerted by S. cerevisiae strains. Results clearly showed an improved biocontrol effect of the genetically-modified strains against B. bruxellensis when compared with the modified Ethanol-Red strain with the empty plasmid (without the AMPs-codifying genes) and with the non-modified Ethanol-Red strain. In mixed-culture fermentation with the modified S. cerevisiae strain, B. bruxellensis culturability decreased from 5×104 CFU/mL on day-0 to less than 1 CFU/mL on day-10, while in single-culture B. bruxellensis increased its culturability from 6×104 to 1×106 CFU/mL in the first 6 days and kept this value until day-10. Besides, the modified Ethanol-Red strain exhibited an enhanced antagonistic effect against B. bruxellensis when compared with that induced by the non-modified Ethanol-Red strain. Indeed, culturability loss of B. bruxellensis after 10 days of fermentation with the modified Ethanol-Red strain was 98.7 and 100% higher than that occurred in fermentations performed with the non-modified Ethanol-Red and the empty-plasmid modified strain, respectively. Therefore, one can conclude that the S. cerevisiae genetically modified strain obtained in the present work may be a valuable solution for the mitigation of microbial contamination in fuel-ethanol fermentations, representing a much safer and environmentally friendly preservation strategy than the antimicrobial treatments (acid washing and antibiotics) currently applied in fuel-ethanol industry.

Keywords: antimicrobial peptides, fuel-ethanol microbial contaminations, fuel-ethanol fermentation, biocontrol agents, genetically-modified yeasts

Procedia PDF Downloads 99
2412 Studies on Mechanisms of Corrosion Inhibition of Acalypha chamaedrifolia Leaves Extract towards Mild Steel in Acid Medium

Authors: Stephen Eyije Abechi, Casimir Emmanuel Gimba, Zaharaddeen Nasiru Garba, Sani Shamsudeen, David Ebuka Authur

Abstract:

The mechanisms of corrosion inhibition of mild steel in acid medium using Acalypha chamaedrifolia leaves extract as potential green inhibitor were investigated. Gravimetric (weight loss) technique was used for the corrosion studies. Mild steel coupons of 2cm × 1cm × 0.27 cm dimensions were exposed for varying durations of between 24 to 120 hours, in 1M HCl medium containing a varying concentrations of the leaves extract (0.25g/L, - 1.25g/L). The results show that corrosion rates dropped from a value of 0.49 mgcm-2hr-1 for the uninhibited medium to a value of 0.15 mgcm-2hr-1 for the inhibited medium of 1M HCl in 0.25 g/l of the extract. Values of corrosion inhibition efficiencies of 70.38-85.11% were observed as the concentration of the inhibitor were increased from 0.25g/L, - 1.25g/L. Corrosion Inhibition was found to increase with increase in immersion time and temperature. The magnitude of the Ea indicates that the interaction between the metal surface and the inhibitor was chemisorptions. The Adsorption process fit into the Langmuir isotherm model with a correlation coefficient of 0.97. Evidence from molecular dynamics model shows that Methyl stearate (Line 5) and (3Z, 13Z)-2-methyloctadeca-3,13-dien-1-ol (line 11) were found to have the highest binding energy of -197.69 ± 3.12 and-194.56 ± 10.04 in kcal/mol respectively. The binding energy of these compounds indicates that they would be a very good corrosion inhibitor for mild steel and other Fe related materials.

Keywords: binding energy, corrosion, inhibitor, Langmuir isotherm, mild steel.

Procedia PDF Downloads 361
2411 Encapsulation of Venlafaxine-Dowex® Resinate: A Once Daily Multiple Unit Formulation

Authors: Salwa Mohamed Salah Eldin, Howida Kamal Ibrahim

Abstract:

Introduction: Major depressive disorder affects high proportion of the world’s population presenting cost load in health care. Extended release venlafaxine is more convenient and could reduce discontinuation syndrome. The once daily dosing also reduces the potential for adverse events such as nausea due to reduced Cmax. Venlafaxine is an effective first-line agent in the treatment of depression. A once daily formulation was designed to enhance patient compliance. Complexing with a resin was suggested to improve loading of the water soluble drug. The formulated systems were thoroughly evaluated in vitro to prove superiority to previous trials and were compared to the commercial extended release product in experimental animals. Materials and Methods: Venlafaxine-resinates were prepared using Dowex®50WX4-400 and Dowex®50WX8-100 at drug to resin weight ratio of 1: 1. The prepared resinates were evaluated for their drug content, particle shape and surface properties and in vitro release profile in gradient pH. The release kinetics and mechanism were evaluated. Venlafaxine-Dowex® resinates were encapsulated using O/W solvent evaporation technique. Poly-ε-caprolactone, Poly(D, L-lactide-co-glycolide) ester, Poly(D, L-lactide) ester and Eudragit®RS100 were used as coating polymers alone and in combination. Drug-resinate microcapsules were evaluated for morphology, entrapment efficiency and in-vitro release profile. The selected formula was tested in rabbits using a randomized, single-dose, 2-way crossover study against Effexor-XR tablets under fasting condition. Results and Discussion: The equilibrium time was 30 min for Dowex®50WX4-400 and 90 min for Dowex®50WX8-100. The percentage drug loaded was 93.96 and 83.56% for both resins, respectively. Both drug-Dowex® resintes were efficient in sustaining venlafaxine release in comparison to the free drug (up to 8h.). Dowex®50WX4-400 based venlafaxine-resinate was selected for further encapsulation to optimize the release profile for once daily dosing and to lower the burst effect. The selected formula (coated with a mixture of Eudragit RS and PLGA in a ratio of 50/50) was chosen by applying a group of mathematical equations according to targeted values. It recorded the minimum burst effect, the maximum MDT (Mean dissolution time) and a Q24h (percentage drug released after 24 hours) between 95 and 100%. The 90% confidence intervals for the test/reference mean ratio of the log-transformed data of AUC0–24 and AUC0−∞ are within (0.8–1.25), which satisfies the bioequivalence criteria. Conclusion: The optimized formula could be a promising extended release form of the water soluble, short half lived venlafaxine. Being a multiple unit formulation, it lowers the probability of dose dumping and reduces the inter-subject variability in absorption.

Keywords: biodegradable polymers, cation-exchange resin, microencapsulation, venlafaxine hcl

Procedia PDF Downloads 394
2410 Biodegradable Poly D,L-Lactide-Co-Glycolic Acid Microparticle Vaccine against Aeromonas hydrophila Infection

Authors: Saekil Yun, Sib Sankar Giri, Jin Woo Jun, Hyoun Joong Kim, Sang Guen Kim, Sang Wha Kim, Jung Woo Kang, Se Jin Han, Se Chang Park

Abstract:

In aquaculture, vaccination is important to control and prevent diseases. In the study, we utilized poly D,L-lactide-co-glycolic acid (PLGA) microparticles (MPs) for encapsulating formalin-killed Aeromonas hydrophila cells. To assess the innate and adaptive immune responses, carps and loaches were used for the experiments. Fish were divided into three groups (A, B, C). Total antigen of 0.1 ml vaccine was adjusted by 2 x 108 CFU and injected via intraperitoneal route. Group A was vaccinated with 0.1 ml of PLGA vaccine, group B was with 0.1 ml of FKC vaccine and group C was with 0.1 ml of sterile PBS. All three groups were challenged with A. hydrophila and challenge dose was lethal dose (LD50). Loaches and carp were then challenged with A. hydrophila at 12 and 20 weeks post vaccination (wpv), and 10 and 14 wpv, respectively, and relative survival rates were calculated. For both fish species, the curve of antibody titer over time was shallower in the PLGA group than the FKC group and the PLGA groups demonstrated higher survival rates at all time-points. In the groups of PLGA-MP, relative mRNA levels of IL-1β, TNF-α, lysozyme C and IgM were significantly upregulated than FKC treated groups. Biodegradable PLGA microparticle vaccine could induce longer immune responses than original FKC vaccines to protect from A. hydrophila infection.

Keywords: PLGA, microparticles, Aeromonas hydrophila, vaccine

Procedia PDF Downloads 272
2409 Leuco Dye-Based Thermochromic Systems for Application in Temperature Sensing

Authors: Magdalena Wilk-Kozubek, Magdalena Rowińska, Krzysztof Rola, Joanna Cybińska

Abstract:

Leuco dye-based thermochromic systems are classified as intelligent materials because they exhibit thermally induced color changes. Thanks to this feature, they are mainly used as temperature sensors in many industrial sectors. For example, placing a thermochromic material on a chemical reactor may warn about exceeding the maximum permitted temperature for a chemical process. Usually two components, a color former and a developer are needed to produce a system with irreversible color change. The color former is an electron donating (proton accepting) compound such as fluoran leuco dye. The developer is an electron accepting (proton donating) compound such as organic carboxylic acid. When the developer melts, the color former - developer complex is created and the termochromic system becomes colored. Typically, the melting point of the applied developer determines the temperature at which the color change occurs. When the lactone ring of the color former is closed, then the dye is in its colorless state. The ring opening, induced by the addition of a proton, causes the dye to turn into its colored state. Since the color former and the developer are often solid, they can be incorporated into polymer films to facilitate their practical use in industry. The objective of this research was to fabricate a leuco dye-based termochromic system that will irreversibly change color after reaching the temperature of 100°C. For this purpose, benzofluoran leuco dye (as color former) and phenoxyacetic acid (as developer with a melting point of 100°C) were introduced into the polymer films during the drop casting process. The film preparation process was optimized in order to obtain thin films with appropriate properties such as transparency, flexibility and homogeneity. Among the optimized factors were the concentration of benzofluoran leuco dye and phenoxyacetic acid, the type, average molecular weight and concentration of the polymer, and the type and concentration of the surfactant. The selected films, containing benzofluoran leuco dye and phenoxyacetic acid, were combined by mild heat treatment. Structural characterization of single and combined films was carried out by FTIR spectroscopy, morphological analysis was performed by optical microscopy and SEM, phase transitions were examined by DSC, color changes were investigated by digital photography and UV-Vis spectroscopy, while emission changes were studied by photoluminescence spectroscopy. The resulting thermochromic system is colorless at room temperature, but after reaching 100°C the developer melts and it turns irreversibly pink. Therefore, it could be used as an additional sensor to warn against boiling of water in power plants using water cooling. Currently used electronic temperature indicators are prone to faults and unwanted third-party actions. The sensor constructed in this work is transparent, thanks to which it can be unnoticed by an outsider and constitute a reliable reference for the person responsible for the apparatus.

Keywords: color developer, leuco dye, thin film, thermochromism

Procedia PDF Downloads 100