Search results for: ultrasound 3D images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2831

Search results for: ultrasound 3D images

1421 A Rare Entity: Case Report on Anaesthetic Management in Robinow Syndrome

Authors: Vidhi Chandra, Arshpreet Singh Grewal

Abstract:

A five-year-old male child born from non-consanguineous marriage, who presented with complaints of growth retardation and no appreciable increase in the penile size since birth and he was posted for de-gloving of penis with dissection of corpora under anaesthesia. After thorough preoperative evaluation it was revealed that patient had peculiar facial dysmorphism that of Robinow Syndrome, high arched palate, Mallampati grade III, mesomelic limbs, scoliotic spine and short stature. All routine investigation were within normal limit, electrocardiography (ECG) and 2D-Echocardiography (ECHO) were normal. In antero-posterior roentgenogram chest showed butterfly and hemivertebrae at multiple levels. The patient was considered to be ASA II. On the day of surgery after ensuring fasting of 6 hours, patient was taken in operation theatre, all standard ASA monitoring was done with ECG, non-invasive blood pressure, peripheral oxygen saturation (SpO2) and body temperature. The patient was pre-oxygenated with 100% oxygen with anatomical face mask. General anaesthesia was induced with Sevoflurane 1-8%, and airway was secured with an appropriate size supraglottic airway and anaesthesia was maintained with nitrous oxide and oxygen in 1:1 ratio along with sevoflurane 2%. An ultrasound guided caudal block was given owing to the skeletal deformities making it difficult even under USG guidance. Post operatively patient was given supportive care with proper hydration, antibiotics, anti-inflammatory and analgesics. He was discharged the next day and followed up weekly for a month. DISCUSSION Robinow syndrome is genetically inherited as autosomal dominant, autosomal recessive or heterogenous disorder involving tyrosine kinase ROR2 gene located on chromosome 9. It has low incidence with no preponderance for any gender. Though intelligence is normal but developmental delay and mental retardation occurs in 20%cases

Keywords: Robinow Syndrome, dwarfism, paediatric, anaesthesia

Procedia PDF Downloads 108
1420 Contourlet Transform and Local Binary Pattern Based Feature Extraction for Bleeding Detection in Endoscopic Images

Authors: Mekha Mathew, Varun P Gopi

Abstract:

Wireless Capsule Endoscopy (WCE) has become a great device in Gastrointestinal (GI) tract diagnosis, which can examine the entire GI tract, especially the small intestine without invasiveness and sedation. Bleeding in the digestive tract is a symptom of a disease rather than a disease itself. Hence the detection of bleeding is important in diagnosing many diseases. In this paper we proposes a novel method for distinguishing bleeding regions from normal regions based on Contourlet transform and Local Binary Pattern (LBP). Experiments show that this method provides a high accuracy rate of 96.38% in CIE XYZ colour space for k-Nearest Neighbour (k-NN) classifier.

Keywords: Wireless Capsule Endoscopy, local binary pattern, k-NN classifier, contourlet transform

Procedia PDF Downloads 487
1419 A Fully Automated New-Fangled VESTAL to Label Vertebrae and Intervertebral Discs

Authors: R. Srinivas, K. V. Ramana

Abstract:

This paper presents a novel method called VESTAL to label vertebrae and inter vertebral discs. Each vertebra has certain statistical features properties. To label vertebrae and discs, a new equation to model the path of spinal cord is derived using statistical properties of the spinal canal. VESTAL uses this equation for labeling vertebrae and discs. For each vertebrae and inter vertebral discs both posterior, interior width, height are measured. The calculated values are compared with real values which are measured using venires calipers and the comparison produced 95% efficiency and accurate results. The VESTAL is applied on 50 patients 350 MR images and obtained 100% accuracy in labeling.

Keywords: spine, vertebrae, inter vertebral disc, labeling, statistics, texture, disc

Procedia PDF Downloads 365
1418 HRCT of the Chest and the Role of Artificial Intelligence in the Evaluation of Patients with COVID-19

Authors: Parisa Mansour

Abstract:

Introduction: Early diagnosis of coronavirus disease (COVID-19) is extremely important to isolate and treat patients in time, thus preventing the spread of the disease, improving prognosis and reducing mortality. High-resolution computed tomography (HRCT) chest imaging and artificial intelligence (AI)-based analysis of HRCT chest images can play a central role in the treatment of patients with COVID-19. Objective: To investigate different chest HRCT findings in different stages of COVID-19 pneumonia and to evaluate the potential role of artificial intelligence in the quantitative assessment of lung parenchymal involvement in COVID-19 pneumonia. Materials and Methods: This retrospective observational study was conducted between May 1, 2020 and August 13, 2020. The study included 2169 patients with COVID-19 who underwent chest HRCT. HRCT images showed the presence and distribution of lesions such as: ground glass opacity (GGO), compaction, and any special patterns such as septal thickening, inverted halo, mark, etc. HRCT findings of the breast at different stages of the disease (early: andlt) 5 days, intermediate: 6-10 days and late stage: >10 days). A CT severity score (CTSS) was calculated based on the extent of lung involvement on HRCT, which was then correlated with clinical disease severity. Use of artificial intelligence; Analysis of CT pneumonia and quot; An algorithm was used to quantify the extent of pulmonary involvement by calculating the percentage of pulmonary opacity (PO) and gross opacity (PHO). Depending on the type of variables, statistically significant tests such as chi-square, analysis of variance (ANOVA) and post hoc tests were applied when appropriate. Results: Radiological findings were observed in HRCT chest in 1438 patients. A typical pattern of COVID-19 pneumonia, i.e., bilateral peripheral GGO with or without consolidation, was observed in 846 patients. About 294 asymptomatic patients were radiologically positive. Chest HRCT in the early stages of the disease mostly showed GGO. The late stage was indicated by such features as retinal enlargement, thickening and the presence of fibrous bands. Approximately 91.3% of cases with a CTSS = 7 were asymptomatic or clinically mild, while 81.2% of cases with a score = 15 were clinically severe. Mean PO and PHO (30.1 ± 28.0 and 8.4 ± 10.4, respectively) were significantly higher in the clinically severe categories. Conclusion: Because COVID-19 pneumonia progresses rapidly, radiologists and physicians should become familiar with typical TC chest findings to treat patients early, ultimately improving prognosis and reducing mortality. Artificial intelligence can be a valuable tool in treating patients with COVID-19.

Keywords: chest, HRCT, covid-19, artificial intelligence, chest HRCT

Procedia PDF Downloads 70
1417 A New Cytoprotective Drug on the Basis of Cytisine: Phase I Clinical Trial Results

Authors: B. Yermekbayeva, A. Gulyayaev, T. Nurgozhin, C. Bektur

Abstract:

Cytisine aminophosphonate under the name "Cytafat" was approved for clinical trials in Republic of Kazakhstan as a putative liver protecting drug for the treatment of acute toxic hepatitis. A method of conducting the clinical trial is a double blind study. Total number of patients -71, aged from 16 to 56 years. Research on healthy volunteers determined the maximal tolerable doze of "Cytafat" as 200 mg/kg. Side effects when administered at high dozes (100-200 mg/kg) are tachycardia and increase of arterial blood pressure. The drug is tested in the treatment of 28 patients with a syndrome of hepatocellular failure (a poisoning with substitutes of alcohol, rat poison, or medical products). "Cytafat" was intravenously administered at a dose of 10 mg/kg in 200 ml of 5 % glucose solution once daily. The number of administrations: 1-3. In the comparison group, 23 patients were treated intravenously once a day with “Essenciale H” at a dose of 10 ml. 20 patients received a placebo (10 ml of glucose intravenously). In all cases of toxic hepatopathology the significant positive clinical effect of the testing drug distinguishable from placebo and surpassing the alternative was observed. Within a day after administration a sharp reduction of cytolitic syndrome parameters (ALT, AST, alkaline phosphatase, thymol turbidity test, GGT) was registered, a reduction of the severity of cholestatic syndrome (bilirubin decreased) was recorded, significantly decreased indices of lipid peroxidation. The following day, in all cases the positive dynamics was determined with ultrasound study (reduction of diffuse changes and events of reactive pancreatitis), hepatomegaly disappeared. Normalization of all parameters occurred in 2-3 times faster, than when using the drug "Essenciale H" and placebo. Average term of elimination of toxic hepatopathy when using the drug "Cytafat" -2,8 days, "Essenciale H" -7,2 days, and placebo -10,6 days. The new drug "Cytafat" has expressed cytoprotective properties.

Keywords: cytisine, cytoprotection, hepatopathy, hepatoprotection

Procedia PDF Downloads 371
1416 Images of Spiritism in Brazilian Catholic Discourse (1889-1937)

Authors: Frantisek Kalenda

Abstract:

With the ultimate triumph of the republican movement in 1889 in Brazil and adoption of constitution promoting religious freedom, formerly dominant Roman Catholic Church entered a long period of struggle to recover its lost position, fighting both liberal and secular character of the new regime and rising competition on the “market of faith”. Spiritism in its originally Brazilian form proved to be one if its key adversaries during the First (1889-1930) and Second Republic (1930-1937), provoking significant attempt within official Church to discredit and destroy the movement. This paper explores this effort through Catholic portrayal of Spiritism in its official media, focusing, on the creation of stereotypes and both theological and “scientific” arguments used against it. Its core is based on primary sources’ analysis, mainly influential A Ordem and Mensageiro da Fé.

Keywords: Catholic Church, media, other, spiritism, stereotype

Procedia PDF Downloads 276
1415 Data Hiding in Gray Image Using ASCII Value and Scanning Technique

Authors: R. K. Pateriya, Jyoti Bharti

Abstract:

This paper presents an approach for data hiding methods which provides a secret communication between sender and receiver. The data is hidden in gray-scale images and the boundary of gray-scale image is used to store the mapping information. In this an approach data is in ASCII format and the mapping is in between ASCII value of hidden message and pixel value of cover image, since pixel value of an image as well as ASCII value is in range of 0 to 255 and this mapping information is occupying only 1 bit per character of hidden message as compared to 8 bit per character thus maintaining good quality of stego image.

Keywords: ASCII value, cover image, PSNR, pixel value, stego image, secret message

Procedia PDF Downloads 419
1414 Computational Fluid Dynamic Investigation into the Relationship between Pressure and Velocity Distributions within a Microfluidic Feedback Oscillator

Authors: Zara L. Sheady

Abstract:

Fluidic oscillators are being utilised in an increasing number of applications in a wide variety of areas; these include on-board vehicle cleaning systems, flow separation control on aircraft and in fluidic circuitry. With this increased use, there is a further understanding required for the mechanics of the fluidics of the fluidic oscillator and why they work in the manner that they do. ANSYS CFX has been utilized to visualise the pressure and velocity within a microfluidic feedback oscillator. The images demonstrate how the pressure vortices build within the oscillator at the points where the velocity is diverted from linear motion through the oscillator. With an enhanced understanding of the pressure and velocity distributions within a fluidic oscillator, it will enable users of microfluidics to more greatly tailor fluidic nozzles to their specification.

Keywords: ANSYS CFX, control, fluidic oscillators, mechanics, pressure, relationship, velocity

Procedia PDF Downloads 340
1413 Evaluation of the Radiolabelled 68GA-DOTATOC Complex in Adenocarcinoma Breast Cancer

Authors: S. Zolghadri, M. Naderi, H. Yousefnia, B. Alirzapour, A. R. Jalilian, A. Ramazani

Abstract:

Nowadays, 68Ga-DOTATOC has been known as a potential agent for the detection of neuroendocrine tumours and it has indicated higher sensitivity compared with the 111In-Octeroetide. The aim of this study was to evaluate the effectiveness of this new agent in the diagnosis of adenocarcinoma breast cancer. 68Ga-DOTATOC was prepared with the radiochemical purity of higher than 98% and by the specific activity of 39.6 TBq/mmol. 37 MBq of the complex was injected intravenously into the BULB/c mice with adenocarcinoma breast cancer. PET/CT images were acquired after 30, 60 and 90 min post injection demonstrated significant accumulation in the tumour sites. Also, considerable activity was observed in the kidney and bladder as the main routs of excretion. Generally, the results showed that 68Ga-DOTATOC can be considered as a suitable complex for diagnosis of the adenocarcinoma breast cancer using PET procedure.

Keywords: adenocarcinoma breast cancer, 68Ga, octreotide, imaging

Procedia PDF Downloads 343
1412 Secure Image Retrieval Based on Orthogonal Decomposition under Cloud Environment

Authors: Y. Xu, L. Xiong, Z. Xu

Abstract:

In order to protect data privacy, image with sensitive or private information needs to be encrypted before being outsourced to the cloud. However, this causes difficulties in image retrieval and data management. A secure image retrieval method based on orthogonal decomposition is proposed in the paper. The image is divided into two different components, for which encryption and feature extraction are executed separately. As a result, cloud server can extract features from an encrypted image directly and compare them with the features of the queried images, so that the user can thus obtain the image. Different from other methods, the proposed method has no special requirements to encryption algorithms. Experimental results prove that the proposed method can achieve better security and better retrieval precision.

Keywords: secure image retrieval, secure search, orthogonal decomposition, secure cloud computing

Procedia PDF Downloads 488
1411 Fast Algorithm to Determine Initial Tsunami Wave Shape at Source

Authors: Alexander P. Vazhenin, Mikhail M. Lavrentiev, Alexey A. Romanenko, Pavel V. Tatarintsev

Abstract:

One of the problems obstructing effective tsunami modelling is the lack of information about initial wave shape at source. The existing methods; geological, sea radars, satellite images, contain an important part of uncertainty. Therefore, direct measurement of tsunami waves obtained at the deep water bottom peruse recorders is also used. In this paper we propose a new method to reconstruct the initial sea surface displacement at tsunami source by the measured signal (marigram) approximation with the help of linear combination of synthetic marigrams from the selected set of unit sources, calculated in advance. This method has demonstrated good precision and very high performance. The mathematical model and results of numerical tests are here described.

Keywords: numerical tests, orthogonal decomposition, Tsunami Initial Sea Surface Displacement

Procedia PDF Downloads 473
1410 Drug-Based Nanoparticles: Comparative Study of the Effect Drug Type on Release Kinetics and Cell Viability

Authors: Chukwudalu C. Nwazojie, Wole W. Soboyejo, John Obayemi, Ali Salifu Azeko, Sandra M. Jusu, Chinyerem M. Onyekanne

Abstract:

The conventional methods for the diagnosis and treatment of breast cancer include bulk systematic mammography, ultrasound, dynamic contrast-enhanced fast 3D gradient-echo (GRE) magnetic resonance imaging (MRI), surgery, chemotherapy, and radiotherapy. However, nanoparticles and drug-loaded polymer microspheres for disease (cancer) targeting and treatment have enormous potential to enhance the approaches that are used today. The goal is to produce an implantable biomedical device for localized breast cancer drug delivery within Africa and the world. The main advantage of localized delivery is that it reduces the amount of drug that is needed to have a therapeutic effect. Polymer blends of poly (D,L-lactide-co-glycolide) (PLGA) and polycaprolactone (PCL), which are biodegradable, is used as a drug excipient. This work focuses on the development of PLGA-PCL (poly (D,L-lactide-co-glycolide) (PLGA) blended with based injectable drug microspheres and are loaded with anticancer drugs (prodigiosin (PG), and paclitaxel (PTX) control) and also the conjugated forms of the drug functionalized with LHRH (luteinizing hormone-releasing hormone) (PG-LHRH, and PTX- LHRH control), using a single-emulsion solvent evaporation technique. The encapsulation was done in the presence of PLGA-PCL (as a polymer matrix) and poly-(vinyl alcohol) (PVA) (as an emulsifier). Comparative study of the various drugs release kinetics and degradation mechanisms of the PLGA-PCL with an encapsulated drug is achieved, and the implication of this study is for the potential application of prodigiosin PLGA-PCL loaded microparticles for controlled delivery of cancer drug and treatment to prevent the regrowth or locoregional recurrence, following surgical resection of triple-negative breast tumor.

Keywords: cancer, polymers, drug kinetics, nanoparticles

Procedia PDF Downloads 104
1409 Remote Video Supervision via DVB-H Channels

Authors: Hanen Ghabi, Youssef Oudhini, Hassen Mnif

Abstract:

By reference to recent publications dealing with the same problem, and as a follow-up to this research work already published, we propose in this article a new original idea of tele supervision exploiting the opportunities offered by the DVB-H system. The objective is to exploit the RF channels of the DVB-H network in order to insert digital remote monitoring images dedicated to a remote solar power plant. Indeed, the DVB-H (Digital Video Broadcast-Handheld) broadcasting system was designed and deployed for digital broadcasting on the same platform as the parent system, DVB-T. We claim to be able to exploit this approach in order to satisfy the operator of remote photovoltaic sites (and others) in order to remotely control the components of isolated installations by means of video surveillance.

Keywords: video surveillance, digital video broadcast-handheld, photovoltaic sites, AVC

Procedia PDF Downloads 188
1408 Augmented Reality as Enhancer of the Lean Philosophy: An Exploratory Study

Authors: P. Gil, F. Charrua-Santos, A. A. Baptista, S. Azevedo, A. Espirito-Santo, J. Páscoa

Abstract:

Lean manufacturing is a philosophy of industrial management that aims to identify and eliminate any waste that exists in the companies. The augmented reality is a new technology that stills being developed in terms of software and hardware. This technology consists of an image capture device, a device for data processing and an image visualization equipment to visualize collected and processed images. It is characterized by being a technology that merges the reality with the virtual environment, so there is an instantaneous interaction between the two environments. The present work intends to demonstrate that the use of the augmented reality will contribute to improve some tools and methods used in Lean manufacturing philosophy. Through several examples of application in industry it will be demonstrated that the technological impact of the augmented reality on the Lean Manufacturing philosophy contribute to added value improvements.

Keywords: lean manufacturing, augmented reality, case studies, value

Procedia PDF Downloads 629
1407 Development of a Catalogs System for Augmented Reality Applications

Authors: J. Ierache, N. A. Mangiarua, S. A. Bevacqua, N. N. Verdicchio, M. E. Becerra, D. R. Sanz, M. E. Sena, F. M. Ortiz, N. D. Duarte, S. Igarza

Abstract:

Augmented Reality is a technology that involves the overlay of virtual content, which is context or environment sensitive, on images of the physical world in real time. This paper presents the development of a catalog system that facilitates and allows the creation, publishing, management and exploitation of augmented multimedia contents and Augmented Reality applications, creating an own space for anyone that wants to provide information to real objects in order to edit and share it then online with others. These spaces would be built for different domains without the initial need of expert users. Its operation focuses on the context of Web 2.0 or Social Web, with its various applications, developing contents to enrich the real context in which human beings act permitting the evolution of catalog’s contents in an emerging way.

Keywords: augmented reality, catalog system, computer graphics, mobile application

Procedia PDF Downloads 355
1406 Wavelet Based Advanced Encryption Standard Algorithm for Image Encryption

Authors: Ajish Sreedharan

Abstract:

With the fast evolution of digital data exchange, security information becomes much important in data storage and transmission. Due to the increasing use of images in industrial process, it is essential to protect the confidential image data from unauthorized access. As encryption process is applied to the whole image in AES ,it is difficult to improve the efficiency. In this paper, wavelet decomposition is used to concentrate the main information of image to the low frequency part. Then, AES encryption is applied to the low frequency part. The high frequency parts are XORed with the encrypted low frequency part and a wavelet reconstruction is applied. Theoretical analysis and experimental results show that the proposed algorithm has high efficiency, and satisfied security suits for image data transmission.

Keywords: discrete wavelet transforms, AES, dynamic SBox

Procedia PDF Downloads 434
1405 Performance of Hybrid Image Fusion: Implementation of Dual-Tree Complex Wavelet Transform Technique

Authors: Manoj Gupta, Nirmendra Singh Bhadauria

Abstract:

Most of the applications in image processing require high spatial and high spectral resolution in a single image. For example satellite image system, the traffic monitoring system, and long range sensor fusion system all use image processing. However, most of the available equipment is not capable of providing this type of data. The sensor in the surveillance system can only cover the view of a small area for a particular focus, yet the demanding application of this system requires a view with a high coverage of the field. Image fusion provides the possibility of combining different sources of information. In this paper, we have decomposed the image using DTCWT and then fused using average and hybrid of (maxima and average) pixel level techniques and then compared quality of both the images using PSNR.

Keywords: image fusion, DWT, DT-CWT, PSNR, average image fusion, hybrid image fusion

Procedia PDF Downloads 609
1404 Multi-Labeled Aromatic Medicinal Plant Image Classification Using Deep Learning

Authors: Tsega Asresa, Getahun Tigistu, Melaku Bayih

Abstract:

Computer vision is a subfield of artificial intelligence that allows computers and systems to extract meaning from digital images and video. It is used in a wide range of fields of study, including self-driving cars, video surveillance, medical diagnosis, manufacturing, law, agriculture, quality control, health care, facial recognition, and military applications. Aromatic medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, essential oils, decoration, cleaning, and other natural health products for therapeutic and Aromatic culinary purposes. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs but also going to export for valuable foreign currency exchange. In Ethiopia, there is a lack of technologies for the classification and identification of Aromatic medicinal plant parts and disease type cured by aromatic medicinal plants. Farmers, industry personnel, academicians, and pharmacists find it difficult to identify plant parts and disease types cured by plants before ingredient extraction in the laboratory. Manual plant identification is a time-consuming, labor-intensive, and lengthy process. To alleviate these challenges, few studies have been conducted in the area to address these issues. One way to overcome these problems is to develop a deep learning model for efficient identification of Aromatic medicinal plant parts with their corresponding disease type. The objective of the proposed study is to identify the aromatic medicinal plant parts and their disease type classification using computer vision technology. Therefore, this research initiated a model for the classification of aromatic medicinal plant parts and their disease type by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides roots, flowers, fruits, and latex. For this study, the researcher used RGB leaf images with a size of 128x128 x3. In this study, the researchers trained five cutting-edge models: convolutional neural network, Inception V3, Residual Neural Network, Mobile Network, and Visual Geometry Group. Those models were chosen after a comprehensive review of the best-performing models. The 80/20 percentage split is used to evaluate the model, and classification metrics are used to compare models. The pre-trained Inception V3 model outperforms well, with training and validation accuracy of 99.8% and 98.7%, respectively.

Keywords: aromatic medicinal plant, computer vision, convolutional neural network, deep learning, plant classification, residual neural network

Procedia PDF Downloads 194
1403 A Study of Parameters That Have an Influence on Fabric Prints in Judging the Attractiveness of a Female Body Shape

Authors: Man N. M. Cheung

Abstract:

In judging the attractiveness of female body shape, visual sense is one of the important means. The ratio and proportion of body shape influence the perception of female physical attractiveness. This study aims to examine visual perception of digital textile prints on a virtual 3D model in judging the attractiveness of the body shape. Also, investigate the influences when using different shape parameters and their relationships. Participants were asked to conduct a set of questionnaires with images to rank the attractiveness of the female body shape. Results showed that morphing the fabric prints with a certain ratio and combination of shape parameters - waist and hip, can enhance the attractiveness of the female body shape.

Keywords: digital printing, 3D body modeling, fashion print design, body shape attractiveness

Procedia PDF Downloads 180
1402 A Methodology Based on Image Processing and Deep Learning for Automatic Characterization of Graphene Oxide

Authors: Rafael do Amaral Teodoro, Leandro Augusto da Silva

Abstract:

Originated from graphite, graphene is a two-dimensional (2D) material that promises to revolutionize technology in many different areas, such as energy, telecommunications, civil construction, aviation, textile, and medicine. This is possible because its structure, formed by carbon bonds, provides desirable optical, thermal, and mechanical characteristics that are interesting to multiple areas of the market. Thus, several research and development centers are studying different manufacturing methods and material applications of graphene, which are often compromised by the scarcity of more agile and accurate methodologies to characterize the material – that is to determine its composition, shape, size, and the number of layers and crystals. To engage in this search, this study proposes a computational methodology that applies deep learning to identify graphene oxide crystals in order to characterize samples by crystal sizes. To achieve this, a fully convolutional neural network called U-net has been trained to segment SEM graphene oxide images. The segmentation generated by the U-net is fine-tuned with a standard deviation technique by classes, which allows crystals to be distinguished with different labels through an object delimitation algorithm. As a next step, the characteristics of the position, area, perimeter, and lateral measures of each detected crystal are extracted from the images. This information generates a database with the dimensions of the crystals that compose the samples. Finally, graphs are automatically created showing the frequency distributions by area size and perimeter of the crystals. This methodological process resulted in a high capacity of segmentation of graphene oxide crystals, presenting accuracy and F-score equal to 95% and 94%, respectively, over the test set. Such performance demonstrates a high generalization capacity of the method in crystal segmentation, since its performance considers significant changes in image extraction quality. The measurement of non-overlapping crystals presented an average error of 6% for the different measurement metrics, thus suggesting that the model provides a high-performance measurement for non-overlapping segmentations. For overlapping crystals, however, a limitation of the model was identified. To overcome this limitation, it is important to ensure that the samples to be analyzed are properly prepared. This will minimize crystal overlap in the SEM image acquisition and guarantee a lower error in the measurements without greater efforts for data handling. All in all, the method developed is a time optimizer with a high measurement value, considering that it is capable of measuring hundreds of graphene oxide crystals in seconds, saving weeks of manual work.

Keywords: characterization, graphene oxide, nanomaterials, U-net, deep learning

Procedia PDF Downloads 164
1401 Comparison of the Effectiveness of Tree Algorithms in Classification of Spongy Tissue Texture

Authors: Roza Dzierzak, Waldemar Wojcik, Piotr Kacejko

Abstract:

Analysis of the texture of medical images consists of determining the parameters and characteristics of the examined tissue. The main goal is to assign the analyzed area to one of two basic groups: as a healthy tissue or a tissue with pathological changes. The CT images of the thoracic lumbar spine from 15 healthy patients and 15 with confirmed osteoporosis were used for the analysis. As a result, 120 samples with dimensions of 50x50 pixels were obtained. The set of features has been obtained based on the histogram, gradient, run-length matrix, co-occurrence matrix, autoregressive model, and Haar wavelet. As a result of the image analysis, 290 descriptors of textural features were obtained. The dimension of the space of features was reduced by the use of three selection methods: Fisher coefficient (FC), mutual information (MI), minimization of the classification error probability and average correlation coefficients between the chosen features minimization of classification error probability (POE) and average correlation coefficients (ACC). Each of them returned ten features occupying the initial place in the ranking devised according to its own coefficient. As a result of the Fisher coefficient and mutual information selections, the same features arranged in a different order were obtained. In both rankings, the 50% percentile (Perc.50%) was found in the first place. The next selected features come from the co-occurrence matrix. The sets of features selected in the selection process were evaluated using six classification tree methods. These were: decision stump (DS), Hoeffding tree (HT), logistic model trees (LMT), random forest (RF), random tree (RT) and reduced error pruning tree (REPT). In order to assess the accuracy of classifiers, the following parameters were used: overall classification accuracy (ACC), true positive rate (TPR, classification sensitivity), true negative rate (TNR, classification specificity), positive predictive value (PPV) and negative predictive value (NPV). Taking into account the classification results, it should be stated that the best results were obtained for the Hoeffding tree and logistic model trees classifiers, using the set of features selected by the POE + ACC method. In the case of the Hoeffding tree classifier, the highest values of three parameters were obtained: ACC = 90%, TPR = 93.3% and PPV = 93.3%. Additionally, the values of the other two parameters, i.e., TNR = 86.7% and NPV = 86.6% were close to the maximum values obtained for the LMT classifier. In the case of logistic model trees classifier, the same ACC value was obtained ACC=90% and the highest values for TNR=88.3% and NPV= 88.3%. The values of the other two parameters remained at a level close to the highest TPR = 91.7% and PPV = 91.6%. The results obtained in the experiment show that the use of classification trees is an effective method of classification of texture features. This allows identifying the conditions of the spongy tissue for healthy cases and those with the porosis.

Keywords: classification, feature selection, texture analysis, tree algorithms

Procedia PDF Downloads 184
1400 Entropy Analysis in a Bubble Column Based on Ultrafast X-Ray Tomography Data

Authors: Stoyan Nedeltchev, Markus Schubert

Abstract:

By means of the ultrafast X-ray tomography facility, data were obtained at different superficial gas velocities UG in a bubble column (0.1 m in ID) operated with an air-deionized water system at ambient conditions. Raw reconstructed images were treated by both the information entropy (IE) and the reconstruction entropy (RE) algorithms in order to identify the main transition velocities in a bubble column. The IE values exhibited two well-pronounced minima at UG=0.025 m/s and UG=0.085 m/s identifying the boundaries of the homogeneous, transition and heterogeneous regimes. The RE extracted from the central region of the column’s cross-section exhibited only one characteristic peak at UG=0.03 m/s, which was attributed to the transition from the homogeneous to the heterogeneous flow regime. This result implies that the transition regime is non-existent in the core of the column.

Keywords: bubble column, ultrafast X-ray tomography, information entropy, reconstruction entropy

Procedia PDF Downloads 397
1399 Surgical Treatment Tumors and Cysts of the Pancreas in Children

Authors: Trunov V.O., Ryabov A. B., Poddubny I.V

Abstract:

Introduction: cystic and solid pancreatic tumors have a relevant and disruptive position in many positions. The results of the treatment of children with tumors and pancreatic cysts aged 3 to 17 years for the period from 2008 to 2019 on the basis of the Morozov State Children's Clinical Hospital in Moscow were analyzed. The total number of children with solid tumors was 17, and 31 with cysts. In all children, the diagnosis was made on the basis of ultrasound, followed by CT and MRI. In most patients with solid tumors, they were located in the area of the pancreas tail - 58%, in the body area - 14%, in the area of the pancreatic head - 28%. In patients with pancreatic cysts, the distribution of patients by topography was as follows: head of the pancreas - 10%, body of the pancreas - 16%, tail of the pancreas - 68%, total cystic transformation of the Wirsung duct - 6%. In pancreatic cysts, the method of surgical treatment was based on the results of MRCP, the level of amylase in the contents of the cyst, and the localization of the cyst. Thus, pathogenetically substantiated treatment included: excision of cysts, internal drainage on an isolated loop according to Ru, the formation of pancreatojejunoanastomosis in a child with the total cystic transformation of the Wirsung duct. In patients with solid pancreatic lesions, pancretoduodenalresection, central resection of the pancreas, and distal resection from laparotomy and laparoscopic access were performed. In the postoperative period, in order to prevent pancreatitis, all children underwent antisecretory therapy, parenteral nutrition, and drainage of the omental bursa. Results: hospital stay ranged from 7 to 12 days. The duration of postoperative fermentemia in patients with solid formations lasted from 3 to 6 days. In all cases, according to the histological examination, a pseudopapillary tumor of the pancreas was revealed. In the group of children with pancreatic cysts, fermentemia was observed from 2 to 4 days, recurrence of cysts in the long term was detected in 3 children (10%). Conclusions: the treatment of cystic and solid pancreatic neoplasms is a difficult task in connection with the anatomical and functional features of the organ.

Keywords: pancreas, tumors, cysts, resection, laparoscopy, children

Procedia PDF Downloads 145
1398 Trabecular Texture Analysis Using Fractal Metrics for Bone Fragility Assessment

Authors: Khaled Harrar, Rachid Jennane

Abstract:

The purpose of this study is the discrimination of 28 postmenopausal with osteoporotic femoral fractures from an age-matched control group of 28 women using texture analysis based on fractals. Two pre-processing approaches are applied on radiographic images; these techniques are compared to highlight the choice of the pre-processing method. Furthermore, the values of the fractal dimension are compared to those of the fractal signature in terms of the classification of the two populations. In a second analysis, the BMD measure at proximal femur was compared to the fractal analysis, the latter, which is a non-invasive technique, allowed a better discrimination; the results confirm that the fractal analysis of texture on calcaneus radiographs is able to discriminate osteoporotic patients with femoral fracture from controls. This discrimination was efficient compared to that obtained by BMD alone. It was also present in comparing subgroups with overlapping values of BMD.

Keywords: osteoporosis, fractal dimension, fractal signature, bone mineral density

Procedia PDF Downloads 428
1397 Monitoring of Forest Cover Dynamics in the High Atlas of Morocco (Zaouit Ahansal) Using Remote Sensing Techniques and GIS

Authors: Abdelaziz Moujane, Abedelali Boulli, Abdellah Ouigmane

Abstract:

The present work focuses on the assessment of forestlandscape changes in the region of ZaouitAhansal, usingmultitemporal satellite images at high spatial resolution.Severalremotesensingmethodswereappliednamely: The supervised classification algorithm and NDVI whichwerecombined in a GIS environment to quantify the extent and change in density of forest stands (holmoak, juniper, thya, Aleppo pine, crops, and others).The resultsobtainedshowedthat the forest of ZaouitAhansal has undergonesignificantdegradationresulting in a decrease in the area of juniper, cedar, and zeenoak, as well as an increase in the area of baresoil and agricultural land. The remotesensing data providedsatisfactoryresults for identifying and quantifying changes in forestcover. In addition, thisstudycould serve as a reference for the development of management strategies and restoration programs.

Keywords: remote sensing, GIS, satellite image, NDVI, deforestation, zaouit ahansal

Procedia PDF Downloads 156
1396 Metabolic Predictive Model for PMV Control Based on Deep Learning

Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon

Abstract:

In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.

Keywords: deep learning, indoor quality, metabolism, predictive model

Procedia PDF Downloads 261
1395 A Study of NT-ProBNP and ETCO2 in Patients Presenting with Acute Dyspnoea

Authors: Dipti Chand, Riya Saboo

Abstract:

OBJECTIVES: Early and correct diagnosis may present a significant clinical challenge in diagnosis of patients presenting to Emergency Department with Acute Dyspnoea. The common cause of acute dyspnoea and respiratory distress in Emergency Department are Decompensated Heart Failure (HF), Chronic Obstructive Pulmonary Disease (COPD), Asthma, Pneumonia, Acute Respiratory Distress Syndrome (ARDS), Pulmonary Embolism (PE), and other causes like anaemia. The aim of the study was to measure NT-pro Brain Natriuretic Peptide (BNP) and exhaled End-Tidal Carbon dioxide (ETCO2) in patients presenting with dyspnoea. MATERIAL AND METHODS: This prospective, cross-sectional and observational study was performed at the Government Medical College and Hospital, Nagpur, between October 2019 and October 2021 in patients admitted to the Medicine Intensive Care Unit. Three groups of patients were compared: (1) HFrelated acute dyspnoea group (n = 52), (2) pulmonary (COPD/PE)-related acute dyspnoea group (n = 31) and (3) sepsis with ARDS-related dyspnoea group (n = 13). All patients underwent initial clinical examination with a recording of initial vital parameters along with on-admission ETCO2 measurement, NT-proBNP testing, arterial blood gas analysis, lung ultrasound examination, 2D echocardiography, chest X-rays, and other relevant diagnostic laboratory testing. RESULTS: 96 patients were included in the study. Median NT-proBNP was found to be high for the Heart Failure group (11,480 pg/ml), followed by the sepsis group (780 pg/ml), and pulmonary group had an Nt ProBNP of 231 pg/ml. The mean ETCO2 value was maximum in the pulmonary group (48.610 mmHg) followed by Heart Failure (31.51 mmHg) and the sepsis group (19.46 mmHg). The results were found to be statistically significant (P < 0.05). CONCLUSION: NT-proBNP has high diagnostic accuracy in differentiating acute HF-related dyspnoea from pulmonary (COPD and ARDS)-related acute dyspnoea. The higher levels of ETCO2 help in diagnosing patients with COPD.

Keywords: NT PRO BNP, ETCO2, dyspnoea, lung USG

Procedia PDF Downloads 83
1394 Noise Detection Algorithm for Skin Disease Image Identification

Authors: Minakshi Mainaji Sonawane, Bharti W. Gawali, Sudhir Mendhekar, Ramesh R. Manza

Abstract:

People's lives and health are severely impacted by skin diseases. A new study proposes an effective method for identifying the different forms of skin diseases. Image denoising is a technique for improving image quality after it has been harmed by noise. The proposed technique is based on the usage of the wavelet transform. Wavelet transform is the best method for analyzing the image due to the ability to split the image into the sub-band, which has been used to estimate the noise ratio at the noisy image. According to experimental results, the proposed method presents the best values for MSE, PSNR, and Entropy for denoised images. we can found in Also, by using different types of wavelet transform filters is make the proposed approach can obtain the best results 23.13, 20.08, 50.7 for the image denoising process

Keywords: MSE, PSNR, entropy, Gaussian filter, DWT

Procedia PDF Downloads 220
1393 Static and Dynamic Hand Gesture Recognition Using Convolutional Neural Network Models

Authors: Keyi Wang

Abstract:

Similar to the touchscreen, hand gesture based human-computer interaction (HCI) is a technology that could allow people to perform a variety of tasks faster and more conveniently. This paper proposes a training method of an image-based hand gesture image and video clip recognition system using a CNN (Convolutional Neural Network) with a dataset. A dataset containing 6 hand gesture images is used to train a 2D CNN model. ~98% accuracy is achieved. Furthermore, a 3D CNN model is trained on a dataset containing 4 hand gesture video clips resulting in ~83% accuracy. It is demonstrated that a Cozmo robot loaded with pre-trained models is able to recognize static and dynamic hand gestures.

Keywords: deep learning, hand gesture recognition, computer vision, image processing

Procedia PDF Downloads 146
1392 Development of 111In-DOTMP as a New Bone Imaging Agent

Authors: H. Yousefnia, S. Zolghadri, AR. Jalilian, A. Mirzaei, A. Bahrami-Samani, M. Erfani

Abstract:

The objective of this study is the preparation of 111In-DOTMP as a new bone imaging agent. 111In was produced at the Agricultural, Medical and Industrial Research School (AMIRS) by means of 30 MeV cyclotron via natCd(p,x)111In reaction. Complexion of In‐111 with DOTMP was carried out by adding 0.1 ml of the stock solution (50 mg/ml in 2 N NaoH) to the vial containing 1 mCi of 111In. pH of the mixture was adjusted to 7-8 by means of phosphate buffer. The radiochemical purity of the complex at the optimized condition was higher than 98% (by using whatman No.1 paper in NH4OH:MeOH: H2O (0.2:2:4)). Both the biodistribution studies and SPECT imaging indicated high bone uptake. The ratio of bone to other soft tissue accumulation was significantly high which permit to observe high quality images. The results show that 111In-DOTMP can be used as a suitable tracer for diagnosis of bone metastases by SPECT imaging.

Keywords: biodistribution, DOTMP, 111In, SPECT

Procedia PDF Downloads 534