Search results for: ultrasonic degradation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2061

Search results for: ultrasonic degradation

651 Assessment of Forest Resource Exploitation in the Rural Communities of District Jhelum

Authors: Rubab Zafar Kahlon, Ibtisam Butt

Abstract:

Forest resources are deteriorating and experiencing decline around the globe due to unsustainable use and over exploitation. The present study was an attempt to determine the relationship between human activities, forest resource utilization, extraction methods and practices of forest resource exploitation in the district Jhelum of Pakistan. For this purpose, primary sources of data were used which were collected from 8 villages through structured questionnaire and tabulated in Microsoft Excel 365 and SPSS 22 was used for multiple linear regression analysis. The results revealed that farming, wood cutting, animal husbandry and agro-forestry were the major occupations in the study area. Most commonly used resources included timber 26%, fuelwood 25% and fodder 19%. Methods used for resource extraction included gathering 49%, plucking 34% trapping 11% and cutting 6%. Population growth, increased demand of fuelwood and land conversion were the main reasons behind forest degradation. Results for multiple linear regression revealed that Forest based activities, sources of energy production, methods used for wood harvesting and resource extraction and use of fuelwood for energy production contributed significantly towards extensive forest resource exploitation with p value <0.5 within the study area. The study suggests that effective measures should be taken by forest department to control the unsustainable use of forest resources by stringent management interventions and awareness campaigns in Jhelum district.

Keywords: forest resource, biodiversity, expliotation, human activities

Procedia PDF Downloads 92
650 Meta-Analysis of Particulate Matter Production in Developing and Developed Countries

Authors: Hafiz Mehtab Gull Nasir

Abstract:

Industrial development and urbanization have significant impacts on air emissions, and their relationship diverges at different stages of economic progress. The revolution further propelled these activities as principal paths to economic and social transformation; nevertheless, the paths also promoted environmental degradation. Resultantly, both developed and developing countries undergone through fast-paced development; in which developed countries implemented legislation towards environmental pollution control however developing countries took the advantage of technology without caring about the environment. In this study, meta-analysis is performed on production of particulate matter (i.e., PM10 and PM2.5) from urbanized cities of first, second and third world countries to assess the air quality. The cities were selected based on ranked set principles. In case of PM10, third world countries showed highest PM level (~95% confidence interval of 0.74-1.86) followed by second world countries but with managed situation. Besides, first, world countries indicated the lowest pollution (~95% confidence interval of 0.12-0.2). Similarly, highest level of PM2.5 was produced by third world countries followed by the second and first world countries. Hereby, level of PM2.5 was not significantly different for both second and third world countries; however, first world countries showed minimum PM load. Finally, the study revealed different that levels of pollution status exist among different countries; whereas developed countries also devised better strategies towards pollution control while developing countries are least caring about their environmental resources. It is suggested that although industrialization and urbanization are directly involved with interference in natural elements, however, production of nature appears to be more societal rather hermetical.

Keywords: meta-analysis, particulate matter, developing countries, urbanization

Procedia PDF Downloads 345
649 Design and Optimization of Sustainable Buildings by Combined Cooling, Heating and Power System (CCHP) Based on Exergy Analysis

Authors: Saeed Karimi, Ali Behbahaninia

Abstract:

In this study, the design and optimization of combined cooling, heating, and power system (CCHP) for a sustainable building are dealt with. Sustainable buildings are environmentally responsible and help us to save energy also reducing waste, pollution and environmental degradation. CCHP systems are widely used to save energy sources. In these systems, electricity, cooling, and heating are generating using just one primary energy source. The selection of the size of components based on the maximum demand of users will lead to an increase in the total cost of energy and equipment for the building complex. For this purpose, a system was designed in which the prime mover (gas turbine), heat recovery boiler, and absorption chiller are lower than the needed maximum. The difference in months with peak consumption is supplied with the help of electrical absorption chiller and auxiliary boiler (and the national electricity network). In this study, the optimum capacities of each of the equipment are determined based on Thermo economic method, in a way that the annual capital cost and energy consumption will be the lowest. The design was done for a gas turbine prime mover, and finally, the optimum designs were investigated using exergy analysis and were compared with a traditional energy supply system.

Keywords: sustainable building, CCHP, energy optimization, gas turbine, exergy, thermo-economic

Procedia PDF Downloads 93
648 New Applications of Essential Oils: Edible Packaging Material for Food Supplements

Authors: Roxana Gheorghita, Gheorghe Gutt

Abstract:

Environmental pollution due to non-degradation of packaging from the food and pharmaceutical industry is reaching increasingly alarming levels. The packaging used for food supplements is usually composed of successive layers of synthetic materials, conventional, glue, and paint. The situation is becoming more and more problematic as the population, according to statistics, uses food supplements more and more often. The solution can be represented by edible packaging, completely biodegradable, and compostable. The tested materials were obtained from biopolymers, agar, carrageenan, and alginate, in well-established quantities and plasticized with glycerol. Rosemary, thyme, and oregano essential oils have been added in varying proportions. The obtained films are completely water-soluble in hot liquids (with a temperature of about 80° C) and can be consumed with the product contained. The films were glossy, pleasant to the touch, thin (thicknesses between 32.8 and 52.8 μm), transparent, and with a pleasant smell, specific to the added essential oil. Tested for microbial evaluation, none of the films indicated the presence of E. coli, S. aureus, enterobacteria, coliform bacteria, yeasts, or molds. This aspect can also be helped by the low values of the water activity index (located between 0.546 and 0.576). The mechanical properties indicated that the material became more resistant with the addition of essential oil, the best values being recorded by the addition of oregano. The results obtained indicate the possibility of using biopolymer-based films with the addition of rosemary, thyme, and oregano essential oil, for wrapping food supplements, thus replacing conventional packaging, multilayer, impossible to sort and recycle.

Keywords: edible films, food supplements, oregano, rosemary, thyme

Procedia PDF Downloads 133
647 Sequential Pulsed Electric Field and Ultrasound Assisted Extraction of Bioactive Enriched Fractions from Button Mushroom Stalks

Authors: Bibha Kumari, Nigel P. Brunton, Dilip K. Rai, Brijesh K. Tiwari

Abstract:

Edible mushrooms possess numerous functional components like homo- and hetero- β-glucans [β(1→3), β(1→4) and β(1→6) glucosidic linkages], chitins, ergosterols, bioactive polysaccharides and peptides imparting health beneficial properties to mushrooms. Some of the proven biological activities of mushroom extracts are antioxidant, antimicrobial, immunomodulatory, cholesterol lowering activity by inhibiting a key cholesterol metabolism enzyme i.e. 3-hydroxy-3-methyl-glutaryl CoA reductase (HMGCR), angiotensin I-converting enzyme (ACE) inhibition. Application of novel extraction technologies like pulsed electric field (PEF) and high power ultrasound offers clean, green, faster and efficient extraction alternatives with enhanced and good quality extracts. Sequential PEF followed by ultrasound assisted extraction (UAE) were applied to recover bioactive enriched fractions from industrial white button mushroom (Agaricus bisporus) stalk waste using environmentally friendly and GRAS solvents i.e. water and water/ethanol combinations. The PEF treatment was carried out at 60% output voltage, 2 Hz frequency for 500 pulses of 20 microseconds pulse width, using KCl salt solution of 0.6 mS/cm conductivity by the placing 35g of chopped fresh mushroom stalks and 25g of salt solution in the 4x4x4cm3 treatment chamber. Sequential UAE was carried out on the PEF pre-treated samples using ultrasonic-water-bath (USB) of three frequencies (25 KHz, 35 KHz and 45 KHz) for various treatment times (15-120 min) at 80°C. Individual treatment using either PEF or UAE were also investigation to compare the effect of each treatment along with the combined effect on the recovery and bioactivity of the crude extracts. The freeze dried mushroom stalk powder was characterised for proximate compositional parameters (dry weight basis) showing 64.11% total carbohydrate, 19.12% total protein, 7.21% total fat, 31.2% total dietary fiber, 7.9% chitin (as glucosamine equivalent) and 1.02% β-glucan content. The total phenolic contents (TPC) were determined by the Folin-Ciocalteu procedure and expressed as gallic-acid-equivalents (GAE). The antioxidant properties were ascertained using DPPH and FRAP assays and expressed as trolox-equivalents (TE). HMGCR activity and molecular mass of β-glucans will be measured using the commercial HMG-CoA Reductase Assay kit (Sigma-Aldrich) and size exclusion chromatography (HPLC-SEC), respectively. Effects of PEF, UAE and their combination on the antioxidant capacity, HMGCR inhibition and β-glucans content will be presented.

Keywords: β-glucan, mushroom stalks, pulsed electric field (PEF), ultrasound assisted extraction (UAE)

Procedia PDF Downloads 292
646 Graphic Procession Unit-Based Parallel Processing for Inverse Computation of Full-Field Material Properties Based on Quantitative Laser Ultrasound Visualization

Authors: Sheng-Po Tseng, Che-Hua Yang

Abstract:

Motivation and Objective: Ultrasonic guided waves become an important tool for nondestructive evaluation of structures and components. Guided waves are used for the purpose of identifying defects or evaluating material properties in a nondestructive way. While guided waves are applied for evaluating material properties, instead of knowing the properties directly, preliminary signals such as time domain signals or frequency domain spectra are first revealed. With the measured ultrasound data, inversion calculation can be further employed to obtain the desired mechanical properties. Methods: This research is development of high speed inversion calculation technique for obtaining full-field mechanical properties from the quantitative laser ultrasound visualization system (QLUVS). The quantitative laser ultrasound visualization system (QLUVS) employs a mirror-controlled scanning pulsed laser to generate guided acoustic waves traveling in a two-dimensional target. Guided waves are detected with a piezoelectric transducer located at a fixed location. With a gyro-scanning of the generation source, the QLUVS has the advantage of fast, full-field, and quantitative inspection. Results and Discussions: This research introduces two important tools to improve the computation efficiency. Firstly, graphic procession unit (GPU) with large amount of cores are introduced. Furthermore, combining the CPU and GPU cores, parallel procession scheme is developed for the inversion of full-field mechanical properties based on the QLUVS data. The newly developed inversion scheme is applied to investigate the computation efficiency for single-layered and double-layered plate-like samples. The computation efficiency is shown to be 80 times faster than unparalleled computation scheme. Conclusions: This research demonstrates a high-speed inversion technique for the characterization of full-field material properties based on quantitative laser ultrasound visualization system. Significant computation efficiency is shown, however not reaching the limit yet. Further improvement can be reached by improving the parallel computation. Utilizing the development of the full-field mechanical property inspection technology, full-field mechanical property measured by non-destructive, high-speed and high-precision measurements can be obtained in qualitative and quantitative results. The developed high speed computation scheme is ready for applications where full-field mechanical properties are needed in a nondestructive and nearly real-time way.

Keywords: guided waves, material characterization, nondestructive evaluation, parallel processing

Procedia PDF Downloads 202
645 New Active Dioxin Response Element Sites in Regulatory Region of Human and Viral Genes

Authors: Ilya B. Tsyrlov, Dmitry Y. Oshchepkov

Abstract:

A computational search for dioxin response elements (DREs) in genes of proteins comprising the Ah receptor (AhR) cytosolic core complex was performed by highly efficient tool SITECON. Eventually, the following number of new DREs in 5’flanking region was detected by SITECON: one in AHR gene, five in XAP2, eight in HSP90AA1, and three in HSP90AB1 genes. Numerous DREs found in genes of AhR and AhR cytosolic complex members would shed a light on potential mechanisms of expression, the stoichiometry of unliganded AhR core complex, and its degradation vs biosynthesis dynamics resulted from treatment of target cells with the AhR most potent ligand, 2,3,7,8-TCDD. With human viruses, reduced susceptibility to TCDD of geneencoding HIV-1 P247 was justified by the only potential DRE determined in gag gene encoding HIV-1 P24 protein, whereas the regulatory region of CMV genes encoding IE gp/UL37 has five potent DRE, 1.65 kb/UL36 – six DRE, pp65 and pp71 – each has seven DRE, and pp150 – ten DRE. Also, from six to eight DRE were determined with SITECON in the regulatory region of HSV-1 IE genes encoding tegument proteins, UL36 and UL37, and of UL19 gene encoding bindingglycoprotein C (gC). So, TCDD in the low picomolar range may activate in human cells AhR: Arnt transcription pathway that triggers CMV and HSV-1 reactivation by binding to numerous promoter DRE within immediate-early (IE) genes UL37 and UL36, thus committing virus to the lytic cycle.

Keywords: dioxin response elements, Ah receptor, AhR: Arnt transcription pathway, human and viral genes

Procedia PDF Downloads 104
644 Degradation of Amitriptyline Hydrochloride, Methyl Salicylate and 2-Phenoxyethanol in Water Systems by the Combination UV/Cl2

Authors: F. Javier Benitez, Francisco J. Real, Juan Luis Acero, Francisco Casas

Abstract:

Three emerging contaminants (amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol) frequently found in waste-waters were selected to be individually degraded in ultra-pure water by the combined advanced oxidation process constituted by UV radiation and chlorine. The influence of pH, initial chlorine concentration and nature of the contaminants was firstly explored. The trend for the reactivity of the selected compounds was deduced: amitriptyline hydrochloride > methyl salicylate > 2-phenoxyethanol. A later kinetic study was carried out and focused on the specific evaluation of the first-order rate constants and the determination of the partial contribution to the global reaction of the direct photochemical pathway and the radical pathway. A comparison between the rate constant values among photochemical experiments without and with the presence of Cl2 reveals a clear increase in the oxidation efficiency of the combined process with respect to the photochemical reaction alone. In a second stage, the simultaneous oxidation of mixtures of the selected contaminants in several types of water (ultrapure water, surface water from a reservoir, and two secondary effluents) was also performed by the same combination UV/Cl2 under more realistic operating conditions. The efficiency of this combined system UV/Cl2 was compared to other oxidants such as the UV/S2O82- and UV/H2O2 AOPs. Results confirmed that the UV/Cl2 system provides higher elimination efficiencies among the AOPs tested.

Keywords: emerging contaminants, UV/chlorine advanced oxidation process, amitriptyline, methyl salicylate, 2-phenoxyethanol, chlorination, photolysis

Procedia PDF Downloads 333
643 New Environmental Culture in Algeria: Eco Design

Authors: S. Tireche, A. Tairi abdelaziz

Abstract:

Environmental damage has increased steadily in recent decades: Depletion of natural resources, destruction of the ozone layer, greenhouse effect, degradation of the quality of life, land use etc. New terms have emerged as: "Prevention rather than cure" or "polluter pays" falls within the principles of common sense, their practical implementation still remains fragmented. Among the avenues to be explored, one of the most promising is certainly one that focuses on product design. Indeed, where better than during the design phase, can reduce the source of future impacts on the environment? What choices or those of design, they influence more on the environmental characteristics of products? The most currently recognized at the international level is the analysis of the life cycle (LCA) and Life Cycle Assessment, subject to International Standardization (ISO 14040-14043). LCA provides scientific and objective assessment of potential impacts of the product or service, considering its entire life cycle. This approach makes it possible to minimize impacts to the source in pollution prevention. It is widely preferable to curative approach, currently majority in the industrial crops, led mostly by a report of pollution. The "product" is to reduce the environmental impacts of a given product, taking into account all or part of its life cycle. Currently, there are emerging tools, known as eco-design. They are intended to establish an environmental profile of the product to improve its environmental performance. They require a quantity sufficient information on the product for each phase of its life cycle: raw material extraction, manufacturing, distribution, usage, end of life (recycling or incineration or deposit) and all stages of transport. The assessment results indicate the sensitive points of the product studied, points on which the developer must act.

Keywords: eco design, impact, life cycle analysis (LCA), sustainability

Procedia PDF Downloads 427
642 The Implementation of Sovereignty over Natural Resources Principle: Case Study Indonesian Forest

Authors: Sri Wartini

Abstract:

Based on the sovereignty over natural resources principle, the Indonesian government has an authority to exploit the natural resources within a national jurisdiction of Indonesia. The forest is one of the natural resources which is very valuable for Indonesia. It becomes the source of raw material for many industrial activities, such as pharmaceutical industry, pulp industry, and household furniture industry. Hence, it contributes to the economic development of Indonesia. However, the exploitation of the forest may cause negative impacts, such as environmental pollution and environmental degradation. The implementation of the sovereignty over natural resources principle in Indonesia may jeopardize the forest and affect the sustainability of the forest if there is no appropriate policy of the government to exploit the forest in a sustainable manner. The exploitation of the forest in Indonesia, in some extent, has caused serious impact to environment and biodiversity. Hence, in order to sustain and to maintain the forest as the valuable resources to the future generation, the government of Indonesia has already adopted many programmes and action plans. The aim of the research is to undertake a critical examination of the issues relating to the the implementation of sovereignty over natural resources to the exploitation of the forest in Indonesia. It is a normative research and the methodology employed in this research is library research. While the approaches employed in the research are conceptual approach., statutory approach, and comparative approach. The research finds that the implementation of sovereignty over natural resources principle in the exploitation of the forest in Indonesia is limited by other principles of international environmental law, such as sustainable development principle, intergenerational principle and common concern principle which have been adopted in the government policy and various regulations regarding the exploitation of the forest in Indonesia.

Keywords: Environmental damage, negative impacts, pollution, the sovereignty over natural resources

Procedia PDF Downloads 386
641 Effects of Copper Oxide Doping on Hydrothermal Ageing in Alumina Toughened Zirconia

Authors: Mohamed Abbas, Ramesh Singh

Abstract:

This study investigates the hydrothermal aging behavior of undoped and copper oxide-doped alumina-toughened zirconia (ATZ). The ATZ ceramic composites underwent conventional sintering at temperatures ranging from 1250 to 1500°C with a holding time of 12 minutes. XRD analysis revealed a stable 100% tetragonal phase for conventionally sintered ATZ samples up to 1450°C, even after 100 hours of exposure. At 1500℃, XRD patterns of both undoped and doped ATZ samples showed no phase transformation after up to 3 hours of exposure to superheated steam. Extended exposure, however, resulted in phase transformation beyond 10 hours. CuO-doped ATZ samples initially exhibited lower monoclinic content, gradually increasing with aging. Undoped ATZ demonstrated better-aging resistance, maintaining ~40% monoclinic content after 100 hours. FESEM images post-aging revealed surface roughness changes due to the tetragonal-to-monoclinic phase transformation, with limited nucleation in the largest tetragonal grains. Fracture analysis exhibited macrocracks and microcracks on the transformed surface layer after aging. This study found that 0.2wt% CuO doping did not prevent the low-temperature degradation (LTD) phenomenon at elevated temperatures. Transformation zone depth (TZD) calculations supported the trend observed in the transformed monoclinic phase.

Keywords: alumina toughened zirconia, conventional sintering, copper oxide, hydrothermal ageing

Procedia PDF Downloads 67
640 Branched Chain Amino Acid Kinesio PVP Gel Tape from Extract of Pea (Pisum sativum L.) Based on Ultrasound-Assisted Extraction Technology

Authors: Doni Dermawan

Abstract:

Modern sports competition as a consequence of the increase in the value of the business and entertainment in the field of sport has been demanding athletes to always have excellent physical endurance performance. Physical exercise is done in a long time, and intensive may pose a risk of muscle tissue damage caused by the increase of the enzyme creatine kinase. Branched Chain Amino Acids (BCAA) is an essential amino acid that is composed of leucine, isoleucine, and valine which serves to maintain muscle tissue, keeping the immune system, and prevent further loss of coordination and muscle pain. Pea (Pisum sativum L.) is a kind of leguminous plants that are rich in Branched Chain Amino Acids (BCAA) where every one gram of protein pea contains 82.7 mg of leucine; 56.3 mg isoleucine; and 56.0 mg of valine. This research aims to develop Branched Chain Amino Acids (BCAA) from pea extract is applied in dosage forms Gel PVP Kinesio Tape technology using Ultrasound-assisted Extraction. The method used in the writing of this paper is the Cochrane Collaboration Review that includes literature studies, testing the quality of the study, the characteristics of the data collection, analysis, interpretation of results, and clinical trials as well as recommendations for further research. Extraction of BCAA in pea done using ultrasound-assisted extraction technology with optimization variables includes the type of solvent extraction (NaOH 0.1%), temperature (20-250C), time (15-30 minutes) power (80 watt) and ultrasonic frequency (35 KHz). The advantages of this extraction method are the level of penetration of the solvent into the membrane of the cell is high and can increase the transfer period so that the BCAA substance separation process more efficient. BCAA extraction results are then applied to the polymer PVP (Polyvinylpyrrolidone) Gel powder composed of PVP K30 and K100 HPMC dissolved in 10 mL of water-methanol (1: 1) v / v. Preparations Kinesio Tape Gel PVP is the BCAA in the gel are absorbed into the muscle tissue, and joints through tensile force then provides stimulation to the muscle circulation with variable pressure so that the muscle can increase the biomechanical movement and prevent damage to the muscle enzyme creatine kinase. Analysis and evaluation of test preparation include interaction, thickness, weight uniformity, humidity, water vapor permeability, the levels of the active substance, content uniformity, percentage elongation, stability testing, release profile, permeation in vitro and in vivo skin irritation testing.

Keywords: branched chain amino acid, BCAA, Kinesio tape, pea, PVP gel, ultrasound-assisted extraction

Procedia PDF Downloads 289
639 A Study of Fecal Sludge Management in Auroville and Its Surrounding Villages in Tamilnadu, India

Authors: Preethi Grace Theva Neethi Dhas

Abstract:

A healthy human gut microbiome has commensal and symbiotic functions in digestion and is a decisive factor for human health. The soil microbiome is a crucial component in the ecosystem of soils and their health and resilience. Changes in soil microbiome are linked to human health. Ever since the industrial era, the human and the soil microbiome have been going through drastic changes. The soil microbiome has changed due to industrialization and extensive agricultural practices, whereas humans have less contact with soil and increased intake of highly processed foods, leading to changes in the human gut microbiome. Regenerating the soil becomes crucial in maintaining a healthy ecosystem. The nutrients, once obtained from the soil, need to be given back to the soil. Soil degradation needs to be addressed in effective ways, like adding organic nutrients back to the soil. Manure from animals and humans needs to be returned to the soil, which can complete the nutrient cycle in the soil. On the other hand, fecal sludge management (FSM) is a growing concern in many parts of the developing world. Hence, it becomes crucial to treat and reuse fecal sludge in a safe manner, i.e., low in risk to human health. Co-composting fecal sludge with organic wastes is a practice that allows the safe management of fecal sludge and the safe application of nutrients to the soil. This paper will discuss the possible impact of co-composting fecal sludge with coconut choir waste on the soil, water, and ecosystem at large. Impact parameters like nitrogen, phosphorus, and fecal coliforms will be analyzed. The overall impact of fecal sludge application on the soil will be researched and presented in this study.

Keywords: fecal sludge management, nutrient cycle, soil health, composting

Procedia PDF Downloads 74
638 Estimation of Bio-Kinetic Coefficients for Treatment of Brewery Wastewater

Authors: Abimbola M. Enitan, J. Adeyemo

Abstract:

Anaerobic modeling is a useful tool to describe and simulate the condition and behaviour of anaerobic treatment units for better effluent quality and biogas generation. The present investigation deals with the anaerobic treatment of brewery wastewater with varying organic loads. The chemical oxygen demand (COD) and total suspended solids (TSS) of the influent and effluent of the bioreactor were determined at various retention times to generate data for kinetic coefficients. The bio-kinetic coefficients in the modified Stover–Kincannon kinetic and methane generation models were determined to study the performance of anaerobic digestion process. At steady-state, the determination of the kinetic coefficient (K), the endogenous decay coefficient (Kd), the maximum growth rate of microorganisms (µmax), the growth yield coefficient (Y), ultimate methane yield (Bo), maximum utilization rate constant Umax and the saturation constant (KB) in the model were calculated to be 0.046 g/g COD, 0.083 (dˉ¹), 0.117 (d-¹), 0.357 g/g, 0.516 (L CH4/gCODadded), 18.51 (g/L/day) and 13.64 (g/L/day) respectively. The outcome of this study will help in simulation of anaerobic model to predict usable methane and good effluent quality during the treatment of industrial wastewater. Thus, this will protect the environment, conserve natural resources, saves time and reduce cost incur by the industries for the discharge of untreated or partially treated wastewater. It will also contribute to a sustainable long-term clean development mechanism for the optimization of the methane produced from anaerobic degradation of waste in a close system.

Keywords: brewery wastewater, methane generation model, environment, anaerobic modeling

Procedia PDF Downloads 270
637 Fate of Organic Waste, Refuse and Inert from Municipal Discards as Source of Energy and Nutrient in India: A Brief Review

Authors: Kunwar Paritosh, Vivekanand Vivekanand, Nidhi Pareek

Abstract:

Presently, India depends primarily on fossil fuels for its acute energy demand. The swift in development of India in last two decades is accentuating its natural resources and compelling expenditures to cope energy security for the habitats. A total inhabitant of 1.2 billion, observing growing industrialization; is generating 68.8 million tonnes of municipal solid waste per year, 53.7 million tonnes is collected, and only trifling amount of 10.3 million tonnes of waste is treated per year that integrates to a massive amount of unimaginable land hill. In India, waste is mostly landfilled and/or incinerated with low technology and is poorly managed. Underutilization of this waste not only gulps resources but also stresses environment, public health and bionetwork thus affecting the bioeconomy negatively. It also creates conditions that invoke inevitable expenditures and loss of its renewable energy potential. The non-scientific approach to manage waste may lead to an economy downfall, underutilization and degradation of natural resources. Waste treatment technologies must be scientifically tailored and engineered as per the type of waste where it may be utilized as a source of energy (here biogas) and nutrients employing anaerobic digestion to the sorted waste. This paper presents a brief review on current practices, key achievements and forthcoming aspects of harnessing energy from municipal solid waste in Indian scenario.

Keywords: municipal discards, organic waste, anaerobic digestion, incineration, energy

Procedia PDF Downloads 262
636 Effect of Highway Construction on Soil Properties and Soil Organic Carbon (Soc) Along Lagos-Badagry Expressway, Lagos, Nigeria

Authors: Fatai Olakunle Ogundele

Abstract:

Road construction is increasingly common in today's world as human development expands and people increasingly rely on cars for transportation on a daily basis. The construction of a large network of roads has dramatically altered the landscape and impacted well-being in a number of deleterious ways. In addition, the road can also shift population demographics and be a source of pollution into the environment. Road construction activities normally result in changes in alteration of the soil's physical properties through soil compaction on the road itself and on adjacent areas and chemical and biological properties, among other effects. Understanding roadside soil properties that are influenced by road construction activities can serve as a basis for formulating conservation-based management strategies. Therefore, this study examined the effects of road construction on soil properties and soil organic carbon along Lagos Badagry Expressway, Lagos, Nigeria. The study adopted purposive sampling techniques and 40 soil samples were collected at a depth of 0 – 30cm from each of the identified road intersections and infrastructures using a soil auger. The soil samples collected were taken to the laboratory for soil properties and carbon stock analysis using standard methods. Both descriptive and inferential statistical techniques were applied to analyze the data obtained. The results revealed that soil compaction inhibits ecological succession on roadsides in that increased compaction suppresses plant growth as well as causes changes in soil quality.

Keywords: highway, soil properties, organic carbon, road construction, land degradation

Procedia PDF Downloads 80
635 Modelling and Numerical Analysis of Thermal Non-Destructive Testing on Complex Structure

Authors: Y. L. Hor, H. S. Chu, V. P. Bui

Abstract:

Composite material is widely used to replace conventional material, especially in the aerospace industry to reduce the weight of the devices. It is formed by combining reinforced materials together via adhesive bonding to produce a bulk material with alternated macroscopic properties. In bulk composites, degradation may occur in microscopic scale, which is in each individual reinforced fiber layer or especially in its matrix layer such as delamination, inclusion, disbond, void, cracks, and porosity. In this paper, we focus on the detection of defect in matrix layer which the adhesion between the composite plies is in contact but coupled through a weak bond. In fact, the adhesive defects are tested through various nondestructive methods. Among them, pulsed phase thermography (PPT) has shown some advantages providing improved sensitivity, large-area coverage, and high-speed testing. The aim of this work is to develop an efficient numerical model to study the application of PPT to the nondestructive inspection of weak bonding in composite material. The resulting thermal evolution field is comprised of internal reflections between the interfaces of defects and the specimen, and the important key-features of the defects presented in the material can be obtained from the investigation of the thermal evolution of the field distribution. Computational simulation of such inspections has allowed the improvement of the techniques to apply in various inspections, such as materials with high thermal conductivity and more complex structures.

Keywords: pulsed phase thermography, weak bond, composite, CFRP, computational modelling, optimization

Procedia PDF Downloads 174
634 Determination of Metalaxyl Efficacy in Controlling Phytophthora palmivora Infection of Durian Using Bioassay

Authors: Supawadee Phetkhajone, Wisuwat Songnuan

Abstract:

Metalaxyl is one of the most common and effective fungicides used to control Phytophthora palmivora infection in durian (Durio zibethinus L.). The efficacy of metalaxyl residue in durian under greenhouse condition was evaluated using bioassay. Durian seedlings were treated with 2 methods of application, spraying, and soil drenching of metalaxyl, at recommended concentration (1000 mg/L). Mock treated samples were treated with 0.1% Tween20 and water for spraying and soil drenching methods, respectively. The experiment was performed in triplicates. Leaves were detached from treated plants at 0, 1, 7, 15, 20, 30, and 60 days after application, inoculated with metalaxyl-resistant and metalaxyl-sensitive isolates of P. palmivora, and incubated in a high humidity chamber for 5 days at room temperature. Metalaxyl efficacy was determined by measuring the lesion size on metalaxyl treated and mock treated samples. The results showed that metalaxyl can control metalaxyl-sensitive isolate of P. palmivora for at least 30 days after application in both methods of application. The metalaxyl-resistant isolate was not inhibited in all treatments. Leaf samples from spraying method showed larger lesions compared to soil drench method. These results demonstrated that metalaxyl applications, especially soil drenching methods showed high efficacy to control metalaxyl-sensitive isolates of P. palmivora, although it cannot control metalaxyl-resistant isolates of P. palmivora in all treatments. These qualitative data indicate that metalaxyl may suitable to control metalaxyl-sensitive isolates of P. palmivora infection.

Keywords: bioassay, degradation, durian, metalaxyl

Procedia PDF Downloads 125
633 Study of the Effect of Voltage and PH on the Inactivation of Byssochlamys fulva in Tomato Juice by Ohmic Process

Authors: Arash Dara, Mahsa Mokhtari, Nafiseh Zamindar

Abstract:

The aim of this study was to determine the effect of thermal resistance, temperature, voltage, and pH changes in an ohmic heating system on reducing the logarithmic number of Byssochlamys fulva species (PTCC 5062) in tomato juice water and to investigate the quantitative properties of tomato juice in the ohmic heating pasteurization system. The percentage of thermal degradation by ohmic heating was determined in tomato juice for the kinetics of Byssochlamys fulva in ohmic chamber at the temperatures of 88, 93, and 98°C, with two voltages of 30 and 40 volts and two pH levels of 3.5 and 4.5; this was done using Weibull frequency distribution model. Three different parameters (pH = 3.5, two voltages of 30 and 40, at three temperatures 88, 93, and 98) and (pH = 4.5, two voltages 30 and 40, at three temperatures 88, 93, and 98) in three replications were considered in the ohmic system. Heating time for the temperature of 88°C was 20 minutes once every 2 minutes, while for the temperature of 93°C, it was 10 minutes once every 1 minute. At the temperature of 98°C, the first time was 0.5 minutes, and for other times, sampling was done every 1 minute. In each condition, the qualitative characteristics, including acidity, Brix, and pH, were measured before and after the ohmic process in the tomato juice. This study demonstrates that the differences in pH and voltage due to different temperatures in the ohmic process can greatly affect the inactivation of Byssochlamys fulva fungus and the qualitative characteristics of the tomato juice. This is the first study using the Weibull frequency method to model the inactivation of Byssochlamys fulva in tomato juice. Variation in parameters such as temperature, voltage, and pH can prevent the presence of Byssochlamys fulva in the pasteurized juices.

Keywords: pasteurization, ohmic heating process, Byssochlamys fulva, tomato juice, heat resistance, voltage, pH

Procedia PDF Downloads 380
632 Conservation Status of a Lowland Tropical Forest in South-West, Nigeria

Authors: Lucky Dartsa Wakawa, Friday Nwabueze Ogana, Temitope Elizabeth Adeniyi

Abstract:

Timely and reliable information on the status of a forest is essential for assessing the extent of regeneration and degradation. However, when such information is lacking effective forest management practices becomes impossible. Therefore, this study assessed the tree species composition, richness, diversity, structure of Oluwa forest reserve with the view of ascertaining it conservation status. A systematic line transect was used in the laying of eight (8) temporary sample plots (TSPs) of size 50m x 50m. Trees with Dbh ≥ 10cm in the selected plots were enumerated, identified and measured. The results indicate that 535 individual trees were enumerated cutting across 26 families and 58 species. The family Sterculiaceae recorded the highest number of species (10) and occurrence (112) representing 17.2% and 20.93% respectively. Celtis zenkeri is the species with the highest number of occurrence of tree per hectare and importance value index (IVI) of 59 and 53.81 respectively. The reserve has the Margalef's index of species richness, Shannon-Weiner diversity Index (H') and Pielou's Species Evenness Index (EH) of 9.07, 3.43 and 0.84 respectively. The forest has a mean Dbh (cm), mean height (m), total basal area/ha (m2) and total volume/ha (m3) of 24.7, 16.9, 36.63 and 602.09 respectively. The important tropical tree species identified includes Diospyros crassiflora Milicia excels, Mansonia altisima, Triplochiton scleroxylon. Despite the level of exploitation in the forest, the forest seems to be resilience. Given the right attention, it could regenerate and replenish to save some of the original species composition of the reserve.

Keywords: forest conservation, forest structure, Lowland tropical forest, South-west Nigeria

Procedia PDF Downloads 342
631 High-Temperature Behavior of Boiler Steel by Friction Stir Processing

Authors: Supreet Singh, Manpreet Kaur, Manoj Kumar

Abstract:

High temperature corrosion is an imperative material degradation method experienced in thermal power plants and other energy generation sectors. Metallic materials such as ferritic steels have special properties such as easy fabrication and machinibilty, low cost, but a serious drawback of these materials is the worsening in properties initiating from the interaction with the environments. The metallic materials do not endure higher temperatures for extensive period of time because of their poor corrosion resistance. Friction Stir Processing (FSP), has emerged as the potent surface modification means and control of microstructure in thermo mechanically heat affecting zones of various metal alloys. In the current research work, FSP was done on the boiler tube of SA 210 Grade A1 material which is regularly used by thermal power plants. The strengthening of SA210 Grade A1 boiler steel through microstructural refinement by Friction Stir Processing (FSP) and analyze the effect of the same on high temperature corrosion behavior. The high temperature corrosion performance of the unprocessed and the FSPed specimens were evaluated in the laboratory using molten salt environment of Na₂SO₄-82%Fe₂(SO₄). The unprocessed and FSPed low carbon steel Gr A1 evaluation was done in terms of microstructure, corrosion resistance, mechanical properties like hardness- tensile. The in-depth characterization was done by EBSD, SEM/EDS and X-ray mapping analyses with an aim to propose the mechanism behind high temperature corrosion behavior of the FSPed steel.

Keywords: boiler steel, characterization, corrosion, EBSD/SEM/EDS/XRD, friction stir processing

Procedia PDF Downloads 237
630 Preliminary Design, Production and Characterization of a Coral and Alginate Composite for Bone Engineering

Authors: Sthephanie A. Colmenares, Fabio A. Rojas, Pablo A. Arbeláez, Johann F. Osma, Diana Narvaez

Abstract:

The loss of functional tissue is a ubiquitous and expensive health care problem, with very limited treatment options for these patients. The golden standard for large bone damage is a cadaveric bone as an allograft with stainless steel support; however, this solution only applies to bones with simple morphologies (long bones), has a limited material supply and presents long term problems regarding mechanical strength, integration, differentiation and induction of native bone tissue. Therefore, the fabrication of a scaffold with biological, physical and chemical properties similar to the human bone with a fabrication method for morphology manipulation is the focus of this investigation. Towards this goal, an alginate and coral matrix was created using two production techniques; the coral was chosen because of its chemical composition and the alginate due to its compatibility and mechanical properties. In order to construct the coral alginate scaffold the following methodology was employed; cleaning of the coral, its pulverization, scaffold fabrication and finally the mechanical and biological characterization. The experimental design had: mill method and proportion of alginate and coral, as the two factors, with two and three levels each, using 5 replicates. The coral was cleaned with sodium hypochlorite and hydrogen peroxide in an ultrasonic bath. Then, it was milled with both a horizontal and a ball mill in order to evaluate the morphology of the particles obtained. After this, using a combination of alginate and coral powder and water as a binder, scaffolds of 1cm3 were printed with a SpectrumTM Z510 3D printer. This resulted in solid cubes that were resistant to small compression stress. Then, using a ESQUIM DP-143 silicon mold, constructs used for the mechanical and biological assays were made. An INSTRON 2267® was implemented for the compression tests; the density and porosity were calculated with an analytical balance and the biological tests were performed using cell cultures with VERO fibroblast, and Scanning Electron Microscope (SEM) as visualization tool. The Young’s moduli were dependent of the pulverization method, the proportion of coral and alginate and the interaction between these factors. The maximum value was 5,4MPa for the 50/50 proportion of alginate and horizontally milled coral. The biological assay showed more extracellular matrix in the scaffolds consisting of more alginate and less coral. The density and porosity were proportional to the amount of coral in the powder mix. These results showed that this composite has potential as a biomaterial, but its behavior is elastic with a small Young’s Modulus, which leads to the conclusion that the application may not be for long bones but for tissues similar to cartilage.

Keywords: alginate, biomaterial, bone engineering, coral, Porites asteroids, SEM

Procedia PDF Downloads 254
629 The Effect of Wool Mulch on Plant Development in the Light of Soil Physical and Soil Biological Conditions

Authors: Katalin Juhos, Enikő Papdi, Flórián Kovács, Vasileios P. Vasileiadis, Andrea Veres

Abstract:

Mulching techniques can be a solution for better utilization of precipitation and irrigation water and for mitigating soil degradation and drought damages. Waste fibres as alternative biodegradable mulch materials are increasingly coming to the fore. The effect of wool mulch (WM) on water use efficiency of pepper seedlings were investigated in different soil types (sand, clay loam, peat) in a pot experiment. Two semi-field experiments were also set up to investigate the effect of WM-plant interaction on sweet pepper yield in comparison with agro-textile and straw mulches. Soil parameters (moisture, temperature, DHA, β-glucosidase enzymes, permanganate-oxidizable carbon) were measured during the growing season. The effect of WM on yield and biomass was more significant with less frequent irrigation and the greater the water capacity of soils. The microbiological activity was significantly higher in the presence of plants, because of the water retention of WM, the metabolic products of roots and the more balanced soil temperature caused by plants. On the sandy soil, the straw mulch had a significantly better effect on microbiological parameters and yields than the agro-textile and WM. WM is a sustainable practice for improving soil biological parameters and water use efficiency on soils with a higher water capacity.

Keywords: β-glucosidase, DHA enzyme activity; labile carbon, straw mulch; plastic mulch, evapotranspira-tion coefficient, soil temperature

Procedia PDF Downloads 76
628 Reduction of Terpene Emissions from Oriented Strand Boards (OSB) by Bacterial Pre-Treatment

Authors: Bernhard Widhalm, Cornelia Rieder-Gradinger, Ewald Srebotnik

Abstract:

Pine wood (Pinus sylvestris L.) is the basic raw material for the production of Oriented Strand Boards (OSB) and the major source of volatile organic compounds, especially terpenes (like α- and β-pinene). To lower the total emission level of OSB, terpene metabolising microorganisms were therefore applied onto pine wood strands for the production of emission-reduced boards. Suitable microorganisms were identified during preliminary tests under laboratory conditions. At first, their terpene degrading potential was investigated in liquid culture, followed by laboratory tests using unsterile pine wood particles and strands. The main focus was laid on an adoptable terpene reduction in a short incubation time. An optimised bacterial mixture of Pseudomonas putida and Pseudomonas fluorescens showed the best results and was therefore used for further experiments on a larger scale. In an industry-compatible testing procedure, pine wood strands were incubated with the bacterial mixture for a period of 2 to 4 days. Incubation time was stopped by drying the strands. OSB were then manufactured from the pre-treated strands and emissions were measured by means of SPME/GC-MS analysis. Bacterial pre-treatment of strands resulted in a reduction of α-pinene- and β-pinene-emissions from OSB by 40% and 70%, respectively, even after only 2 days of incubation. The results of the investigation provide a basis for the application of microbial treatment within the industrial OSB production line, where shortest possible incubation times are required. For this purpose, the performance of the bacterial mixture will have to be further optimised.

Keywords: GC-MS, OSB, Pseudomonas sp., terpene degradation

Procedia PDF Downloads 268
627 Effect of Silica Nanoparticles on Three-Point Flexural Properties of Isogrid E-Glass Fiber/Epoxy Composite Structures

Authors: Hamed Khosravi, Reza Eslami-Farsani

Abstract:

Increased interest in lightweight and efficient structural components has created the need for selecting materials with improved mechanical properties. To do so, composite materials are being widely used in many applications, due to durability, high strength and modulus, and low weight. Among the various composite structures, grid-stiffened structures are extensively considered in various aerospace and aircraft applications, because of higher specific strength and stiffness, higher impact resistance, superior load-bearing capacity, easy to repair, and excellent energy absorption capability. Although there are a good number of publications on the design aspects and fabrication of grid structures, little systematic work has been reported on their material modification to improve their properties, to our knowledge. Therefore, the aim of this research is to study the reinforcing effect of silica nanoparticles on the flexural properties of epoxy/E-glass isogrid panels under three-point bending test. Samples containing 0, 1, 3, and 5 wt.% of the silica nanoparticles, with 44 and 48 vol.% of the glass fibers in the ribs and skin components respectively, were fabricated by using a manual filament winding method. Ultrasonic and mechanical routes were employed to disperse the nanoparticles within the epoxy resin. To fabricate the ribs, the unidirectional fiber rovings were impregnated with the matrix mixture (epoxy + nanoparticles) and then laid up into the grooves of a silicone mold layer-by-layer. At once, four plies of woven fabrics, after impregnating into the same matrix mixture, were layered on the top of the ribs to produce the skin part. In order to conduct the ultimate curing and to achieve the maximum strength, the samples were tested after 7 days of holding at room temperature. According to load-displacement graphs, the bellow trend was observed for all of the samples when loaded from the skin side; following an initial linear region and reaching a load peak, the curve was abruptly dropped and then showed a typical absorbed energy region. It would be worth mentioning that in these structures, a considerable energy absorption was observed after the primary failure related to the load peak. The results showed that the flexural properties of the nanocomposite samples were always higher than those of the nanoparticle-free sample. The maximum enhancement in flexural maximum load and energy absorption was found to be for the incorporation of 3 wt.% of the nanoparticles. Furthermore, the flexural stiffness was continually increased by increasing the silica loading. In conclusion, this study suggested that the addition of nanoparticles is a promising method to improve the flexural properties of grid-stiffened fibrous composite structures.

Keywords: grid-stiffened composite structures, nanocomposite, three point flexural test , energy absorption

Procedia PDF Downloads 341
626 Influence of Boron and Germanium Doping on Physical-Mechanical Properties of Monocrystalline Silicon

Authors: Ia Kurashvili, Giorgi Darsavelidze, Giorgi Chubinidze, Marina Kadaria

Abstract:

Boron-doped Czochralski (CZ) silicon of p-type, widely used in the photovoltaic industry is suffering from the light-induced-degradation (LID) of bulk electrophysical characteristics. This is caused by specific metastable B-O defects, which are characterized by strong recombination activity. In this regard, it is actual to suppress B-O defects in CZ silicon. One of the methods is doping of silicon by different isovalent elements (Ge, C, Sn). The present work deals with the investigations of the influence of germanium doping on the internal friction and shear modulus amplitude dependences in the temperature interval of 600-800⁰C and 0.5-5 Hz frequency range in boron-containing monocrystalline silicon. Experimental specimens were grown by Czochralski method (CZ) in [111] direction. Four different specimens were investigated: Si+0,5at%Ge:B (5.1015cm-3), Si+0,5at%Ge:B (1.1019cm-3), Si+2at%Ge:B (5.1015cm-3) and Si+2at%Ge:B (1.1019cm-3). Increasing tendency of dislocation density and inhomogeneous distribution in silicon crystals with high content of boron and germanium were revealed by metallographic studies on the optical microscope of NMM-80RF/TRF. Weak increase of current carriers-holes concentration and slight decrease of their mobility were observed by Van der Pauw method on Ecopia HMS-3000 device. Non-monotonous changes of dislocation origin defects mobility and microplastic deformation characteristics influenced by measuring temperatures and boron and germanium concentrations were revealed. Possible mechanisms of changes of mechanical characteristics in Si-Ge experimental specimens were discussed.

Keywords: dislocation, internal friction, microplastic deformation, shear modulus

Procedia PDF Downloads 238
625 A Case of Ujjain on Religious Tourism: Challenges for Sustainability

Authors: Harsimran Kaur Chadha, Preeti Onkar

Abstract:

Tourism has grown into one of the world’s largest industries in the last two decades all over the world. It is an important sector of Indian economy as it contributes substantially to the foreign exchange earnings of the country. The tourism policies of India aim to position tourism as a major engine of economic growth. These policies work towards utilizing tourism’s direct and multiplier effect on employment and poverty eradication in a sustainable manner. India is blessed with a great ancient and living civilization that gave rise to four of the world’s great religions and philosophies. Diverse religions, castes, languages, culture of India build a tremendous potential for religious tourism in India. Religious Tourism facilitates development of basic infrastructural facilities, generates income for the local community as well as the government, balances regional development, and fosters peace and socio-cultural harmony. However, tourism development needs to be regulated to prevent the negative impacts. The main challenge towards Sustainable Tourism development is to balance limits and usage of natural resources. The uncontrollable growth of tourism should not lead to resource degradation. Since tourism growth is inevitable, the challenge is to manage it sustainably within environmental, social and economic constraints. This paper tries to explore both the benefits and costs of Religious Tourism Development, using the example of Simhasth Kumbh Mahaparv at Ujjain. Finally it concludes by putting forth the notion that heavy investments for temporary infrastructure development incurred during these large spiritual gatherings need to be sustainable in the long run.

Keywords: challenges, religious, sustainable, tourism

Procedia PDF Downloads 357
624 Design of an Artificial Oil Body-Cyanogen Bromide Technology Platform for the Expression of Small Bioactive Peptide, Mastoparan B

Authors: Tzyy-Rong Jinn, Sheng-Kuo Hsieh, Yi-Ching Chung, Feng-Chia Hsieh

Abstract:

In this study, we attempted to develop a recombinant oleosin-based fusion expression strategy in Escherichia coli (E. coli) and coupled with the artificial oil bodies (AOB)-cyanogen bromide technology platform to produce bioactive mastoparan B (MP-B). As reported, the oleosin in AOB system plays a carrier (fusion with target protein), since oleosin possess two amphipathic regions (at the N-terminus and C-terminus), which result in the N-terminus and C-terminus of oleosin could be arranged on the surface of AOB. Thus, the target protein fused to the N-terminus or C-terminus of oleosin which also is exposed on the surface of AOB, and this process will greatly facilitate the subsequent separation and purification of target protein from AOB. In addition, oleosin, a unique structural protein of seed oil bodies, has the added advantage of helping the fused MP-B expressed in inclusion bodies, which can protect from proteolytic degradation. In this work, MP-B was fused to the C-terminus of oleosin and then was expressed in E. coli as an insoluble recombinant protein. As a consequence, we successfully developed a reliable recombinant oleosin-based fusion expression strategy in Escherichia coli and coupled with the artificial oil bodies (AOB)-cyanogen bromide technology platform to produce the small peptide, MP-B. Take together, this platform provides an insight into the production of active MP-B, which will facilitate studies and applications of this peptide in the future.

Keywords: artificial oil bodies, Escherichia coli, Oleosin-fusion protein, Mastoparan-B

Procedia PDF Downloads 451
623 The Injection of a Freshly Manufactured Hyaluronan Fragment Promotes Healing of Chronic Wounds: A Clinical Study

Authors: Dylan Treger, Lujia Zhang, Xiaoxiao Jia, Jessica H. Hui, Munkh-Amgalan Gantumur, Mizhou Hui, Li Liu

Abstract:

Hyaluronic acid (HA) is involved in wound healing via inflammation, granulation, and re-epithelialization mechanisms. The poor physical properties of natural high-molecular-weight polymers limit their direct use in the medical field. In this clinical study, we investigated whether the local injection of a tissue-permeable 35 kDa HA fragment (HA35) could favor the healing process in patients with chronic wounds accompanied by neuropathic pain. The HA35 fragments were freshly manufactured by degradation of high-molecular-weight HA with bovine testis-derived hyaluronidase PH20. Twenty patients in this study had nonhealing wounds and wound-related pain for more than 3 months. Freshly produced HA35 was locally injected into healthy skin immediately surrounding chronic wounds once a day for 10 days. Wound-associated pain and the degree of wound healing were evaluated. The injection of HA35 relieved the pain associated with chronic wounds in 24 hours. HA35 treatment significantly promoted the healing of chronic wounds, including expanded fresh granulation tissue on the wounds; reduced darkness or redness, dryness, and damaged areas on the surface of the skin surrounding the wounds; and decreased the size of the wound area. It can be concluded that the topical injection of tissue-permeable HA35 around chronic wounds has great potential to promote wound healing.

Keywords: 35 kDa hyaluronan fragment HA35, chronic wound, wound healing, tissue permeability

Procedia PDF Downloads 165
622 Agroforestry Systems: A Sustainable Strategy of the Agricultural Systems of Cumaral (Meta), Colombia

Authors: Amanda Silva Parra, Dayra Yisel García Ramirez

Abstract:

In developing countries, agricultural "modernization" has led to a loss of biodiversity and inefficiency of agricultural systems, manifested in increases in Greenhouse Gas Emissions (GHG) and the C footprint, generating the susceptibility of systems agriculture to environmental problems, loss of biodiversity, depletion of natural resources, soil degradation and loss of nutrients, and a decrease in the supply of products that affect food security for peoples and nations. Each year agriculture emits 10 to 12% (5.1 to 6.1 Gt CO2eq per year) of the total estimated GHG emissions (51 Gt CO2 eq per year). The FAO recommends that countries that have not yet done so consider declaring sustainable agriculture as an essential or strategic activity of public interest within the framework of green economies to better face global climate change. The objective of this research was to estimate the balance of GHG in agricultural systems of Cumaral, Meta (Colombia), to contribute to the recovery and sustainable operation of agricultural systems that guarantee food security and face changes generated by the climate in a more intelligent way. To determine the GHG balances, the IPCC methodologies were applied with a Tier 1 and 2 level of use. It was estimated that all the silvopastoral systems evaluated play an important role in this reconversion compared to conventional systems such as improved pastures. and degraded pastures due to their ability to capture C both in soil and in biomass, generating positive GHG balances, guaranteeing greater sustainability of soil and air resources.

Keywords: climate change, carbon capture, environmental sustainability, GHG mitigation, silvopastoral systems

Procedia PDF Downloads 118