Search results for: rearing parameters optimization
9867 A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems
Authors: Sultan Noman Qasem
Abstract:
This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFNN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature.Keywords: radial basis function network, hybrid learning, multi-objective optimization, genetic algorithm
Procedia PDF Downloads 5649866 The Microstructure and Corrosion Behavior of High Entropy Metallic Layers Electrodeposited by Low and High-Temperature Methods
Authors: Zbigniew Szklarz, Aldona Garbacz-Klempka, Magdalena Bisztyga-Szklarz
Abstract:
Typical metallic alloys bases on one major alloying component, where the addition of other elements is intended to improve or modify certain properties, most of all the mechanical properties. However, in 1995 a new concept of metallic alloys was described and defined. High Entropy Alloys (HEA) contains at least five alloying elements in an amount from 5 to 20 at.%. A common feature this type of alloys is an absence of intermetallic phases, high homogeneity of the microstructure and unique chemical composition, what leads to obtaining materials with very high strength indicators, stable structures (also at high temperatures) and excellent corrosion resistance. Hence, HEA can be successfully used as a substitutes for typical metallic alloys in various applications where a sufficiently high properties are desirable. For fabricating HEA, a few ways are applied: 1/ from liquid phase i.e. casting (usually arc melting); 2/ from solid phase i.e. powder metallurgy (sintering methods preceded by mechanical synthesis) and 3/ from gas phase e.g. sputtering or 4/ other deposition methods like electrodeposition from liquids. Application of different production methods creates different microstructures of HEA, which can entail differences in their properties. The last two methods also allows to obtain coatings with HEA structures, hereinafter referred to as High Entropy Films (HEF). With reference to above, the crucial aim of this work was the optimization of the manufacturing process of the multi-component metallic layers (HEF) by the low- and high temperature electrochemical deposition ( ED). The low-temperature deposition process was crried out at ambient or elevated temperature (up to 100 ᵒC) in organic electrolyte. The high-temperature electrodeposition (several hundred Celcius degrees), in turn, allowed to form the HEF layer by electrochemical reduction of metals from molten salts. The basic chemical composition of the coatings was CoCrFeMnNi (known as Cantor’s alloy). However, it was modified by other, selected elements like Al or Cu. The optimization of the parameters that allow to obtain as far as it possible homogeneous and equimolar composition of HEF is the main result of presented studies. In order to analyse and compare the microstructure, SEM/EBSD, TEM and XRD techniques were employed. Morover, the determination of corrosion resistance of the CoCrFeMnNi(Cu or Al) layers in selected electrolytes (i.e. organic and non-organic liquids) was no less important than the above mentioned objectives.Keywords: high entropy alloys, electrodeposition, corrosion behavior, microstructure
Procedia PDF Downloads 809865 Development of Computational Approach for Calculation of Hydrogen Solubility in Hydrocarbons for Treatment of Petroleum
Authors: Abdulrahman Sumayli, Saad M. AlShahrani
Abstract:
For the hydrogenation process, knowing the solubility of hydrogen (H2) in hydrocarbons is critical to improve the efficiency of the process. We investigated the H2 solubility computation in four heavy crude oil feedstocks using machine learning techniques. Temperature, pressure, and feedstock type were considered as the inputs to the models, while the hydrogen solubility was the sole response. Specifically, we employed three different models: Support Vector Regression (SVR), Gaussian process regression (GPR), and Bayesian ridge regression (BRR). To achieve the best performance, the hyper-parameters of these models are optimized using the whale optimization algorithm (WOA). We evaluated the models using a dataset of solubility measurements in various feedstocks, and we compared their performance based on several metrics. Our results show that the WOA-SVR model tuned with WOA achieves the best performance overall, with an RMSE of 1.38 × 10− 2 and an R-squared of 0.991. These findings suggest that machine learning techniques can provide accurate predictions of hydrogen solubility in different feedstocks, which could be useful in the development of hydrogen-related technologies. Besides, the solubility of hydrogen in the four heavy oil fractions is estimated in different ranges of temperatures and pressures of 150 ◦C–350 ◦C and 1.2 MPa–10.8 MPa, respectivelyKeywords: temperature, pressure variations, machine learning, oil treatment
Procedia PDF Downloads 699864 Distribution Planning with Renewable Energy Units Based on Improved Honey Bee Mating Optimization
Authors: Noradin Ghadimi, Nima Amjady, Oveis Abedinia, Roza Poursoleiman
Abstract:
This paper proposed an Improved Honey Bee Mating Optimization (IHBMO) for a planning paradigm for network upgrade. The proposed technique is a new meta-heuristic algorithm which inspired by mating of the honey bee. The paradigm is able to select amongst several choices equi-cost one assuring the optimum in terms of voltage profile, considering various scenarios of DG penetration and load demand. The distributed generation (DG) has created a challenge and an opportunity for developing various novel technologies in power generation. DG prepares a multitude of services to utilities and consumers, containing standby generation, peaks chopping sufficiency, base load generation. The proposed algorithm is applied over the 30 lines, 28 buses power system. The achieved results demonstrate the good efficiency of the DG using the proposed technique in different scenarios.Keywords: distributed generation, IHBMO, renewable energy units, network upgrade
Procedia PDF Downloads 4879863 Polynomial Chaos Expansion Combined with Exponential Spline for Singularly Perturbed Boundary Value Problems with Random Parameter
Authors: W. K. Zahra, M. A. El-Beltagy, R. R. Elkhadrawy
Abstract:
So many practical problems in science and technology developed over the past decays. For instance, the mathematical boundary layer theory or the approximation of solution for different problems described by differential equations. When such problems consider large or small parameters, they become increasingly complex and therefore require the use of asymptotic methods. In this work, we consider the singularly perturbed boundary value problems which contain very small parameters. Moreover, we will consider these perturbation parameters as random variables. We propose a numerical method to solve this kind of problems. The proposed method is based on an exponential spline, Shishkin mesh discretization, and polynomial chaos expansion. The polynomial chaos expansion is used to handle the randomness exist in the perturbation parameter. Furthermore, the Monte Carlo Simulations (MCS) are used to validate the solution and the accuracy of the proposed method. Numerical results are provided to show the applicability and efficiency of the proposed method, which maintains a very remarkable high accuracy and it is ε-uniform convergence of almost second order.Keywords: singular perturbation problem, polynomial chaos expansion, Shishkin mesh, two small parameters, exponential spline
Procedia PDF Downloads 1609862 Inversion of the Spectral Analysis of Surface Waves Dispersion Curves through the Particle Swarm Optimization Algorithm
Authors: A. Cerrato Casado, C. Guigou, P. Jean
Abstract:
In this investigation, the particle swarm optimization (PSO) algorithm is used to perform the inversion of the dispersion curves in the spectral analysis of surface waves (SASW) method. This inverse problem usually presents complicated solution spaces with many local minima that make difficult the convergence to the correct solution. PSO is a metaheuristic method that was originally designed to simulate social behavior but has demonstrated powerful capabilities to solve inverse problems with complex space solution and a high number of variables. The dispersion curve of the synthetic soils is constructed by the vertical flexibility coefficient method, which is especially convenient for soils where the stiffness does not increase gradually with depth. The reason is that these types of soil profiles are not normally dispersive since the dominant mode of Rayleigh waves is usually not coincident with the fundamental mode. Multiple synthetic soil profiles have been tested to show the characteristics of the convergence process and assess the accuracy of the final soil profile. In addition, the inversion procedure is applied to multiple real soils and the final profile compared with the available information. The combination of the vertical flexibility coefficient method to obtain the dispersion curve and the PSO algorithm to carry out the inversion process proves to be a robust procedure that is able to provide good solutions for complex soil profiles even with scarce prior information.Keywords: dispersion, inverse problem, particle swarm optimization, SASW, soil profile
Procedia PDF Downloads 1859861 A Relative Entropy Regularization Approach for Fuzzy C-Means Clustering Problem
Authors: Ouafa Amira, Jiangshe Zhang
Abstract:
Clustering is an unsupervised machine learning technique; its aim is to extract the data structures, in which similar data objects are grouped in the same cluster, whereas dissimilar objects are grouped in different clusters. Clustering methods are widely utilized in different fields, such as: image processing, computer vision , and pattern recognition, etc. Fuzzy c-means clustering (fcm) is one of the most well known fuzzy clustering methods. It is based on solving an optimization problem, in which a minimization of a given cost function has been studied. This minimization aims to decrease the dissimilarity inside clusters, where the dissimilarity here is measured by the distances between data objects and cluster centers. The degree of belonging of a data point in a cluster is measured by a membership function which is included in the interval [0, 1]. In fcm clustering, the membership degree is constrained with the condition that the sum of a data object’s memberships in all clusters must be equal to one. This constraint can cause several problems, specially when our data objects are included in a noisy space. Regularization approach took a part in fuzzy c-means clustering technique. This process introduces an additional information in order to solve an ill-posed optimization problem. In this study, we focus on regularization by relative entropy approach, where in our optimization problem we aim to minimize the dissimilarity inside clusters. Finding an appropriate membership degree to each data object is our objective, because an appropriate membership degree leads to an accurate clustering result. Our clustering results in synthetic data sets, gaussian based data sets, and real world data sets show that our proposed model achieves a good accuracy.Keywords: clustering, fuzzy c-means, regularization, relative entropy
Procedia PDF Downloads 2599860 The Utilization of Particle Swarm Optimization Method to Solve Nurse Scheduling Problem
Authors: Norhayati Mohd Rasip, Abd. Samad Hasan Basari , Nuzulha Khilwani Ibrahim, Burairah Hussin
Abstract:
The allocation of working schedule especially for shift environment is hard to fulfill its fairness among them. In the case of nurse scheduling, to set up the working time table for them is time consuming and complicated, which consider many factors including rules, regulation and human factor. The scenario is more complicated since most nurses are women which have personnel constraints and maternity leave factors. The undesirable schedule can affect the nurse productivity, social life and the absenteeism can significantly as well affect patient's life. This paper aimed to enhance the scheduling process by utilizing the particle swarm optimization in order to solve nurse scheduling problem. The result shows that the generated multiple initial schedule is fulfilled the requirements and produces the lowest cost of constraint violation.Keywords: nurse scheduling, particle swarm optimisation, nurse rostering, hard and soft constraint
Procedia PDF Downloads 3739859 Enhancing Predictive Accuracy in Pharmaceutical Sales through an Ensemble Kernel Gaussian Process Regression Approach
Authors: Shahin Mirshekari, Mohammadreza Moradi, Hossein Jafari, Mehdi Jafari, Mohammad Ensaf
Abstract:
This research employs Gaussian Process Regression (GPR) with an ensemble kernel, integrating Exponential Squared, Revised Matern, and Rational Quadratic kernels to analyze pharmaceutical sales data. Bayesian optimization was used to identify optimal kernel weights: 0.76 for Exponential Squared, 0.21 for Revised Matern, and 0.13 for Rational Quadratic. The ensemble kernel demonstrated superior performance in predictive accuracy, achieving an R² score near 1.0, and significantly lower values in MSE, MAE, and RMSE. These findings highlight the efficacy of ensemble kernels in GPR for predictive analytics in complex pharmaceutical sales datasets.Keywords: Gaussian process regression, ensemble kernels, bayesian optimization, pharmaceutical sales analysis, time series forecasting, data analysis
Procedia PDF Downloads 719858 Minimizing Vehicular Traffic via Integrated Land Use Development: A Heuristic Optimization Approach
Authors: Babu Veeregowda, Rongfang Liu
Abstract:
The current traffic impact assessment methodology and environmental quality review process for approval of land development project are conventional, stagnant, and one-dimensional. The environmental review policy and procedure lacks in providing the direction to regulate or seek alternative land uses and sizes that exploits the existing or surrounding elements of built environment (‘4 D’s’ of development – Density, Diversity, Design, and Distance to Transit) or smart growth principles which influence the travel behavior and have a significant effect in reducing vehicular traffic. Additionally, environmental review policy does not give directions on how to incorporate urban planning into the development in ways such as incorporating non-motorized roadway elements such as sidewalks, bus shelters, and access to community facilities. This research developed a methodology to optimize the mix of land uses and sizes using the heuristic optimization process to minimize the auto dependency development and to meet the interests of key stakeholders. A case study of Willets Point Mixed Use Development in Queens, New York, was used to assess the benefits of the methodology. The approved Willets Point Mixed Use project was based on maximum envelop of size and land use type allowed by current conventional urban renewal plans. This paper will also evaluate the parking accumulation for various land uses to explore the potential for shared parking to further optimize the mix of land uses and sizes. This research is very timely and useful to many stakeholders interested in understanding the benefits of integrated land uses and its development.Keywords: traffic impact, mixed use, optimization, trip generation
Procedia PDF Downloads 2149857 Real-Time Optimisation and Minimal Energy Use for Water and Environment Efficient Irrigation
Authors: Kanya L. Khatri, Ashfaque A. Memon, Rod J. Smith, Shamas Bilal
Abstract:
The viability and sustainability of crop production is currently threatened by increasing water scarcity. Water scarcity problems can be addressed through improved water productivity and the options usually presumed in this context are efficient water use and conversion of surface irrigation to pressurized systems. By replacing furrow irrigation with drip or centre pivot systems, the water efficiency can be improved by up to 30 to 45%. However, the installation and application of pumps and pipes, and the associated fuels needed for these alternatives increase energy consumption and cause significant greenhouse gas emissions. Hence, a balance between the improvement in water use and the potential increase in energy consumption is required keeping in view adverse impact of increased carbon emissions on the environment. When surface water is used, pressurized systems increase energy consumption substantially, by between 65% to 75%, and produce greenhouse gas emissions around 1.75 times higher than that of gravity based irrigation. With gravity based surface irrigation methods the energy consumption is assumed to be negligible. This study has shown that a novel real-time infiltration model REIP has enabled implementation of real-time optimization and control of surface irrigation and surface irrigation with real-time optimization has potential to bring significant improvements in irrigation performance along with substantial water savings of 2.92 ML/ha which is almost equivalent to that given by pressurized systems. Thus real-time optimization and control offers a modern, environment friendly and water efficient system with close to zero increase in energy consumption and minimal greenhouse gas emissions.Keywords: pressurised irrigation, carbon emissions, real-time, environmentally-friendly, REIP
Procedia PDF Downloads 5039856 Influence of Densification Process and Material Properties on Final Briquettes Quality from FastGrowing Willows
Authors: Peter Križan, Juraj Beniak, Ľubomír Šooš, Miloš Matúš
Abstract:
Biomass treatment through densification is very suitable and important technology before its effective energy recovery. Densification process of biomass is significantly influenced by various technological and also material parameters which are ultimately reflected on the final solid Biofuels quality. The paper deals with the experimental research of the relationship between technological and material parameters during densification of fast-growing trees, roundly fast-rowing willow. The main goal of presented experimental research is to determine the relationship between pressing pressure raw material fraction size from a final briquettes density point of view. Experimental research was realized by single-axis densification. The impact of fraction size with interaction of pressing pressure and stabilization time on the quality properties of briquettes was determined. These parameters interaction affects the final solid biofuels (briquettes) quality. From briquettes production point of view and also from densification machines constructions point of view is very important to know about mutual interaction of these parameters on final briquettes quality. The experimental findings presented here are showing the importance of mentioned parameters during the densification process.Keywords: briquettes density, densification, fraction size, pressing pressure, stabilization time
Procedia PDF Downloads 3689855 Comparative Review of Models for Forecasting Permanent Deformation in Unbound Granular Materials
Authors: Shamsulhaq Amin
Abstract:
Unbound granular materials (UGMs) are pivotal in ensuring long-term quality, especially in the layers under the surface of flexible pavements and other constructions. This study seeks to better understand the behavior of the UGMs by looking at popular models for predicting lasting deformation under various levels of stresses and load cycles. These models focus on variables such as the number of load cycles, stress levels, and features specific to materials and were evaluated on the basis of their ability to accurately predict outcomes. The study showed that these factors play a crucial role in how well the models work. Therefore, the research highlights the need to look at a wide range of stress situations to more accurately predict how much the UGMs bend or shift. The research looked at important factors, like how permanent deformation relates to the number of times a load is applied, how quickly this phenomenon happens, and the shakedown effect, in two different types of UGMs: granite and limestone. A detailed study was done over 100,000 load cycles, which provided deep insights into how these materials behave. In this study, a number of factors, such as the level of stress applied, the number of load cycles, the density of the material, and the moisture present were seen as the main factors affecting permanent deformation. It is vital to fully understand these elements for better designing pavements that last long and handle wear and tear. A series of laboratory tests were performed to evaluate the mechanical properties of materials and acquire model parameters. The testing included gradation tests, CBR tests, and Repeated load triaxial tests. The repeated load triaxial tests were crucial for studying the significant components that affect deformation. This test involved applying various stress levels to estimate model parameters. In addition, certain model parameters were established by regression analysis, and optimization was conducted to improve outcomes. Afterward, the material parameters that were acquired were used to construct graphs for each model. The graphs were subsequently compared to the outcomes obtained from the repeated load triaxial testing. Additionally, the models were evaluated to determine if they demonstrated the two inherent deformation behaviors of materials when subjected to repetitive load: the initial phase, post-compaction, and the second phase volumetric changes. In this study, using log-log graphs was key to making the complex data easier to understand. This method made the analysis clearer and helped make the findings easier to interpret, adding both precision and depth to the research. This research provides important insight into picking the right models for predicting how these materials will act under expected stress and load conditions. Moreover, it offers crucial information regarding the effect of load cycle and permanent deformation as well as the shakedown effect on granite and limestone UGMs.Keywords: permanent deformation, unbound granular materials, load cycles, stress level
Procedia PDF Downloads 399854 Design Application Procedures of 15 Storied 3D Reinforced Concrete Shear Wall-Frame Structure
Authors: H. Nikzad, S. Yoshitomi
Abstract:
This paper presents the design application and reinforcement detailing of 15 storied reinforced concrete shear wall-frame structure based on linear static analysis. Databases are generated for section sizes based on automated structural optimization method utilizing Active-set Algorithm in MATLAB platform. The design constraints of allowable section sizes, capacity criteria and seismic provisions for static loads, combination of gravity and lateral loads are checked and determined based on ASCE 7-10 documents and ACI 318-14 design provision. The result of this study illustrates the efficiency of proposed method, and is expected to provide a useful reference in designing of RC shear wall-frame structures.Keywords: design constraints, ETABS, linear static analysis, MATLAB, RC shear wall-frame structures, structural optimization
Procedia PDF Downloads 2619853 Optimization and Energy Management of Hybrid Standalone Energy System
Authors: T. M. Tawfik, M. A. Badr, E. Y. El-Kady, O. E. Abdellatif
Abstract:
Electric power shortage is a serious problem in remote rural communities in Egypt. Over the past few years, electrification of remote communities including efficient on-site energy resources utilization has achieved high progress. Remote communities usually fed from diesel generator (DG) networks because they need reliable energy and cheap fresh water. The main objective of this paper is to design an optimal economic power supply from hybrid standalone energy system (HSES) as alternative energy source. It covers energy requirements for reverse osmosis desalination unit (DU) located in National Research Centre farm in Noubarya, Egypt. The proposed system consists of PV panels, Wind Turbines (WT), Batteries, and DG as a backup for supplying DU load of 105.6 KWh/day rated power with 6.6 kW peak load operating 16 hours a day. Optimization of HSES objective is selecting the suitable size of each of the system components and control strategy that provide reliable, efficient, and cost-effective system using net present cost (NPC) as a criterion. The harmonization of different energy sources, energy storage, and load requirements are a difficult and challenging task. Thus, the performance of various available configurations is investigated economically and technically using iHOGA software that is based on genetic algorithm (GA). The achieved optimum configuration is further modified through optimizing the energy extracted from renewable sources. Effective minimization of energy charging the battery ensures that most of the generated energy directly supplies the demand, increasing the utilization of the generated energy.Keywords: energy management, hybrid system, renewable energy, remote area, optimization
Procedia PDF Downloads 1999852 Amphibians and Water Quality: An Assessment of Diversity and Physico-Chemical Parameters of Habitats for Amphibians in Sindh, Pakistan
Authors: Kalsoom Shaikh, Saima Memon, Riffat Sultana
Abstract:
Water pollution affects amphibians because they are intimately water dependent. The permeable skin makes amphibians very sensitive to the physico-chemical parameters of their aquatic environment. They spawn in water bodies where quality of water can affect the growth, development, and survival of their eggs which may die even before hatching into larvae or developing into adults due to water contamination. Considering the importance of amphibians in agriculture, food web, ecosystem and pharmaceutics as well as adverse impact of environmental degradation on them, present study was proposed to comprehensively determine the status of their diversity and habitats in Sindh province of Pakistan so as to execute monitoring for their conservation in future. Physico-chemical parameters including pH, EC (electric conductivity), TDS (total dissolved solids), T-Hard (total hardness), T-Alk (total alkalinity), Cl (chloride), CO₂ (carbon dioxide), SO₄ (sulphate), PO₄ (phosphate), NO₂ (nitrite) and NO₃ (nitrate) were analyzed from amphibian habitats using instruments and methodology of analytical grade. The results of present study after being compared with scientific data provided by different researchers and EPA (environmental protection agency), it was concluded that amphibian habitats consisted of high values of analyzed parameters except pH and CO₂. Entire study area required an urgent implementation of conservation actions for saving amphibians.Keywords: amphibians, diversity, habitats, physico-chemical parameters, water quality, Pakistan, Sindh Province
Procedia PDF Downloads 2249851 Simulation, Optimization, and Analysis Approach of Microgrid Systems
Authors: Saqib Ali
Abstract:
Sources are classified into two depending upon the factor of reviving. These sources, which cannot be revived into their original shape once they are consumed, are considered as nonrenewable energy resources, i.e., (coal, fuel) Moreover, those energy resources which are revivable to the original condition even after being consumed are known as renewable energy resources, i.e., (wind, solar, hydel) Renewable energy is a cost-effective way to generate clean and green electrical energy Now a day’s majority of the countries are paying heed to energy generation from RES Pakistan is mostly relying on conventional energy resources which are mostly nonrenewable in nature coal, fuel is one of the major resources, and with the advent of time their prices are increasing on the other hand RES have great potential in the country with the deployment of RES greater reliability and an effective power system can be obtained In this thesis, a similar concept is being used and a hybrid power system is proposed which is composed of intermixing of renewable and nonrenewable sources The Source side is composed of solar, wind, fuel cells which will be used in an optimal manner to serve load The goal is to provide an economical, reliable, uninterruptable power supply. This is achieved by optimal controller (PI, PD, PID, FOPID) Optimization techniques are applied to the controllers to achieve the desired results. Advanced algorithms (Particle swarm optimization, Flower Pollination Algorithm) will be used to extract the desired output from the controller Detailed comparison in the form of tables and results will be provided, which will highlight the efficiency of the proposed system.Keywords: distributed generation, demand-side management, hybrid power system, micro grid, renewable energy resources, supply-side management
Procedia PDF Downloads 979850 Financial Portfolio Optimization in Turkish Electricity Market via Value at Risk
Authors: F. Gökgöz, M. E. Atmaca
Abstract:
Electricity has an indispensable role in human daily life, technological development and economy. It is a special product or service that should be instantaneously generated and consumed. Sources of the world are limited so that effective and efficient use of them is very important not only for human life and environment but also for technological and economic development. Competitive electricity market is one of the important way that provides suitable platform for effective and efficient use of electricity. Besides benefits, it brings along some risks that should be carefully managed by a market player like Electricity Generation Company. Risk management is an essential part in market players’ decision making. In this paper, risk management through diversification is applied with the help of Value at Risk methods for case studies. Performance of optimal electricity sale solutions are measured and the portfolio performance has been evaluated via Sharpe-Ratio, and compared with conventional approach. Biennial historical electricity price data of Turkish Day Ahead Market are used to demonstrate the approach.Keywords: electricity market, portfolio optimization, risk management, value at risk
Procedia PDF Downloads 3139849 An Experimental Study on the Effect of Operating Parameters during the Micro-Electro-Discharge Machining of Ni Based Alloy
Authors: Asma Perveen, M. P. Jahan
Abstract:
Ni alloys have managed to cover wide range of applications such as automotive industries, oil gas industries, and aerospace industries. However, these alloys impose challenges while using conventional machining technologies. On the other hand, Micro-Electro-Discharge machining (micro-EDM) is a non-conventional machining method that uses controlled sparks energy to remove material irrespective of the materials hardness. There has been always a huge interest from the industries for developing optimum methodology and parameters in order to enhance the productivity of micro-EDM in terms of reducing machining time and tool wear for different alloys. Therefore, the aims of this study are to investigate the effects of the micro-EDM process parameters, in order to find their optimal values. The input process parameters include voltage, capacitance, and electrode rotational speed, whereas the output parameters considered are machining time, entrance diameter of hole, overcut, tool wear, and crater size. The surface morphology and element characterization are also investigated with the use of SEM and EDX analysis. The experimental result indicates the reduction of machining time with the increment of discharge energy. Discharge energy also contributes to the enlargement of entrance diameter as well as overcut. In addition, tool wears show reduction with the increase of discharge energy. Moreover, crater size is found to be increased in size along with the increment of discharge energy.Keywords: micro holes, micro EDM, Ni Alloy, discharge energy
Procedia PDF Downloads 2749848 Influence of Decolourisation Condition on the Physicochemical Properties of Shea (Vitellaria paradoxa Gaertner F) Butter
Authors: Ahmed Mohammed Mohagir, Ahmat-Charfadine Mahamat, Nde Divine Bup, Richard Kamga, César Kapseu
Abstract:
In this investigation, kinetics studies of adsorption of colour material of shea butter showed a peak at the wavelength 440 nm and the equilibrium time was found to be 30 min. Response surface methodology applying Doehlert experimental design was used to investigate decolourisation parameters of crude shea butter. The decolourisation process was significantly influenced by three independent parameters: contact time, decolourisation temperature and adsorbent dose. The responses of the process were oil loss, acid value, peroxide value and colour index. Response surface plots were successfully made to visualise the effect of the independent parameters on the responses of the process.Keywords: decolourisation, doehlert experimental design, physicochemical characterisation, RSM, shea butter
Procedia PDF Downloads 4169847 Off-Line Parameter Estimation for the Induction Motor Drive System
Authors: Han-Woong Ahn, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee
Abstract:
It is important to accurately identify machine parameters for direct vector control. To obtain the parameter values, traditional methods can be used such as no-load and rotor locked tests. However, there are many differences between values obtained from the traditional tests and actual values. In addition, there are drawbacks that additional equipment and cost are required for the experiment. Therefore, it is hard to temporary operation to estimate induction motor parameters. Therefore, this paper deals with the estimation algorithm of induction motor parameters without a motor operation and the measurement from additional equipment such as sensors and dynamometer. The validity and usefulness of the estimation algorithm considering inverter nonlinearity is verified by comparing the conventional method with the proposed method.Keywords: induction motor, parameter, off-line estimation, inverter nonlinearity
Procedia PDF Downloads 5309846 Environmental Potentials within the Production of Asphalt Mixtures
Authors: Florian Gschösser, Walter Purrer
Abstract:
The paper shows examples for the (environmental) optimization of production processes for asphalt mixtures applied for typical road pavements in Austria and Switzerland. The conducted “from-cradle-to-gate” LCA firstly analyzes the production one cubic meter of asphalt and secondly all material production processes for exemplary highway pavements applied in Austria and Switzerland. It is shown that environmental impacts can be reduced by the application of reclaimed asphalt pavement (RAP) and by the optimization of specific production characteristics, e.g. the reduction of the initial moisture of the mineral aggregate and the reduction of the mixing temperature by the application of low-viscosity and foam bitumen. The results of the LCA study demonstrate reduction potentials per cubic meter asphalt of up to 57 % (Global Warming Potential–GWP) and 77 % (Ozone depletion–ODP). The analysis per square meter of asphalt pavement determined environmental potentials of up to 40 % (GWP) and 56 % (ODP).Keywords: asphalt mixtures, environmental potentials, life cycle assessment, material production
Procedia PDF Downloads 5329845 Evolving Software Assessment and Certification Models Using Ant Colony Optimization Algorithm
Authors: Saad M. Darwish
Abstract:
Recently, software quality issues have come to be seen as important subject as we see an enormous growth of agencies involved in software industries. However, these agencies cannot guarantee the quality of their products, thus leaving users in uncertainties. Software certification is the extension of quality by means that quality needs to be measured prior to certification granting process. This research participates in solving the problem of software assessment by proposing a model for assessment and certification of software product that uses a fuzzy inference engine to integrate both of process–driven and application-driven quality assurance strategies. The key idea of the on hand model is to improve the compactness and the interpretability of the model’s fuzzy rules via employing an ant colony optimization algorithm (ACO), which tries to find good rules description by dint of compound rules initially expressed with traditional single rules. The model has been tested by case study and the results have demonstrated feasibility and practicability of the model in a real environment.Keywords: software quality, quality assurance, software certification model, software assessment
Procedia PDF Downloads 5249844 Radiation Dose and Associated Exposure Parameters in Selected MDCT Scanners in Multiphase Scan of Abdomen-Pelvic Region: A Clinical Study
Authors: P. Sathyathas, H. M. I. S. W. Herath, T. Amalraj, U. J. M. A. L. Jayasinghe
Abstract:
Over two thirds of medical radiation can now be attributed to Computed Tomography (CT). There is little information on amount of radiation received from multiphase CT scan of abdomen- pelvic region in clinical practice. We sought to estimate the radiation dose and associated exposure parameters in the multiphase abdomen - pelvic scan of Multideteror Computed Tomography (MDCT) studies in clinical practice. This was a retrospective cross sectional studies describing radiation dose associated with main exposure parameters in diagnostic multiphase abdomen - pelvic scans performed on 152 consecutive patients by two different sixteen slice CT scanners. Patient information, exposure parameters of CTDI (volume), DLP, kVp, mAs and pitch were recorded for every phases of abdomen- a pelvic study from dose report of MDCT scanners (MDCTs). Age of patients range from 14 years to 87 years in both MDCT scanners. Overall CTDI (volume) median was 63.8 (±10.4) mGy for a multiphase abdominal-pelvic scan with scanner A while it was 35.4 (±15.6) mGy for scanner B. Patients' effective dose for multiphase abdomen - pelvic CT scan range from 8.2 mSv to 58 mSv. Median effective dose for patients, who underwent multiphase abdomen- pelvis scan with scanner A and B were 38.5 (± 8.2) mSv and 21.3 (± 8.6) mSv respectively. Median value of exposure parameters of mAs, kVp and pitch, were 150 (±29.7), 130 (±15.3) and 1.3 (±0.1) respectively in scanner A. In scanner B; they were 60 (±14.5), 120 and 1. The median effective dose for patients between multiphase abdomen-pelvic scan of both MDCT, a significant different (P<0.05) was observed. Multiphase abdomen – pelvic scan of clinical study shows significant different of effective dose with reference level of phantom studies (8-14mSv) and it depends on the type of vendors.Keywords: abdomen-pelvic region, computed tomography, exposure parameters, radiation dose
Procedia PDF Downloads 3279843 Optimization of a High-Growth Investment Portfolio for the South African Market Using Predictive Analytics
Authors: Mia Françoise
Abstract:
This report aims to develop a strategy for assisting short-term investors to benefit from the current economic climate in South Africa by utilizing technical analysis techniques and predictive analytics. As part of this research, value investing and technical analysis principles will be combined to maximize returns for South African investors while optimizing volatility. As an emerging market, South Africa offers many opportunities for high growth in sectors where other developed countries cannot grow at the same rate. Investing in South African companies with significant growth potential can be extremely rewarding. Although the risk involved is more significant in countries with less developed markets and infrastructure, there is more room for growth in these countries. According to recent research, the offshore market is expected to outperform the local market over the long term; however, short-term investments in the local market will likely be more profitable, as the Johannesburg Stock Exchange is predicted to outperform the S&P500 over the short term. The instabilities in the economy contribute to increased market volatility, which can benefit investors if appropriately utilized. Price prediction and portfolio optimization comprise the two primary components of this methodology. As part of this process, statistics and other predictive modeling techniques will be used to predict the future performance of stocks listed on the Johannesburg Stock Exchange. Following predictive data analysis, Modern Portfolio Theory, based on Markowitz's Mean-Variance Theorem, will be applied to optimize the allocation of assets within an investment portfolio. By combining different assets within an investment portfolio, this optimization method produces a portfolio with an optimal ratio of expected risk to expected return. This methodology aims to provide a short-term investment with a stock portfolio that offers the best risk-to-return profile for stocks listed on the JSE by combining price prediction and portfolio optimization.Keywords: financial stocks, optimized asset allocation, prediction modelling, South Africa
Procedia PDF Downloads 989842 Holistic Urban Development: Incorporating Both Global and Local Optimization
Authors: Christoph Opperer
Abstract:
The rapid urbanization of modern societies and the need for sustainable urban development demand innovative solutions that meet both individual and collective needs while addressing environmental concerns. To address these challenges, this paper presents a study that explores the potential of spatial and energetic/ecological optimization to enhance the performance of urban settlements, focusing on both architectural and urban scales. The study focuses on the application of biological principles and self-organization processes in urban planning and design, aiming to achieve a balance between ecological performance, architectural quality, and individual living conditions. The research adopts a case study approach, focusing on a 10-hectare brownfield site in the south of Vienna. The site is surrounded by a small-scale built environment as an appropriate starting point for the research and design process. However, the selected urban form is not a prerequisite for the proposed design methodology, as the findings can be applied to various urban forms and densities. The methodology used in this research involves dividing the overall building mass and program into individual small housing units. A computational model has been developed to optimize the distribution of these units, considering factors such as solar exposure/radiation, views, privacy, proximity to sources of disturbance (such as noise), and minimal internal circulation areas. The model also ensures that existing vegetation and buildings on the site are preserved and incorporated into the optimization and design process. The model allows for simultaneous optimization at two scales, architectural and urban design, which have traditionally been addressed sequentially. This holistic design approach leads to individual and collective benefits, resulting in urban environments that foster a balance between ecology and architectural quality. The results of the optimization process demonstrate a seemingly random distribution of housing units that, in fact, is a densified hybrid between traditional garden settlements and allotment settlements. This urban typology is selected due to its compatibility with the surrounding urban context, although the presented methodology can be extended to other forms of urban development and density levels. The benefits of this approach are threefold. First, it allows for the determination of ideal housing distribution that optimizes solar radiation for each building density level, essentially extending the concept of sustainable building to the urban scale. Second, the method enhances living quality by considering the orientation and positioning of individual functions within each housing unit, achieving optimal views and privacy. Third, the algorithm's flexibility and robustness facilitate the efficient implementation of urban development with various stakeholders, architects, and construction companies without compromising its performance. The core of the research is the application of global and local optimization strategies to create efficient design solutions. By considering both, the performance of individual units and the collective performance of the urban aggregation, we ensure an optimal balance between private and communal benefits. By promoting a holistic understanding of urban ecology and integrating advanced optimization strategies, our methodology offers a sustainable and efficient solution to the challenges of modern urbanization.Keywords: sustainable development, self-organization, ecological performance, solar radiation and exposure, daylight, visibility, accessibility, spatial distribution, local and global optimization
Procedia PDF Downloads 669841 Simulation of Photocatalytic Degradation of Rhodamine B in Annular Photocatalytic Reactor
Authors: Jatinder Kumar, Ajay Bansal
Abstract:
Simulation of a photocatalytic reactor helps in understanding the complex behavior of the photocatalytic degradation. Simulation also aids the designing and optimization of the photocatalytic reactor. Lack of simulation strategies is a huge hindrance in the commercialization of the photocatalytic technology. With the increased performance of computational resources, and development of simulation software, computational fluid dynamics (CFD) is becoming an affordable engineering tool to simulate and optimize reactor designs. In the present paper, a CFD (Computational fluid dynamics) model for simulating the performance of an immobilized-titanium dioxide based annular photocatalytic reactor was developed. The computational model integrates hydrodynamics, species mass transport, and chemical reaction kinetics using a commercial CFD code Fluent 6.3.26. The CFD model was based on the intrinsic kinetic parameters determined experimentally in a perfectly mixed batch reactor. Rhodamine B, a complex organic compound, was selected as a test pollutant for photocatalytic degradation. It was observed that CFD could become a valuable tool to understand and improve the photocatalytic systems.Keywords: simulation, computational fluid dynamics (CFD), annular photocatalytic reactor, titanium dioxide
Procedia PDF Downloads 5859840 Number of Parametrization of Discrete-Time Systems without Unit-Delay Element: Single-Input Single-Output Case
Authors: Kazuyoshi Mori
Abstract:
In this paper, we consider the parametrization of the discrete-time systems without the unit-delay element within the framework of the factorization approach. In the parametrization, we investigate the number of required parameters. We consider single-input single-output systems in this paper. By the investigation, we find, on the discrete-time systems without the unit-delay element, three cases that are (1) there exist plants which require only one parameter and (2) two parameters, and (3) the number of parameters is at most three.Keywords: factorization approach, discrete-time system, parameterization of stabilizing controllers, system without unit-delay
Procedia PDF Downloads 2409839 Tabu Random Algorithm for Guiding Mobile Robots
Authors: Kevin Worrall, Euan McGookin
Abstract:
The use of optimization algorithms is common across a large number of diverse fields. This work presents the use of a hybrid optimization algorithm applied to a mobile robot tasked with carrying out a search of an unknown environment. The algorithm is then applied to the multiple robots case, which results in a reduction in the time taken to carry out the search. The hybrid algorithm is a Random Search Algorithm fused with a Tabu mechanism. The work shows that the algorithm locates the desired points in a quicker time than a brute force search. The Tabu Random algorithm is shown to work within a simulated environment using a validated mathematical model. The simulation was run using three different environments with varying numbers of targets. As an algorithm, the Tabu Random is small, clear and can be implemented with minimal resources. The power of the algorithm is the speed at which it locates points of interest and the robustness to the number of robots involved. The number of robots can vary with no changes to the algorithm resulting in a flexible algorithm.Keywords: algorithms, control, multi-agent, search and rescue
Procedia PDF Downloads 2399838 Use of Silicate or Chicken Compost in Calacarious Soil on Productivity and Mineral Status of Wheat Plants under Different Levels of Phosphorus
Authors: Hanan, S. Siam, Safaa A. Mahmoud, A. S. Taalab
Abstract:
A pot experiment was conducted in greenhouse of NRC, Dokki, Cairo, Egypt to study the response of wheat plants to different levels of superphosphate at (60kg P2O5 or 30 kg P2O5) with or without potassium silicate or chicken compost (2.5 ton/fed.) on growth yield and nutrients status especially, and phosphorus and silica availability. Data reveal that the addition either chicken or compost increased significantly affected on all the growth and yield parameters as well as nutrients status and protein of the different parts of wheat plants if compared with control (60kg P2O5 or 30 kg P2O5). Data also reveal that the highest mean values were obtained when potassium silicate with was added to 60 kg P2O5, while the lowest values of the previous parameters were obtained when 30 kg P2O5 alone was added to plants. Furthermore, data indicated that the highest mean values of all mentioned parameters were obtained when chicken compost was applied with any rate of P as compared with silica addition at the same rates of P. According to the results, the highest values of all mentioned parameters were obtained when addition of chicken compost and potassium silicate including the high rate of P at (60 kg P2O5) while the lowest values of the previous parameters were obtained when plants received of phosphorus (30 kg P2O5) alone.Keywords: wheat, yield, chicken compost, potassium, phosphorus, silicate, nutrients status
Procedia PDF Downloads 275