Search results for: optimal condition
5406 Computational Aided Approach for Strut and Tie Model for Non-Flexural Elements
Authors: Mihaja Razafimbelo, Guillaume Herve-Secourgeon, Fabrice Gatuingt, Marina Bottoni, Tulio Honorio-De-Faria
Abstract:
The challenge of the research is to provide engineering with a robust, semi-automatic method for calculating optimal reinforcement for massive structural elements. In the absence of such a digital post-processing tool, design office engineers make intensive use of plate modelling, for which automatic post-processing is available. Plate models in massive areas, on the other hand, produce conservative results. In addition, the theoretical foundations of automatic post-processing tools for reinforcement are those of reinforced concrete beam sections. As long as there is no suitable alternative for automatic post-processing of plates, optimal modelling and a significant improvement of the constructability of massive areas cannot be expected. A method called strut-and-tie is commonly used in civil engineering, but the result itself remains very subjective to the calculation engineer. The tool developed will facilitate the work of supporting the engineers in their choice of structure. The method implemented consists of defining a ground-structure built on the basis of the main constraints resulting from an elastic analysis of the structure and then to start an optimization of this structure according to the fully stressed design method. The first results allow to obtain a coherent return in the first network of connecting struts and ties, compared to the cases encountered in the literature. The evolution of the tool will then make it possible to adapt the obtained latticework in relation to the cracking states resulting from the loads applied during the life of the structure, cyclic or dynamic loads. In addition, with the constructability constraint, a final result of reinforcement with an orthogonal arrangement with a regulated spacing will be implemented in the tool.Keywords: strut and tie, optimization, reinforcement, massive structure
Procedia PDF Downloads 1415405 Services-Oriented Model for the Regulation of Learning
Authors: Mohamed Bendahmane, Brahim Elfalaki, Mohammed Benattou
Abstract:
One of the major sources of learners' professional difficulties is their heterogeneity. Whether on cognitive, social, cultural or emotional level, learners being part of the same group have many differences. These differences do not allow to apply the same learning process at all learners. Thus, an optimal learning path for one, is not necessarily the same for the other. We present in this paper a model-oriented service to offer to each learner a personalized learning path to acquire the targeted skills.Keywords: learning path, web service, trace analysis, personalization
Procedia PDF Downloads 3565404 Continuous Glucose Monitoring Systems and the Improvement in Hypoglycemic Awareness Post-Islet Transplantation: A Single-Centre Cohort Study
Authors: Clare Flood, Shareen Forbes
Abstract:
Background: Type 1 diabetes mellitus (T1DM) is an autoimmune disorder affecting >400,000 people in the UK alone, with the global prevalence expected to double in the next decade. Islet transplant offers a minimally-invasive procedure with very low morbidity and almost no mortality, and is now as effective as whole pancreas transplant. The procedure was introduced to the UK in 2011 for patients with the most severe type 1 diabetes mellitus (T1DM) – those with unstable blood glucose, frequently occurring episodes of severe hypoglycemia and impaired awareness of hypoglycemia (IAH). Objectives: To evaluate the effectiveness of islet transplantation in improving glycemic control, reducing the burden of hypoglycemia and improving awareness of hypoglycemia through a single-centre cohort study at the Royal Infirmary of Edinburgh. Glycemic control and degree of hypoglycemic awareness will be determined and monitored pre- and post-transplantation to determine effectiveness of the procedure. Methods: A retrospective analysis of data collected over three years from the 16 patients who have undergone islet transplantation in Scotland. Glycated haemoglobin (HbA1c) was measured and continuous glucose monitoring systems (CGMS) were utilised to assess glycemic control, while Gold and Clarke score questionnaires tested IAH. Results: All patients had improved glycemic control following transplant, with optimal control seen visually at 3 months post-transplant. Glycemic control significantly improved, as illustrated by percentage time in hypoglycemia in the months following transplant (p=0.0211) and HbA1c (p=0.0426). Improved Clarke (p=0.0034) and Gold (p=0.0001) scores indicate improved glycemic awareness following transplant. Conclusion: While the small sample of islet transplant recipients at the Royal Infirmary of Edinburgh prevents definitive conclusions being drawn, it is indicated that through our retrospective, single-centre cohort study of 16 patients, islet transplant is capable of improving glycemic control, reducing the burden of hypoglycemia and IAH post-transplant. Data can be combined with similar trials at other centres to increase statistical power but from research in Edinburgh, it can be suggested that the minimally invasive procedure of islet transplantation offers selected patients with extremely unstable T1DM the incredible opportunity to regain control of their condition and improve their quality of life.Keywords: diabetes, islet, transplant, CGMS
Procedia PDF Downloads 2715403 Earthquake Resistant Sustainable Steel Green Building
Authors: Arup Saha Chaudhuri
Abstract:
Structural steel is a very ductile material with high strength carrying capacity, thus it is very useful to make earthquake resistant buildings. It is a homogeneous material also. The member section and the structural system can be made very efficient for economical design. As the steel is recyclable and reused, it is a green material. The embodied energy for the efficiently designed steel structure is less than the RC structure. For sustainable green building steel is the best material nowadays. Moreover, pre-engineered and pre-fabricated faster construction methodologies help the development work to complete within the stipulated time. In this paper, the usefulness of Eccentric Bracing Frame (EBF) in steel structure over Moment Resisting Frame (MRF) and Concentric Bracing Frame (CBF) is shown. Stability of the steel structures against horizontal forces especially in seismic condition is efficiently possible by Eccentric bracing systems with economic connection details. The EBF is pin–ended, but the beam-column joints are designed for pin ended or for full connectivity. The EBF has several desirable features for seismic resistance. In comparison with CBF system, EBF system can be designed for appropriate stiffness and drift control. The link beam is supposed to yield in shear or flexure before initiation of yielding or buckling of the bracing member in tension or compression. The behavior of a 2-D steel frame is observed under seismic loading condition in the present paper. Ductility and brittleness of the frames are compared with respect to time period of vibration and dynamic base shear. It is observed that the EBF system is better than MRF system comparing the time period of vibration and base shear participation.Keywords: steel building, green and sustainable, earthquake resistant, EBF system
Procedia PDF Downloads 3495402 Methodologies for Stability Assessment of Existing and Newly Designed Reinforced Concrete Bridges
Authors: Marija Vitanovа, Igor Gjorgjiev, Viktor Hristovski, Vlado Micov
Abstract:
Evaluation of stability is very important in the process of definition of optimal structural measures for maintenance of bridge structures and their strengthening. To define optimal measures for their repair and strengthening, it is necessary to evaluate their static and seismic stability. Presented in this paper are methodologies for evaluation of the seismic stability of existing reinforced concrete bridges designed without consideration of seismic effects and checking of structural justification of newly designed bridge structures. All bridges are located in the territory of the Republic of North Macedonia. A total of 26 existing bridges of different structural systems have been analyzed. Visual inspection has been carried out for all bridges, along with the definition of three main damage categories according to which structures have been categorized in respect to the need for their repair and strengthening. Investigations involving testing the quality of the built-in materials have been carried out, and dynamic tests pointing to the dynamic characteristics of the structures have been conducted by use of non-destructive methods of ambient vibration measurements. The conclusions drawn from the performed measurements and tests have been used for the development of accurate mathematical models that have been analyzed for static and dynamic loads. Based on the geometrical characteristics of the cross-sections and the physical characteristics of the built-in materials, interaction diagrams have been constructed. These diagrams along with the obtained section quantities under seismic effects, have been used to obtain the bearing capacity of the cross-sections. The results obtained from the conducted analyses point to the need for the repair of certain structural parts of the bridge structures. They indicate that the stability of the superstructure elements is not critical during a seismic effect, unlike the elements of the sub-structure, whose strengthening is necessary.Keywords: existing bridges, newly designed bridges, reinforced concrete bridges, stability assessment
Procedia PDF Downloads 1015401 Effectiveness of Interactive Integrated Tutorial in Teaching Medical Subjects to Dental Students: A Pilot Study
Authors: Mohammad Saleem, Neeta Kumar, Anita Sharma, Sazina Muzammil
Abstract:
It is observed that some of the dental students in our setting take less interest in medical subjects. Various teaching methods are focus of research interest currently and being tried to generate interest among students. An approach of interactive integrated tutorial was used to assess its feasibility in teaching medical subjects to dental undergraduates. The aim was to generate interest and promote active self-learning among students. The objectives were to (1) introduce the integrated interactive learning method through two departments, (2) get feedback from the students and faculty on feasibility and effectiveness of this method. Second-year students in Bachelor of Dental Surgery course were divided into two groups. Each group was asked to study physiology and pathology of a common and important condition (anemia and hypertension) in a week’s time. During the tutorial, students asked questions on physiology and pathology of that condition from each other in the presence of teachers of both physiology and pathology departments. The teachers acted only as facilitators. After the session, the feedback from students and faculty on this alternative learning method was obtained. Results: Majority of the students felt that this method of learning is enjoyable, helped to develop reasoning skills and ability to correlate and integrate the knowledge from two related fields. Majority of the students felt that this kind of learning led to better understanding of the topic and motivated them towards deep learning. Teachers observed that the study promoted interdepartmental cross-discipline collaboration and better students’ linkages. Conclusion: Interactive integrated tutorial is effective in motivating dental students for better and deep learning of medical subjects.Keywords: active learning, education, integrated, interactive, self-learning, tutorials
Procedia PDF Downloads 3145400 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons
Authors: Dachuan Shi, M. Hecht, Y. Ye
Abstract:
With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.Keywords: fault detection, wheel flat, convolutional neural network, machine learning
Procedia PDF Downloads 1315399 Assessment and Control for Oil Aerosol
Authors: Chane-Yu Lai, Xiang-Yu Huang
Abstract:
This study conducted an assessment of sampling result by using the new development rotation filtration device (RFD) filled with porous media filters integrating the method of cyclone centrifugal spins. The testing system established for the experiment used corn oil and potassium sodium tartrate tetrahydrate (PST) as challenge aerosols and were produced by using an Ultrasonic Atomizing Nozzle, a Syringe Pump, and a Collison nebulizer. The collection efficiency of RFD for oil aerosol was assessed by using an Aerodynamic Particle Sizer (APS) and a Fidas® Frog. The results of RFD for the liquid particles condition indicated the cutoff size was 1.65 µm and 1.02 µm for rotation of 0 rpm and 9000 rpm, respectively, under an 80 PPI (pores per inch)foam with a thickness of 80 mm, and sampling velocity of 13.5 cm/s. As the experiment increased the foam thickness of RFD, the cutoff size reduced from 1.62 µm to 1.02 µm. However, when increased the foam porosity of RFD, the cutoff size reduced from 1.26 µm to 0.96 µm. Moreover, as increased the sampling velocity of RFD, the cutoff size reduced from 1.02 µm to 0.76 µm. These discrepancies of above cutoff sizes of RFD all had statistical significance (P < 0.05). The cutoff size of RFD for three experimental conditions of generated liquid oil particles, solid PST particles or both liquid oil and solid PST particles was 1.03 µm, 1.02 µm, or 0.99 µm, respectively, under a 80 PPI foam with thickness of 80 mm, rotation of 9000 rpm, and sampling velocity of 13.5 cm/s. In addition, under the best condition of the experiment, two hours of sampling loading, the RFD had better collection efficiency for particle diameter greater than 0.45 µm, under a 94 PPI nickel mesh with a thickness of 68 mm, rotation of 9000 rpm, and sampling velocity of 108.3 cm/s. The experiment concluded that increased the thickness of porous media, face velocity, and porosity of porous media of RFD could increase the collection efficiency of porous media for sampling oil particles. Moreover, increased the rotation speed of RFD also increased the collection efficiency for sampling oil particles. Further investigation is required for those above operation parameters for RFD in this study in the future.Keywords: oil aerosol, porous media filter, rotation, filtration
Procedia PDF Downloads 4035398 Atom Probe Study of Early Stage of Precipitation on Binary Al-Li, Al-Cu Alloys and Ternary Al-Li-Cu Alloys
Authors: Muna Khushaim
Abstract:
Aluminum-based alloys play a key role in modern engineering, especially in the aerospace industry. Introduction of solute atoms such as Li and Cu is the main approach to improve the strength in age-hardenable Al alloys via the precipitation hardening phenomenon. Knowledge of the decomposition process of the microstructure during the precipitation reaction is particularly important for future technical developments. The objective of this study is to investigate the nano-scale chemical composition in the Al-Cu, Al-Li and Al-Li-Cu during the early stage of the precipitation sequence and to describe whether this compositional difference correlates with variations in the observed precipitation kinetics. Comparing the random binomial frequency distribution and the experimental frequency distribution of concentrations in atom probe tomography data was used to investigate the early stage of decomposition in the different binary and ternary alloys which were experienced different heat treatments. The results show that an Al-1.7 at.% Cu alloy requires a long ageing time of approximately 8 h at 160 °C to allow the diffusion of Cu atoms into Al matrix. For the Al-8.2 at.% Li alloy, a combination of both the natural ageing condition (48 h at room temperature) and a short artificial ageing condition (5 min at 160 °C) induces increasing on the number density of the Li clusters and hence increase number of precipitated δ' particles. Applying this combination of natural ageing and short artificial ageing conditions onto the ternary Al-4 at.% Li-1.7 at.% Cu alloy induces the formation of a Cu-rich phase. Increasing the Li content in the ternary alloy up to 8 at.% and increasing the ageing time to 30 min resulted in the precipitation processes ending with δ' particles. Thus, the results contribute to the understanding of Al-alloy design.Keywords: aluminum alloy, atom probe tomography, early stage, decomposition
Procedia PDF Downloads 3435397 Using Hyperspectral Sensor and Machine Learning to Predict Water Potentials of Wild Blueberries during Drought Treatment
Authors: Yongjiang Zhang, Kallol Barai, Umesh R. Hodeghatta, Trang Tran, Vikas Dhiman
Abstract:
Detecting water stress on crops early and accurately is crucial to minimize its impact. This study aims to measure water stress in wild blueberry crops non-destructively by analyzing proximal hyperspectral data. The data collection took place in the summer growing season of 2022. A drought experiment was conducted on wild blueberries in the randomized block design in the greenhouse, incorporating various genotypes and irrigation treatments. Hyperspectral data ( spectral range: 400-1000 nm) using a handheld spectroradiometer and leaf water potential data using a pressure chamber were collected from wild blueberry plants. Machine learning techniques, including multiple regression analysis and random forest models, were employed to predict leaf water potential (MPa). We explored the optimal wavelength bands for simple differences (RY1-R Y2), simple ratios (RY1/RY2), and normalized differences (|RY1-R Y2|/ (RY1-R Y2)). NDWI ((R857 - R1241)/(R857 + R1241)), SD (R2188 – R2245), and SR (R1752 / R1756) emerged as top predictors for predicting leaf water potential, significantly contributing to the highest model performance. The base learner models achieved an R-squared value of approximately 0.81, indicating their capacity to explain 81% of the variance. Research is underway to develop a neural vegetation index (NVI) that automates the process of index development by searching for specific wavelengths in the space ratio of linear functions of reflectance. The NVI framework could work across species and predict different physiological parameters.Keywords: hyperspectral reflectance, water potential, spectral indices, machine learning, wild blueberries, optimal bands
Procedia PDF Downloads 675396 Influence of Loudness Compression on Hearing with Bone Anchored Hearing Implants
Authors: Anja Kurz, Marc Flynn, Tobias Good, Marco Caversaccio, Martin Kompis
Abstract:
Bone Anchored Hearing Implants (BAHI) are routinely used in patients with conductive or mixed hearing loss, e.g. if conventional air conduction hearing aids cannot be used. New sound processors and new fitting software now allow the adjustment of parameters such as loudness compression ratios or maximum power output separately. Today it is unclear, how the choice of these parameters influences aided speech understanding in BAHI users. In this prospective experimental study, the effect of varying the compression ratio and lowering the maximum power output in a BAHI were investigated. Twelve experienced adult subjects with a mixed hearing loss participated in this study. Four different compression ratios (1.0; 1.3; 1.6; 2.0) were tested along with two different maximum power output settings, resulting in a total of eight different programs. Each participant tested each program during two weeks. A blinded Latin square design was used to minimize bias. For each of the eight programs, speech understanding in quiet and in noise was assessed. For speech in quiet, the Freiburg number test and the Freiburg monosyllabic word test at 50, 65, and 80 dB SPL were used. For speech in noise, the Oldenburg sentence test was administered. Speech understanding in quiet and in noise was improved significantly in the aided condition in any program, when compared to the unaided condition. However, no significant differences were found between any of the eight programs. In contrast, on a subjective level there was a significant preference for medium compression ratios of 1.3 to 1.6 and higher maximum power output.Keywords: Bone Anchored Hearing Implant, baha, compression, maximum power output, speech understanding
Procedia PDF Downloads 3875395 Characterization of Oxide Layer Developed during Tribo-Interaction of Zircaloys
Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry
Abstract:
Zirconium alloys are used as core components of nuclear reactors due to their high wear resistance, good corrosion properties, and good mechanical stability at high temperatures. The present work simulates the contact between the calandria tube and the liquid injection shutdown system (LISS) nozzle. The Calandria tube is the outer covering of the pressure tube. Water flows inside the pressure tube through fuel claddings which produces vibration in the pressure tube along with vibration in the calandria tube. Fretting wear takes place at the point of contact between the calandria tube and the LISS nozzle. Fretting tests were performed under different conditions, such as; varying fretting duration (i.e., 1 to 4 hours), varying frequency (i.e., 5 to 6.5 Hz), and varying amplitude (100 to 400 µm). The formation of the oxide layer was observed during the fretting wear test; as a result, the worn product. The worn surfaces were analyzed with scanning electron microscopy (SEM) to analyze the wear mechanism involved in the fretting test, and Energy dispersive x-ray spectroscopy (EDS) and Raman spectroscopy were used to confirm the presence of an oxide layer on the worn surface. The oxide layer becomes more uniform with fretting duration in case of water submerged condition as compared to dry contact condition. The oxide layer is deeply removed at high amplitude due to the change of wear mechanism from adhesion to abrasion, as confirmed by the presence of micro ploughing and micro cutting. Low amplitude fretting favors the formation of the tribo-oxide layer.Keywords: tribo-oxide layer, wear, mechanically mixed layer, zircaloy
Procedia PDF Downloads 855394 Experimental Investigation of Mechanical Friction Influence in Semi-Hydraulic Clutch Actuation System Over Mileage
Authors: Abdul Azarrudin M. A., Pothiraj K., Kandasamy Satish
Abstract:
In the current automobile scenario, there comes a demand on more sophistication and comfort drive feel on passenger segments. The clutch pedal effort is one such customer touch feels in manual transmission vehicles, where the driver continuous to operate the clutch pedal in his entire the driving maneuvers. Hence optimum pedal efforts at green condition and over mileage to be ensured for fatigue free the driving. As friction is one the predominant factor and its tendency to challenge the technicality by causing the function degradation. One such semi-hydraulic systems shows load efficiency of about 70-75% over lifetime only due to the increase in friction which leads to the increase in pedal effort and cause fatigue to the vehicle driver. This work deals with the study of friction with different interfaces and its influence in the fulcrum points over mileage, with the objective of understanding the trend over mileage and determining the alternative ways of resolving it. In that one way of methodology is the reduction of friction by experimental investigation of various friction reduction interfaces like metal-to-metal interface and it has been tried out and is detailed further. Also, the specific attention has been put up considering the fulcrum load and its contact interfaces to move on with this study. The main results of the experimental data with the influence of three different contact interfaces are being presented with an ultimate intention of ending up into less fatigue with longer consistent pedal effort, thus smoothens the operation of the end user. The Experimental validation also has been done through rig-level test setup to depict the performance at static condition and in-parallel vehicle level test has also been performed to record the additional influences if any.Keywords: automobile, clutch, friction, fork
Procedia PDF Downloads 1245393 A Case Report on Diaphragm Disease of Small Bowel Following Usage of Non-Steroidal Anti-Inflammatory Drugs
Authors: Shivani Kuttuva, Bridget Fergie, Andrew Mishreki, Shovkat Mir, Fintan Bergin
Abstract:
Diaphragm disease (DD) of the small bowel is a condition wherein the bowel lumen is divided into a series of short compartments by multiple circumferential membranes of mucosa and submucosa, leading to pinhole lumen and subsequent obstruction. It is a rare condition commonly attributed to non-steroidal anti-inflammatory drugs (NSAIDs) usage. Herein we present a 31-yr-old-female with a history of NSAIDs usage for one year following neurosurgery, who presented with recurrent idiopathic small bowel obstruction, recalcitrant anaemia, and impaction of capsule endoscope on investigating for anaemia. The capsule endoscopy images demonstrated multiple circumferential strictures with ulcers at its tip and villous atrophy in the proximal bowel, suggestive of NSAIDs related damage. However, due to the lack of awareness of the detrimental effects of NSAIDs on bowel mucosa distal to the duodenum, the underlying aetiology of this clinical presentation remained a mystery for a significant duration. The patient had to undergo repeated laparotomies in order to relieve the symptoms of recurring acute small bowel obstruction. Upon examining the resected specimen under microscopy, the histopathological hallmark of expanded, fibrotic, and congested submucosa was picked up, leading to the confirmation of diaphragm disease. Thus, this case report aims to widen the awareness among clinicians and aid surgeons in devising a management plan for young individuals presenting with recurring episodes of obstruction due to Diaphragm disease.Keywords: capsule endoscopy, diaphragm disease, NSAIDs, recurrent small bowel obstruction
Procedia PDF Downloads 1705392 Coupling of Microfluidic Droplet Systems with ESI-MS Detection for Reaction Optimization
Authors: Julia R. Beulig, Stefan Ohla, Detlev Belder
Abstract:
In contrast to off-line analytical methods, lab-on-a-chip technology delivers direct information about the observed reaction. Therefore, microfluidic devices make an important scientific contribution, e.g. in the field of synthetic chemistry. Herein, the rapid generation of analytical data can be applied for the optimization of chemical reactions. These microfluidic devices enable a fast change of reaction conditions as well as a resource saving method of operation. In the presented work, we focus on the investigation of multiphase regimes, more specifically on a biphasic microfluidic droplet systems. Here, every single droplet is a reaction container with customized conditions. The biggest challenge is the rapid qualitative and quantitative readout of information as most detection techniques for droplet systems are non-specific, time-consuming or too slow. An exception is the electrospray mass spectrometry (ESI-MS). The combination of a reaction screening platform with a rapid and specific detection method is an important step in droplet-based microfluidics. In this work, we present a novel approach for synthesis optimization on the nanoliter scale with direct ESI-MS detection. The development of a droplet-based microfluidic device, which enables the modification of different parameters while simultaneously monitoring the effect on the reaction within a single run, is shown. By common soft- and photolithographic techniques a polydimethylsiloxane (PDMS) microfluidic chip with different functionalities is developed. As an interface for the MS detection, we use a steel capillary for ESI and improve the spray stability with a Teflon siphon tubing, which is inserted underneath the steel capillary. By optimizing the flow rates, it is possible to screen parameters of various reactions, this is exemplarity shown by a Domino Knoevenagel Hetero-Diels-Alder reaction. Different starting materials, catalyst concentrations and solvent compositions are investigated. Due to the high repetition rate of the droplet production, each set of reaction condition is examined hundreds of times. As a result, of the investigation, we receive possible reagents, the ideal water-methanol ratio of the solvent and the most effective catalyst concentration. The developed system can help to determine important information about the optimal parameters of a reaction within a short time. With this novel tool, we make an important step on the field of combining droplet-based microfluidics with organic reaction screening.Keywords: droplet, mass spectrometry, microfluidics, organic reaction, screening
Procedia PDF Downloads 3015391 Characteristics of Double-Stator Inner-Rotor Axial Flux Permanent Magnet Machine with Rotor Eccentricity
Authors: Dawoon Choi, Jian Li, Yunhyun Cho
Abstract:
Axial Flux Permanent Magnet (AFPM) machines have been widely used in various applications due to their important merits, such as compact structure, high efficiency and high torque density. This paper presents one of the most important characteristics in the design process of the AFPM device, which is a recent issue. To design AFPM machine, the predicting electromagnetic forces between the permanent magnets and stator is important. Because of the magnitude of electromagnetic force affects many characteristics such as machine size, noise, vibration, and quality of output power. Theoretically, this force is canceled by the equilibrium of force when it is in the middle of the gap, but it is inevitable to deviate due to manufacturing problems in actual machine. Such as large scale wind generator, because of the huge attractive force between rotor and stator disks, this is more serious in getting large power applications such as large. This paper represents the characteristics of Double-Stator Inner –Rotor AFPM machines when it has rotor eccentricity. And, unbalanced air-gap and inclined air-gap condition which is caused by rotor offset and tilt in a double-stator single inner-rotor AFPM machine are each studied in electromagnetic and mechanical aspects. The output voltage and cogging torque under un-normal air-gap condition of AF machines are firstly calculated using a combined analytical and numerical methods, followed by a structure analysis to study the effect to mechanical stress, deformation and bending forces on bearings. Results and conclusions given in this paper are instructive for the successful development of AFPM machines.Keywords: axial flux permanent magnet machine, inclined air gap, unbalanced air gap, rotor eccentricity
Procedia PDF Downloads 2195390 Serum Potassium Before, During and After Exercise at 70% Maximal Heart Rate: The Safe Exercise Dosage Across Different Parameters of Health and Fitness Level
Authors: Omar bin Mihat
Abstract:
The number of sudden deaths is increasing over the past years. These deaths occur not during physical activities but upon cessation. Post-mortem confirms these deaths as cardiac arrest non-specifically. Congenital heart disease is a condition undiagnosed whereby only surface upon physical exertion leading to sudden death is unavoidable. Channelopathy, a condition that refers to any disease from the defect in iron-channel function, particularly the sodium-potassium pump, during the cessation of the exercise can be controlled. The derivation of heart rate return (HRrtn) is a procedure of a control cooling down process according to the heart rate (HR). Empirically, potassium rises linearly with intensity and falls sharply upon abrupt cessation of exertion, resulting in fatal arrhythmia due to hypokalaemia. It is vital that the flux of potassium should be maintained within the normal range during physical activities. To achieve this, the dosage of physical exertion (exercise) should be identified. Various percentages of the intensity of maximum heart rate (MHR) will precipitate different adaptations and remodeling of various organs. 70% of MHR will surface physiological adaptations, including enhancement of endurance, fitness level, and general health, and there was no significant rise of serum potassium (K+) during the entire phase of the treadmill brisk walk at a different rate of perceived exertion (RPE) from the subject of various fitness background. There was also no significant rise in blood pressure (BP) during the entire phase of the treadmill brisk walk, substantiating 70% MHR is the safe dosage across different parameters of health and fitness level.Keywords: potassium, maximal heart rate, exercise dosage, fitness level
Procedia PDF Downloads 665389 Quality of Service Based Routing Algorithm for Real Time Applications in MANETs Using Ant Colony and Fuzzy Logic
Authors: Farahnaz Karami
Abstract:
Routing is an important, challenging task in mobile ad hoc networks due to node mobility, lack of central control, unstable links, and limited resources. An ant colony has been found to be an attractive technique for routing in Mobile Ad Hoc Networks (MANETs). However, existing swarm intelligence based routing protocols find an optimal path by considering only one or two route selection metrics without considering correlations among such parameters making them unsuitable lonely for routing real time applications. Fuzzy logic combines multiple route selection parameters containing uncertain information or imprecise data in nature, but does not have multipath routing property naturally in order to provide load balancing. The objective of this paper is to design a routing algorithm using fuzzy logic and ant colony that can solve some of routing problems in mobile ad hoc networks, such as nodes energy consumption optimization to increase network lifetime, link failures rate reduction to increase packet delivery reliability and providing load balancing to optimize available bandwidth. In proposed algorithm, the path information will be given to fuzzy inference system by ants. Based on the available path information and considering the parameters required for quality of service (QoS), the fuzzy cost of each path is calculated and the optimal paths will be selected. NS2.35 simulation tools are used for simulation and the results are compared and evaluated with the newest QoS based algorithms in MANETs according to packet delivery ratio, end-to-end delay and routing overhead ratio criterions. The simulation results show significant improvement in the performance of these networks in terms of decreasing end-to-end delay, and routing overhead ratio, and also increasing packet delivery ratio.Keywords: mobile ad hoc networks, routing, quality of service, ant colony, fuzzy logic
Procedia PDF Downloads 645388 Appraisal of the Impact Strength on Mild Steel Cladding Weld Metal Geometry
Authors: Chukwuemeka Daniel Ezeliora, Chukwuebuka Lawrence Ezeliora
Abstract:
The research focused on the appraisal of impact strength on mild steel cladding weld metal geometry. Over the years, poor welding has resulted in failures in engineering components, poor material quality, the collapse of welded materials, and failures in material strength. This is as a result of poor selection and combination of welding input process parameters. The application of the Tungsten Inert Gas (TIG) welding method with weld specimen of length 60; width 40, and thickness of 10 was used for the experiment. A butt joint method was prepared for the welding, and tungsten inert gas welding process was used to perform the twenty (20) experimental runs. A response surface methodology was used to model and to analyze the system. For an adequate polynomial approximation, the experimental design was used to collect the data. The key parameters considered in this work are welding current, gas flow rate, welding speed, and voltage. The range of the input process parameters was selected from the literature and the design. The steps followed to achieve the experimental design and results is the use of response surface method (RSM) implemented in central composite design (CCD) to generate the design matrix, to obtain quadratic model, and evaluate the interactions in the factors as well as optimizing the factors and the response. The result expresses that the best impact strength of the mild steel cladding weld metal geometry is 115.419 Joules. However, it was observed that the result of the input factors is; current 180.4 amp, voltage 23.99 volt, welding speed 142.7 mm.s and gas flow rate 10.8 lit/min as the optimum of the input process parameters. The optimal solution gives a guide for optimal impact strength of the weldment when welding with tungsten inert gas (TIG) under study.Keywords: mild steel, impact strength, response surface, bead geometry, welding
Procedia PDF Downloads 1195387 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs
Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare
Abstract:
The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio
Procedia PDF Downloads 985386 Development of the New York Misophonia Scale: Implications for Diagnostic Criteria
Authors: Usha Barahmand, Maria Stalias, Abdul Haq, Esther Rotlevi, Ying Xiang
Abstract:
Misophonia is a condition in which specific repetitive oral, nasal, or other sounds and movements made by humans trigger impulsive aversive reactions of irritation or disgust that instantly become anger. A few measures exist for the assessment of misophonia, but each has some limitations, and evidence for a formal diagnosis is still lacking. The objective of this study was to develop a reliable and valid measure of misophonia for use in the general population. Adopting a purely descriptive approach, this study focused on developing a self-report measure using all triggers and reactions identified in previous studies on misophonia. A measure with two subscales, one assessing the aversive quality of various triggers and the other assessing reactions of individuals, was developed. Data were gathered from a large sample of both men and women ranging in age from 18 to 65 years. Exploratory factor analysis revealed three main triggers: oral/nasal sounds, hand and leg movements, and environmental sounds. Two clusters of reactions also emerged: nonangry attempts to avoid the impact of the aversive stimuli and angry attempts to stop the aversive stimuli. The examination of the psychometric properties of the scale revealed its internal consistency and test-retest reliability to be excellent. The scale was also found to have very good concurrent and convergent validity. Significant annoyance and disgust in response to the triggers were reported by 12% of the sample, although for some specific triggers, rates as high as 31% were also reported. These findings have implications for the delineation of the criteria for identifying misophonia as a clinical condition.Keywords: adults, factor analysis, misophonia, psychometric properties, scale
Procedia PDF Downloads 2075385 On the Well-Posedness of Darcy–Forchheimer Power Model Equation
Authors: Johnson Audu, Faisal Fairag
Abstract:
In a bounded subset of R^d, d=2 or 3, we consider the Darcy-Forchheimer power model with the exponent 1 < m ≤ 2 for a single-phase strong-inertia fluid flow in a porous medium. Under necessary compatibility condition, and some mild regularity assumptions on the interior and the boundary data, we prove the existence and uniqueness of solution (u, p) in L^(m+1 ) (Ω)^d X (W^(1,(m+1)/m) (Ω)^d ⋂L_0^2 (Ω)^d) and its stability.Keywords: porous media, power law, strong inertia, nonlinear, monotone type
Procedia PDF Downloads 3175384 Wear Map for Cu-Based Friction Materials with Different Contents of Fe Reinforcement
Authors: Haibin Zhou, Pingping Yao, Kunyang Fan
Abstract:
Copper-based sintered friction materials are widely used in the brake system of different applications such as engineering machinery or high-speed train, due to the excellent mechanical, thermal and tribological performance. Considering the diversity of the working conditions of brake system, it is necessary to identify well and understand the tribological performance and wear mechanisms of friction materials for different conditions. Fe has been a preferred reinforcement for copper-based friction materials, due to its ability to improve the wear resistance and mechanical properties of material. Wear map is well accepted as a useful research method for evaluation of wear performances and wear mechanisms over a wider range of working conditions. Therefore, it is significantly important to construct a wear map which can give out the effects of work condition and Fe reinforcement on tribological performance of Cu-based friction materials. In this study, the copper-based sintered friction materials with the different addition of Fe reinforcement (0-20 vol. %) were studied. The tribological tests were performed against stainless steel in a ring-on-ring braking tester with varying braking energy density (0-5000 J/cm2). The linear wear and friction coefficient were measured. The worn surface, cross section and debris were analyzed to determine the dominant wear mechanisms for different testing conditions. On the basis of experimental results, the wear map and wear mechanism map were established, in terms of braking energy density and the addition of Fe. It was found that with low contents of Fe and low braking energy density, adhesive wear was the dominant wear mechanism of friction materials. Oxidative wear and abrasive wear mainly occurred under moderate braking energy density. In the condition of high braking energy density, with both high and low addition of Fe, delamination appeared as the main wear mechanism.Keywords: Cu-based friction materials, Fe reinforcement, wear map, wear mechanism
Procedia PDF Downloads 2795383 Development and Characterization of Controlled Release Photo Cross-Linked Implants for Ocular Delivery of Triamcinolone Acetonide
Authors: Ravi Sheshala, Annie Lee, Ai Lin Ong, Ling Ling Cheu, Thiagarajan Madheswaran, Thankur R. R. Singh
Abstract:
The objectives of the present research work were to develop and characterize biodegradable controlled release photo cross-linked implants of Triamcinolone Acetonide (TA) for the treatment of chronic ocular diseases. The photo cross-linked implants were prepared using film casting technique by mixing TA (2.5%) polyethylene glycol diacrylate (PEGDA 700), pore formers (mannitol, maltose, and gelatin) and the photoinitiator (Irgacure 2959). The resulting mixture was injected into moulds using 21 G and subjected to photocrosslinking at 365 nm. Scanning electron microscopy results demonstrated that more pores were formed in the films with the increase in the concentration of pore formers from 2%-10%. The maximum force required to break the films containing 2-10% of pore formers were determined in both dry and wet conditions using texture analyzer and found that films in a dry condition required a higher force to break compared to wet condition and blank films. In vitro drug release from photo cross-linked films were determined by incubating samples in 50 ml PBS pH 7.4 at 37 C and the samples were analyzed for drug release by HPLC. The films demonstrated a biphasic release profile i.e. an initial burst release (<20%) on the first day followed by a constant and continuous drug release in a controlled manner for 42 days. The drug release from all formulations followed the first-order release pattern and the combination of diffusion and erosion release mechanism. In conclusion, the developed formulations were able to provide controlled drug delivery to treat the chronic ocular diseases.Keywords: controlled release, ophthalmic, PEGDA, photocrosslinking, pore formers
Procedia PDF Downloads 4045382 Portable Palpation Probe for Diabetic Foot Ulceration Monitoring
Authors: Bummo Ahn
Abstract:
Palpation is widely used to measure soft tissue firmness or stiffness in the living condition in order to apply detection, diagnosis, and treatment of tumors, scar tissue, abnormal muscle tone, or muscle spasticity. Since these methods are subjective and depend on the proficiency level, it is concluded that there are other diagnoses depending on the condition of the experts and the results are not objective. The mechanical property obtained by using the elasticity of the tissue is important to calculate a predictive variable for monitoring abnormal tissues. If the mechanical load such as reaction force on the foot increases in the same region under the same conditions, the mechanical property of the tissue is changed. Therefore, objective diagnosis is possible not only for experts but also for patients using this quantitative information. Furthermore, the portable system also allows non-experts to easily diagnose at home, not in hospitals or institutions. In this paper, we introduce a portable palpation system that can be used to measure the mechanical properties of human tissue, which can be applied to monitor diabetic foot ulceration patients with measuring the mechanical property change of foot tissue. The system was designed to be smaller and portable in comparison with the conventional palpation systems. It is consists of the probe, the force sensor, linear actuator, micro control unit, the display module, battery, and housing. Using this system, we performed validation experiments by applying different palpations (3 and 5 mm) to soft tissue (silicone rubber) and measured reaction forces. In addition, we estimated the elastic moduli of the soft tissue against different palpations and compare the estimated elastic moduli that show similar value even if the palpation depths are different.Keywords: palpation probe, portable, diabetic foot ulceration, monitoring, mechanical property
Procedia PDF Downloads 1205381 Time to Pancreatic Surgery after Preoperative Biliary Drainage in Periampullary Cancers: A Systematic Review and Meta‑Analysis
Authors: Maatouk Mohamed, Nouira Mariem, Hamdi Kbir Gh, Mahjoubi M. F., Ben Moussa M.
Abstract:
Background and aim: Preoperative biliary drainage (PBD) has been introduced to lower bilirubin levels and to control the negative effects of obstructive jaundice in patients with malignant obstructive jaundice undergoing pancreaticoduodenectomy (PD). The optimal time interval between PBD and PD is still not clear. Delaying surgery by 4 to 6 weeks is the commonly accepted practice. However, delayed PD has been shown to decrease the rate of resection and adversely affect the tumor grading and prognosis. Thus, the purpose of our systematic review and meta-analysis was to evaluate the optimal period for PBD prior to PD: short or prolonged in terms of postoperative morbidity and survival outcomes. Methods: Trials were searched in PubMed, Science Direct, Google Scholar, and Cochrane Library until November 2022. Studies using PBD in patients with malignant obstructive jaundice that compared short duration group (SDG) (surgery performed within 3-4 weeks) with prolonged duration group (PDG) (at least 3-4 weeks after PBD) were included in this study. The risk of bias was assessed using the Rob v2 and Robins-I tools. The priori protocol was published in PROSPERO (ID: CRD42022381405). Results: Seven studies comprising 1625 patients (SDG 870, PDG 882) were included. All studies were non-randomized, and only one was prospective. No significant differences were observed between the SDG and PDG in mortality (OR= 0.59; 95% CI [0.30, 1.17], p=0.13), major morbidity (Chi² = 30.28, p <0.00001; I² = 87%), pancreatic fistula (Chi² = 6.61, p = 0.25); I² = 24%), post pancreatectomy haemorrhage (OR= 1.16; 95% CI [0.67, 2.01], p=0.59), positive drainage culture (OR= 0.36; 95% CI [0.10, 1.32], p=0.12), septic complications (OR= 0.78; 95% CI [0.23, 2.72], p=0.70), wound infection (OR= 0.08, p=0.07), operative time (MD= 0.21; p=0.21). Conclusion: Early surgery within 3 or 4 weeks after biliary drainage is both safe and effective. Thus, it is reasonable to suggest early surgery following PBD for patients having resectable periampullary cancers.Keywords: preoperative biliary drainage, pancreatic cancer, pancreatic surgery, complication
Procedia PDF Downloads 675380 Formation of ZnS/ZnO Heterojunction for Photocatalytic Hydrogen Evolution Using Partial Oxidation and Chemical Precipitation Synthesis Methods
Authors: Saba Didarataee, Abbas Ali Khodadadi, Yadollah Mortazavi, Fatemeh Mousavi
Abstract:
Photocatalytic water splitting is one of the most attractive alternative methods for hydrogen evolution. A variety of nanoparticle engineering techniques were introduced to improve the activity of semiconductor photocatalysts. Among these methods, heterojunction formation is an appealing method due to its ability to effectively preventing electron-hole recombination and improving photocatalytic activity. Reaching an optimal ratio of the two target semiconductors for the formation of heterojunctions is still an open question. Considering environmental issues as well as the cost and availability, ZnS and ZnO are frequently studied as potential choices. In this study, first, the ZnS nanoparticle was synthesized in a hydrothermal process; the formation of ZnS nanorods with a diameter of 14-30 nm was confirmed by field emission scanning electron microscope (FESEM). Then two different methods, partial oxidation and chemical precipitation were employed to construct ZnS/ZnO core-shell heterojunction. X-ray diffraction (XRD), BET, and diffuse reflectance spectroscopy (DRS) analysis were carried out to determine crystallite phase, surface area, and bandgap of photocatalysts. Furthermore, the temperature of oxidation was specified by a temperature programmed oxidation (TPO) and was fixed at 510℃, at which mild oxidation occurred. The bandgap was calculated by the Kubelka-Munk method and decreased by increasing oxide content from 3.53 (pure ZnS) to 3.18 (pure ZnO). The optimal samples were determined by testing the photocatalytic activity of hydrogen evolution in a quartz photoreactor with side irradiation of UVC lamps with a wavelength of 254 nm. In both procedures, it was observed that the photocatalytic activity of the ZnS/ZnO composite was sensibly higher than the pure ZnS and ZnO, which is attributed to forming a type-II heterostructure. The best ratio of oxide to sulfide was 0.24 and 0.37 in partial oxidation and chemical precipitation, respectively. The highest hydrogen evolution was 1081 µmol/gr.h, gained from partial oxidizing of ZnS nanoparticles at 510℃ for 30 minutes.Keywords: heterostructure, hydrogen, partial oxidation, photocatalyst, water splitting, ZnS
Procedia PDF Downloads 1285379 CFD Analysis of the Blood Flow in Left Coronary Bifurcation with Variable Angulation
Authors: Midiya Khademi, Ali Nikoo, Shabnam Rahimnezhad Baghche Jooghi
Abstract:
Cardiovascular diseases (CVDs) are the main cause of death globally. Most CVDs can be prevented by avoiding habitual risk factors. Separate from the habitual risk factors, there are some inherent factors in each individual that can increase the risk potential of CVDs. Vessel shapes and geometry are influential factors, having great impact on the blood flow and the hemodynamic behavior of the vessels. In the present study, the influence of bifurcation angle on blood flow characteristics is studied. In order to approach this topic, by simplifying the details of the bifurcation, three models with angles 30°, 45°, and 60° were created, then by using CFD analysis, the response of these models for stable flow and pulsatile flow was studied. In the conducted simulation in order to eliminate the influence of other geometrical factors, only the angle of the bifurcation was changed and other parameters remained constant during the research. Simulations are conducted under dynamic and stable condition. In the stable flow simulation, a steady velocity of 0.17 m/s at the inlet plug was maintained and in dynamic simulations, a typical LAD flow waveform is implemented. The results show that the bifurcation angle has an influence on the maximum speed of the flow. In the stable flow condition, increasing the angle lead to decrease the maximum flow velocity. In the dynamic flow simulations, increasing the bifurcation angle lead to an increase in the maximum velocity. Since blood flow has pulsatile characteristics, using a uniform velocity during the simulations can lead to a discrepancy between the actual results and the calculated results.Keywords: coronary artery, cardiovascular disease, bifurcation, atherosclerosis, CFD, artery wall shear stress
Procedia PDF Downloads 1645378 Choosing an Optimal Epsilon for Differentially Private Arrhythmia Analysis
Authors: Arin Ghazarian, Cyril Rakovski
Abstract:
Differential privacy has become the leading technique to protect the privacy of individuals in a database while allowing useful analysis to be done and the results to be shared. It puts a guarantee on the amount of privacy loss in the worst-case scenario. Differential privacy is not a toggle between full privacy and zero privacy. It controls the tradeoff between the accuracy of the results and the privacy loss using a single key parameter calledKeywords: arrhythmia, cardiology, differential privacy, ECG, epsilon, medi-cal data, privacy preserving analytics, statistical databases
Procedia PDF Downloads 1525377 An Experimental Test of the Effects of Acute and Chronic Stress on Maternal Sensitivity
Authors: Mindy A. Brown, Emma E. Reardon, Jennifer Isenhour, Sheila E. Crowell, K. Lee Raby, Elisabeth Conradt
Abstract:
The positive impact of maternal sensitivity on infant social and emotional development is well-known, as is the notion that stress may impair a mother’s ability to provide sensitive care for her infant. However, individual differences in susceptibility to parenting-related stress are less understood. This study explores how chronic prenatal stress moderates the effect of acute stressors on maternal sensitivity. Data were gathered from 110 mothers and their 7-month-old infants. Mothers were exposed to either an acute stress task or a control task, after which they engaged in the still-face paradigm, a face-to-face interaction where maternal sensitivity was measured. Chronic maternal stress was assessed using the UCLA Life Stress Interview during the third trimester of pregnancy. The results revealed that among mothers exposed to the stress condition, those with higher chronic stress levels in the previous six months displayed significantly lower sensitivity during the still-face paradigm compared to those with lower chronic stress. Notably, past stress levels had no effect on maternal sensitivity in the control condition. These findings suggest a moderating effect of chronic stress on maternal caregiving behavior, with higher prenatal stress diminishing a mother’s ability to cope with acute parenting-related stressors in the present. The mechanisms behind this may involve changes in stress reactivity pathways, such as the hypothalamic-pituitary-adrenal (HPA) axis or altered emotion regulation strategies developed in response to chronic stress. Understanding these pathways could guide targeted interventions for mothers who may be more vulnerable to stress, improving caregiving outcomes.Keywords: acute stress, maternal stress, prenatal stress, still-face paradigm
Procedia PDF Downloads 24