Search results for: material model
20803 Comparison of the Material Response Based on Production Technologies of Metal Foams
Authors: Tamas Mankovits
Abstract:
Lightweight cellular-type structures like metal foams have excellent mechanical properties, therefore the interest in these materials is widely spreading as load-bearing structural elements, e.g. as implants. Numerous technologies are available to produce metal foams. In this paper the material response of closed cell foam structures produced by direct foaming and additive technology is compared. The production technology circumstances are also investigated. Geometrical variations are developed for foam structures produced by additive manufacturing and simulated by finite element method to be able to predict the mechanical behavior.Keywords: additive manufacturing, direct foaming, finite element method, metal foam
Procedia PDF Downloads 19520802 Predicting the Lifetime of Weathered Polyolefins by Relating Mechanics to Microstructure
Authors: Marta Chiapasco, Alexandra Porter, Finn Giuliani
Abstract:
Designing polymers with a specific microstructure can affect how the polymer degrades once released in the environment. Not only the amount but also the distribution of different phases determines a polymers’ degradability. The following research investigates the use of a combination of spectroscopy analysis and thermal analysis to study changes of polymers’ amorphous and crystalline phases during degradation, comparing different microstructures of polypropylene and polyethylene. The use of nanoindentation helps study how degradation proceeds across a material by looking at changes in phases, while bulk tensile test describes when the material fails. The first results demonstrate that different microstructures have different degrading rates, with homopolymer having a linear and faster degradation compared to copolymers. The goal is to create materials that degrade at faster rates without releasing microplastics into the environment.Keywords: degradation, microstructure, nanoindentation, Raman spectroscopy
Procedia PDF Downloads 15420801 Application of Cube IQ Software to Optimize Heterogeneous Packing Products in Logistics Cargo and Minimize Transportation Cost
Authors: Muhammad Ganda Wiratama
Abstract:
XYZ company is one of the upstream chemical companies that produce chemical products such as NaOH, HCl, NaClO, VCM, EDC, and PVC for downstream companies. The products are shipped by land using trucks and sea lanes using ship mode. Especially for solid products such as flake caustic soda (F-NaOH) and PVC resin, the products are sold in loose bag packing and palletize packing (packed in pallet). The focus of this study is to increase the number of items that can be loaded in pallet packaging on the company's logistics vehicle. This is very difficult because on this packaging, the dimensions or size of the material to be loaded become larger and certainly much heavier than the loose bag packing. This factor causes the arrangement and handling of materials in the mode of transportation more difficult. In this case, it is difficult to load a different type of volume packing pallet dimension in one truck or container. By using the Cube-IQ software, it is hoped that the planning of stuffing activity material by pallet can become easier in optimizing the existing space with various possible combinations of possibilities. In addition, the output of this software can also be used as a reference for operators in the material handling include the order and orientation of materials contained in the truck or container. The more optimal contents of logistics cargo, then transportation costs can also be minimized.Keywords: loading activity, container loading, palletize product, simulation
Procedia PDF Downloads 29720800 Finite Element Molecular Modeling: A Structural Method for Large Deformations
Authors: A. Rezaei, M. Huisman, W. Van Paepegem
Abstract:
Atomic interactions in molecular systems are mainly studied by particle mechanics. Nevertheless, researches have also put on considerable effort to simulate them using continuum methods. In early 2000, simple equivalent finite element models have been developed to study the mechanical properties of carbon nanotubes and graphene in composite materials. Afterward, many researchers have employed similar structural simulation approaches to obtain mechanical properties of nanostructured materials, to simplify interface behavior of fiber-reinforced composites, and to simulate defects in carbon nanotubes or graphene sheets, etc. These structural approaches, however, are limited to small deformations due to complicated local rotational coordinates. This article proposes a method for the finite element simulation of molecular mechanics. For ease in addressing the approach, here it is called Structural Finite Element Molecular Modeling (SFEMM). SFEMM method improves the available structural approaches for large deformations, without using any rotational degrees of freedom. Moreover, the method simulates molecular conformation, which is a big advantage over the previous approaches. Technically, this method uses nonlinear multipoint constraints to simulate kinematics of the atomic multibody interactions. Only truss elements are employed, and the bond potentials are implemented through constitutive material models. Because the equilibrium bond- length, bond angles, and bond-torsion potential energies are intrinsic material parameters, the model is independent of initial strains or stresses. In this paper, the SFEMM method has been implemented in ABAQUS finite element software. The constraints and material behaviors are modeled through two Fortran subroutines. The method is verified for the bond-stretch, bond-angle and bond-torsion of carbon atoms. Furthermore, the capability of the method in the conformation simulation of molecular structures is demonstrated via a case study of a graphene sheet. Briefly, SFEMM builds up a framework that offers more flexible features over the conventional molecular finite element models, serving the structural relaxation modeling and large deformations without incorporating local rotational degrees of freedom. Potentially, the method is a big step towards comprehensive molecular modeling with finite element technique, and thereby concurrently coupling an atomistic domain to a solid continuum domain within a single finite element platform.Keywords: finite element, large deformation, molecular mechanics, structural method
Procedia PDF Downloads 15120799 Regularities of Changes in the Fractal Dimension of Acoustic Emission Signals in the Stages Close to the Destruction of Structural Materials When Exposed to Low-Cycle Loaded
Authors: Phyo Wai Aung, Sysoev Oleg Evgenevich, Boris Necolavet Maryin
Abstract:
The article deals with theoretical problems of correlation of processes of microstructure changes of structural materials under cyclic loading and acoustic emission. The ways of the evolution of a microstructure under the influence of cyclic loading are shown depending on the structure of the initial crystal structure of the material. The spectra of the frequency characteristics of acoustic emission signals are experimentally obtained when testing titanium samples for cyclic loads. Changes in the fractal dimension of the acoustic emission signals in the selected frequency bands during the evolution of the microstructure of structural materials from the action of cyclic loads, as well as in the destruction of samples, are studied. The experimental samples were made of VT-20 structural material widely used in aircraft and rocket engineering. The article shows the striving of structural materials for synergistic stability and reduction of the fractal dimension of acoustic emission signals, in accordance with the degradation of the microstructure, which occurs as a result of fatigue processes from the action of low cycle loads. As a result of the research, the frequency range of acoustic emission signals of 100-270 kHz is determined, in which the fractal dimension of the signals, it is possible to most reliably predict the durability of structural materials.Keywords: cyclic loadings, material structure changing, acoustic emission, fractal dimension
Procedia PDF Downloads 26020798 Three-Dimensional CFD Modeling of Flow Field and Scouring around Bridge Piers
Authors: P. Deepak Kumar, P. R. Maiti
Abstract:
In recent years, sediment scour near bridge piers and abutment is a serious problem which causes nationwide concern because it has resulted in more bridge failures than other causes. Scour is the formation of scour hole around the structure mounted on and embedded in erodible channel bed due to the erosion of soil by flowing water. The formation of scour hole around the structures depends upon shape and size of the pier, depth of flow as well as angle of attack of flow and sediment characteristics. The flow characteristics around these structures change due to man-made obstruction in the natural flow path which changes the kinetic energy of the flow around these structures. Excessive scour affects the stability of the foundation of the structure by the removal of the bed material. The accurate estimation of scour depth around bridge pier is very difficult. The foundation of bridge piers have to be taken deeper and to provide sufficient anchorage length required for stability of the foundation. In this study, computational model simulations using a 3D Computational Fluid Dynamics (CFD) model were conducted to examine the mechanism of scour around a cylindrical pier. Subsequently, the flow characteristics around these structures are presented for different flow conditions. Mechanism of scouring phenomenon, the formation of vortex and its consequent effect is discussed for a straight channel. Effort was made towards estimation of scour depth around bridge piers under different flow conditions.Keywords: bridge pier, computational fluid dynamics, multigrid, pier shape, scour
Procedia PDF Downloads 29520797 Experimental Investigation of Interfacial Bond Strength of Concrete Layers
Authors: Rajkamal Kumar, Sudhir Mishra
Abstract:
The connections between various elements of concrete structures play a vital role in determining the durability of structures. These connections produce discontinuities and to ensure the monolithic behavior of structures, these connections should be carefully designed. The connections between concrete layers may occur in various situations such as structure repairing and rehabilitation or construction of huge structures with cast-in-situ or pre-cast elements, etc. Bond strength at the interface of these concrete layers should be able to prevent the progressive slip from taking place and it should also ensure satisfactory performance of the structure. Different approaches to enhance the bond strength at interface have been a major area of research. Nowadays, micro-concrete is getting popular as a repair material. Under this ambit, this paper aims to present the experimental results of connections between concrete layers of different age with artificial indentation at interface with two types of repair material: Concrete with same parent concrete composition and ready-mix mortar (micro-concrete), artificial indentations (grooves and holes) were made on the old layer of concrete to increase the bond strength. Curing plays an important role in determining the bond strength. Optimum duration for curing have also been discussed for each type of repair material. Different types of failure patterns have also been mentioned.Keywords: adhesion, cohesion, compressive stress, micro-concrete, shear stress, slant shear test
Procedia PDF Downloads 33120796 Evaluating Environmental Impact of End-of-Life Cycle Cases for Brick Walls and Aerated Autoclave Concrete Walls
Authors: Ann Mariya Jose, Ashfina T.
Abstract:
Construction and demolition waste is one of the rising concerns globally due to the amount of waste generated annually, the area taken up by landfills, and the adverse environmental impacts that follow. One of the primary causes of the rise in construction and demolition waste is a lack of facilities and knowledge for incorporating recycled materials into new construction. Bricks are a conventional material that has been used for construction for centuries, and Autoclave Aerated Concrete (AAC) blocks are a new emergent material in the market. This study evaluates the impact brick walls, and AAC block walls have on the environment using the tool One Click LCA, considering three End of Life (EoL) scenarios: the materials are landfilled, recycled, and reused in a new building. The final objective of the study is to evaluate the environmental impact caused by these two different walls on the environmental factors such as Global Warming Potential (GWP), Acidification Potential (AP), Eutrophication Potential (EP), Ozone Depletion Potential (ODP), and Photochemical Ozone Creation Potential (POCP). The findings revealed that the GWP caused by landfilling is 16 times higher in bricks and 22 times higher in AAC blocks when compared to the reuse of materials. The study recommends the effective use of AAC blocks in construction and reuse of the same to reduce the overall emissions to the environment.Keywords: construction and demolition waste, environmental impact, life cycle impact assessment, material recycling
Procedia PDF Downloads 10220795 A Basic Metric Model: Foundation for an Evidence-Based HRM System
Authors: K. M. Anusha, R. Krishnaveni
Abstract:
Crossing a decade of the 21st century, the paradigm of human resources can be seen evolving with the strategic gene induced into it. There seems to be a radical shift descending as the corporate sector calls on its HR team to become strategic rather than administrative. This transferal eventually requires the metrics employed by these HR teams not to be just operationally reactive but to be aligned to an evidence-based strategic thinking. Realizing the growing need for a prescriptive metric model for effective HR analytics, this study has designed a conceptual framework for a basic metric model that can assist IT-HRM professionals to transition to a practice of evidence-based decision-making to enhance organizational performance.Keywords: metric model, evidence based HR, HR analytics, strategic HR practices, IT sector
Procedia PDF Downloads 40320794 A Fully Coupled Thermo-Hydraulic Mechanical Elastoplastic Damage Constitutive Model for Porous Fractured Medium during CO₂ Injection
Authors: Nikolaos Reppas, Yilin Gui
Abstract:
A dual-porosity finite element-code will be presented for the stability analysis of the wellbore during CO₂ injection. An elastoplastic damage response will be considered to the model. The Finite Element Method (FEM) will be validated using experimental results from literature or from experiments that are planned to be undertaken at Newcastle University. The main target of the research paper is to present a constitutive model that can help industries to safely store CO₂ in geological rock formations and forecast any changes on the surrounding rock of the wellbore. The fully coupled elastoplastic damage Thermo-Hydraulic-Mechanical (THM) model will determine the pressure and temperature of the injected CO₂ as well as the size of the radius of the wellbore that can make the Carbon Capture and Storage (CCS) procedure more efficient.Keywords: carbon capture and storage, Wellbore stability, elastoplastic damage response for rock, constitutive THM model, fully coupled thermo-hydraulic-mechanical model
Procedia PDF Downloads 17020793 A Mathematical Model for Studying Landing Dynamics of a Typical Lunar Soft Lander
Authors: Johns Paul, Santhosh J. Nalluveettil, P. Purushothaman, M. Premdas
Abstract:
Lunar landing is one of the most critical phases of lunar mission. The lander is provided with a soft landing system to prevent structural damage of lunar module by absorbing the landing shock and also assure stability during landing. Presently available software are not capable to simulate the rigid body dynamics coupled with contact simulation and elastic/plastic deformation analysis. Hence a separate mathematical model has been generated for studying the dynamics of a typical lunar soft lander. Parameters used in the analysis includes lunar surface slope, coefficient of friction, initial touchdown velocity (vertical and horizontal), mass and moment of inertia of lander, crushing force due to energy absorbing material in the legs, number of legs and geometry of lander. The mathematical model is capable to simulate plastic and elastic deformation of honey comb, frictional force between landing leg and lunar soil, surface contact simulation, lunar gravitational force, rigid body dynamics and linkage dynamics of inverted tripod landing gear. The non linear differential equations generated for studying the dynamics of lunar lander is solved by numerical method. Matlab programme has been used as a computer tool for solving the numerical equations. The position of each kinematic joint is defined by mathematical equations for the generation of equation of motion. All hinged locations are defined by position vectors with respect to body fixed coordinate. The vehicle rigid body rotations and motions about body coordinate are only due to the external forces and moments arise from footpad reaction force due to impact, footpad frictional force and weight of vehicle. All these force are mathematically simulated for the generation of equation of motion. The validation of mathematical model is done by two different phases. First phase is the validation of plastic deformation of crushable elements by employing conservation of energy principle. The second phase is the validation of rigid body dynamics of model by simulating a lander model in ADAMS software after replacing the crushable elements to elastic spring element. Simulation of plastic deformation along with rigid body dynamics and contact force cannot be modeled in ADAMS. Hence plastic element of primary strut is replaced with a spring element and analysis is carried out in ADAMS software. The same analysis is also carried out using the mathematical model where the simulation of honeycomb crushing is replaced by elastic spring deformation and compared the results with ADAMS analysis. The rotational motion of linkages and 6 degree of freedom motion of lunar Lander about its CG can be validated by ADAMS software by replacing crushing element to spring element. The model is also validated by the drop test results of 4 leg lunar lander. This paper presents the details of mathematical model generated and its validation.Keywords: honeycomb, landing leg tripod, lunar lander, primary link, secondary link
Procedia PDF Downloads 35020792 Model Updating Based on Modal Parameters Using Hybrid Pattern Search Technique
Authors: N. Guo, C. Xu, Z. C. Yang
Abstract:
In order to ensure the high reliability of an aircraft, the accurate structural dynamics analysis has become an indispensable part in the design of an aircraft structure. Therefore, the structural finite element model which can be used to accurately calculate the structural dynamics and their transfer relations is the prerequisite in structural dynamic design. A dynamic finite element model updating method is presented to correct the uncertain parameters of the finite element model of a structure using measured modal parameters. The coordinate modal assurance criterion is used to evaluate the correlation level at each coordinate over the experimental and the analytical mode shapes. Then, the weighted summation of the natural frequency residual and the coordinate modal assurance criterion residual is used as the objective function. Moreover, the hybrid pattern search (HPS) optimization technique, which synthesizes the advantages of pattern search (PS) optimization technique and genetic algorithm (GA), is introduced to solve the dynamic FE model updating problem. A numerical simulation and a model updating experiment for GARTEUR aircraft model are performed to validate the feasibility and effectiveness of the present dynamic model updating method, respectively. The updated results show that the proposed method can be successfully used to modify the incorrect parameters with good robustness.Keywords: model updating, modal parameter, coordinate modal assurance criterion, hybrid genetic/pattern search
Procedia PDF Downloads 15920791 Techno-Economic Optimization and Evaluation of an Integrated Industrial Scale NMC811 Cathode Active Material Manufacturing Process
Authors: Usama Mohamed, Sam Booth, Aliysn J. Nedoma
Abstract:
As part of the transition to electric vehicles, there has been a recent increase in demand for battery manufacturing. Cathodes typically account for approximately 50% of the total lithium-ion battery cell cost and are a pivotal factor in determining the viability of new industrial infrastructure. Cathodes which offer lower costs whilst maintaining or increasing performance, such as nickel-rich layered cathodes, have a significant competitive advantage when scaling up the manufacturing process. This project evaluates the techno-economic value proposition of an integrated industrial scale cathode active material (CAM) production process, closing the mass and energy balances, and optimizing the operation conditions using a sensitivity analysis. This is done by developing a process model of a co-precipitation synthesis route using Aspen Plus software and validated based on experimental data. The mechanism chemistry and equilibrium conditions were established based on previous literature and HSC-Chemistry software. This is then followed by integrating the energy streams, adding waste recovery and treatment processes, as well as testing the effect of key parameters (temperature, pH, reaction time, etc.) on CAM production yield and emissions. Finally, an economic analysis estimating the fixed and variable costs (including capital expenditure, labor costs, raw materials, etc.) to calculate the cost of CAM ($/kg and $/kWh), total plant cost ($) and net present value (NPV). This work sets the foundational blueprint for future research into sustainable industrial scale processes for CAM manufacturing.Keywords: cathodes, industrial production, nickel-rich layered cathodes, process modelling, techno-economic analysis
Procedia PDF Downloads 9920790 Advanced Structural Analysis of Energy Storage Materials
Authors: Disha Gupta
Abstract:
The aim of this research is to conduct X-ray and e-beam characterization techniques on lithium-ion battery materials for the improvement of battery performance. The key characterization techniques employed are the synchrotron X-ray Absorption Spectroscopy (XAS) combined with X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to obtain a more holistic approach to understanding material properties. This research effort provides additional battery characterization knowledge that promotes the development of new cathodes, anodes, electrolyte and separator materials for batteries, hence, leading to better and more efficient battery performance. Both ex-situ and in-situ synchrotron experiments were performed on LiFePO₄, one of the most common cathode material, from different commercial sources and their structural analysis, were conducted using Athena/Artemis software. This analysis technique was then further extended to study other cathode materials like LiMnxFe(₁₋ₓ)PO₄ and even some sulphate systems like Li₂Mn(SO₄)₂ and Li₂Co0.5Mn₀.₅ (SO₄)₂. XAS data were collected for Fe and P K-edge for LiFePO4, and Fe, Mn and P-K-edge for LiMnxFe(₁₋ₓ)PO₄ to conduct an exhaustive study of the structure. For the sulphate system, Li₂Mn(SO₄)₂, XAS data was collected at both Mn and S K-edge. Finite Difference Method for Near Edge Structure (FDMNES) simulations were also conducted for various iron, manganese and phosphate model compounds and compared with the experimental XANES data to understand mainly the pre-edge structural information of the absorbing atoms. The Fe K-edge XAS results showed a charge compensation occurring on the Fe atom for all the differently synthesized LiFePO₄ materials as well as the LiMnxFe(₁₋ₓ)PO₄ systems. However, the Mn K-edge showed a difference in results as the Mn concentration changed in the materials. For the sulphate-based system Li₂Mn(SO₄)₂, however, no change in the Mn K-edge was observed, even though electrochemical studies showed Mn redox reactions.Keywords: li-ion batteries, electrochemistry, X-ray absorption spectroscopy, XRD
Procedia PDF Downloads 14820789 Improving the Quantification Model of Internal Control Impact on Banking Risks
Authors: M. Ndaw, G. Mendy, S. Ouya
Abstract:
Risk management in banking sector is a key issue linked to financial system stability and its importance has been elevated by technological developments and emergence of new financial instruments. In this paper, we improve the model previously defined for quantifying internal control impact on banking risks by automatizing the residual criticality estimation step of FMECA. For this, we defined three equations and a maturity coefficient to obtain a mathematical model which is tested on all banking processes and type of risks. The new model allows an optimal assessment of residual criticality and improves the correlation rate that has become 98%.Keywords: risk, control, banking, FMECA, criticality
Procedia PDF Downloads 33020788 An Approach on Robust Multi Inversion of a Nonlinear Model for an Omni-Directional Mobile
Authors: Fernando P. Silva, Valter J. S. Leite, Erivelton G. Nepomuceno
Abstract:
In this paper, a nonlinear controller design for an omnidirectional mobile is presented. The robot controller consists of an inner-loop controller and an outer-loop controller, the first is designed using state feedback (robust allocation) and the second controller is designed based on Robust Multi Inversion (RMI) approach. The objective of RMI controller is rendering the robust inversion of the dynamic, when the model is affected by uncertainties. A model nonlinear MIMO of an omni-directional robot (small-league of Robocup) is used to simulate the RMI approach. The parameters of linear and nonlinear model are varied to cause modelling uncertainties among the model and the real model (real system) generating an error in inner-loop controller signal that must be compensated by RMI controller. The simulation test results show that the RMI is capable of compensating the uncertainties and keep the system stable and controlled under uncertainties.Keywords: robust multi inversion, omni-directional robot, robocup, nonlinear control
Procedia PDF Downloads 58520787 Formulation of Extended-Release Gliclazide Tablet Using a Mathematical Model for Estimation of Hypromellose
Authors: Farzad Khajavi, Farzaneh Jalilfar, Faranak Jafari, Leila Shokrani
Abstract:
Formulation of gliclazide in the form of extended-release tablet in 30 and 60 mg dosage forms was performed using hypromellose (HPMC K4M) as a retarding agent. Drug-release profiles were investigated in comparison with references Diamicron MR 30 and 60 mg tablets. The effect of size of powder particles, the amount of hypromellose in formulation, hardness of tablets, and also the effect of halving the tablets were investigated on drug release profile. A mathematical model which describes hypromellose behavior in initial times of drug release was proposed for the estimation of hypromellose content in modified-release gliclazide 60 mg tablet. This model is based on erosion of hypromellose in dissolution media. The model is applicable to describe release profiles of insoluble drugs. Therefore, by using dissolved amount of drug in initial times of dissolution and the model, the amount of hypromellose in formulation can be predictable. The model was used to predict the HPMC K4M content in modified-release gliclazide 30 mg and extended-release quetiapine 200 mg tablets.Keywords: Gliclazide, hypromellose, drug release, modified-release tablet, mathematical model
Procedia PDF Downloads 22020786 Material Analysis for Temple Painting Conservation in Taiwan
Authors: Chen-Fu Wang, Lin-Ya Kung
Abstract:
For traditional painting materials, the artisan used to combine the pigments with different binders to create colors. As time goes by, the materials used for painting evolved from natural to chemical materials. The vast variety of ingredients used in chemical materials has complicated restoration work; it makes conservation work more difficult. Conservation work also becomes harder when the materials cannot be easily identified; therefore, it is essential that we take a more scientific approach to assist in conservation work. Paintings materials are high molecular weight polymer, and their analysis is very complicated as well other contamination such as smoke and dirt can also interfere with the analysis of the material. The current methods of composition analysis of painting materials include Fourier transform infrared spectroscopy (FT-IR), mass spectrometer, Raman spectroscopy, X-ray diffraction spectroscopy (XRD), each of which has its own limitation. In this study, FT-IR was used to analyze the components of the paint coating. We have taken the most commonly seen materials as samples and deteriorated it. The aged information was then used for the database to exam the temple painting materials. By observing the FT-IR changes over time, we can tell all of the painting materials will be deteriorated by the UV light, but only the speed of its degradation had some difference. From the deterioration experiment, the acrylic resin resists better than the others. After collecting the painting materials aging information on FT-IR, we performed some test on the paintings on the temples. It was found that most of the artisan used tune-oil for painting materials, and some other paintings used chemical materials. This method is now working successfully on identifying the painting materials. However, the method is destructive and high cost. In the future, we will work on the how to know the painting materials more efficiently.Keywords: temple painting, painting material, conservation, FT-IR
Procedia PDF Downloads 18520785 Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements
Authors: Yasmeen A. S. Essawy, Khaled Nassar
Abstract:
With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform.Keywords: building information modeling (BIM), elemental graph data model (EGDM), geometric and topological data models, graph theory
Procedia PDF Downloads 38220784 Exploration of Barriers and Challenges to Innovation Process for SMEs: Possibilities to Promote Cooperation Between Scientific and Business Institutions to Address it
Authors: Indre Brazauskaite, Vilte Auruskeviciene
Abstract:
Significance of the study is outlined through current strategic management challenges faced by SMEs. First, innovation is recognized as competitive advantage in the market, having ever changing market conditions. It is of constant interest from both practitioners and academics to capture and capitalize on business opportunities or mitigate the foreseen risks. Secondly, it is recognized that integrated system is needed for proper implementation of innovation process, especially during the period of business incubation, associated with relatively high risks of new product failure. Finally, ability to successful commercialize innovations leads to tangible business results that allow to grow organizations further. This is particularly relevant to SMEs due to limited structures, resources, or capabilities. Cooperation between scientific and business institutions could be a tool of mutual interest to observe, address, and further develop innovations during the incubation period, which is the most demanding and challenging during the innovation process. Material aims to address the following problematics: i) indicate the major barriers and challenges in innovation process that SMEs are facing, ii) outline the possibilities for these barriers and challenges to be addressed by cooperation between scientific and business institutions. Basis for this research is stage-by-stage integrated innovation management process which presents existing challenges and needed aid in operational decision making. The stage-by-stage innovation management process exploration highlights relevant research opportunities that have high practical relevance in the field. It is expected to reveal the possibility for business incubation programs that could combine interest from both – practices and academia. Methodology. Scientific meta-analysis of to-date scientific literature that explores innovation process. Research model is built on the combination of stage-gate model and lean six sigma approach. It outlines the following steps: i) pre-incubation (discovery and screening), ii) incubation (scoping, planning, development, and testing), and iii) post-incubation (launch and commercialization) periods. Empirical quantitative research is conducted to address barriers and challenges related to innovation process among SMEs that limits innovations from successful launch and commercialization and allows to identify potential areas for cooperation between scientific and business institutions. Research sample, high level decision makers representing trading SMEs, are approached with structured survey based on the research model to investigate the challenges associated with each of the innovation management step. Expected findings. First, the current business challenges in the innovation process are revealed. It will outline strengths and weaknesses of innovation management practices and systems across SMEs. Secondly, it will present material for relevant business case investigation for scholars to serve as future research directions. It will contribute to a better understanding of quality innovation management systems. Third, it will contribute to the understanding the need for business incubation systems for mutual contribution from practices and academia. It can increase relevance and adaptation of business research.Keywords: cooperation between scientific and business institutions, innovation barriers and challenges, innovation measure, innovation process, SMEs
Procedia PDF Downloads 14820783 Forming Simulation of Thermoplastic Pre-Impregnated Textile Composite
Authors: Masato Nishi, Tetsushi Kaburagi, Masashi Kurose, Tei Hirashima, Tetsusei Kurasiki
Abstract:
The process of thermoforming a carbon fiber reinforced thermoplastic (CFRTP) has increased its presence in the automotive industry for its wide applicability to the mass production car. A non-isothermal forming for CFRTP can shorten its cycle time to less than 1 minute. In this paper, the textile reinforcement FE model which the authors proposed in a previous work is extended to the CFRTP model for non-isothermal forming simulation. The effect of thermoplastic is given by adding shell elements which consider thermal effect to the textile reinforcement model. By applying Reuss model to the stress calculation of thermoplastic, the proposed model can accurately predict in-plane shear behavior, which is the key deformation mode during forming, in the range of the process temperature. Using the proposed model, thermoforming simulation was conducted and the results are in good agreement with the experimental results.Keywords: carbon fiber reinforced thermoplastic, finite element analysis, pre-impregnated textile composite, non-isothermal forming
Procedia PDF Downloads 42820782 Effect of Diamagnetic Additives on Defects Level of Soft LiTiZn Ferrite Ceramics
Authors: Andrey V. Malyshev, Anna B. Petrova, Anatoly P. Surzhikov
Abstract:
The article presents the results of the influence of diamagnetic additives on the defects level of ferrite ceramics. For this purpose, we use a previously developed method based on the mathematical analysis of experimental temperature dependences of the initial permeability. A phenomenological expression for the description of such dependence was suggested and an interpretation of its main parameters was given. It was shown, that the main criterion of the integral defects level of ferrite ceramics is the relation of two parameters correlating with elastic stress value in a material. Model samples containing a controlled number of intergranular phase inclusions served to prove the validity of the proposed method, as well as to assess its sensitivity in comparison with the traditional XRD (X-ray diffraction) analysis. The broadening data of diffraction reflexes of model samples have served for such comparison. The defects level data obtained by the proposed method are in good agreement with the X-ray data. The method showed high sensitivity. Therefore, the legitimacy of the selection relationship β/α parameters of phenomenological expression as a characteristic of the elastic state of the ferrite ceramics confirmed. In addition, the obtained data can be used in the detection of non-magnetic phases and testing the optimal sintering production technology of soft magnetic ferrites.Keywords: cure point, initial permeability, integral defects level, homogeneity
Procedia PDF Downloads 13320781 “BUM629” Special Hybrid Reinforcement Materials for Mega Structures
Authors: Gautam, Arjun, V. R. Sharma
Abstract:
In the civil construction steel and concrete plays a different role but the same purposes dealing with the design of structures that support or resist loads. Concrete has been used in construction since long time from now. Being brittle and weak in tension, concrete is always reinforced with steel bars for the purposes in beams and columns etc. The paper deals with idea of special designed 3D materials which we named as “BUM629” to be placed/anchored in the structural member and mixed with concrete later on, so as to resist the developments of cracks due to shear failure , buckling,tension and compressive load in concrete. It had cutting edge technology through Draft, Analysis and Design the “BUM629”. The results show that “BUM629” has the great results in Mechanical application. Its material properties are design according to the need of structure; we apply the material such as Mild Steel and Magnesium Alloy. “BUM629” are divided into two parts one is applied at the middle section of concrete member where bending movements are maximum and the second part is laying parallel to vertical bars near clear cover, so we design this material and apply in Reinforcement of Civil Structures. “BUM629” is analysis and design for use in the mega structures like skyscrapers, dams and bridges.Keywords: BUM629, magnesium alloy, cutting edge technology, mechanical application, draft, analysis and design, mega structures
Procedia PDF Downloads 38320780 Li2S Nanoparticles Impact on the First Charge of Li-ion/Sulfur Batteries: An Operando XAS/XES Coupled With XRD Analysis
Authors: Alice Robba, Renaud Bouchet, Celine Barchasz, Jean-Francois Colin, Erik Elkaim, Kristina Kvashnina, Gavin Vaughan, Matjaz Kavcic, Fannie Alloin
Abstract:
With their high theoretical energy density (~2600 Wh.kg-1), lithium/sulfur (Li/S) batteries are highly promising, but these systems are still poorly understood due to the complex mechanisms/equilibria involved. Replacing S8 by Li2S as the active material allows the use of safer negative electrodes, like silicon, instead of lithium metal. S8 and Li2S have different conductivity and solubility properties, resulting in a profoundly changed activation process during the first cycle. Particularly, during the first charge a high polarization and a lack of reproducibility between tests are observed. Differences observed between raw Li2S material (micron-sized) and that electrochemically produced in a battery (nano-sized) may indicate that the electrochemical process depends on the particle size. Then the major focus of the presented work is to deepen the understanding of the Li2S material charge mechanism, and more precisely to characterize the effect of the initial Li2S particle size both on the mechanism and the electrode preparation process. To do so, Li2S nanoparticles were synthetized according to two ways: a liquid path synthesis and a dissolution in ethanol, allowing Li2S nanoparticles/carbon composites to be made. Preliminary chemical and electrochemical tests show that starting with Li2S nanoparticles could effectively suppress the high initial polarization but also influence the electrode slurry preparation. Indeed, it has been shown that classical formulation process - a slurry composed of Polyvinylidone Fluoride polymer dissolved in N-methyle-2-pyrrolidone - cannot be used with Li2S nanoparticles. This reveals a complete different Li2S material behavior regarding polymers and organic solvents when going at the nanometric scale. Then the coupling between two operando characterizations such as X-Ray Diffraction (XRD) and X-Ray Absorption and Emission Spectroscopy (XAS/XES) have been carried out in order to interpret the poorly understood first charge. This study discloses that initial particle size of the active material has a great impact on the working mechanism and particularly on the different equilibria involved during the first charge of the Li2S based Li-ion batteries. These results explain the electrochemical differences and particularly the polarization differences observed during the first charge between micrometric and nanometric Li2S-based electrodes. Finally, this work could lead to a better active material design and so to more efficient Li2S-based batteries.Keywords: Li-ion/Sulfur batteries, Li2S nanoparticles effect, Operando characterizations, working mechanism
Procedia PDF Downloads 26520779 Measuring Biobased Content of Building Materials Using Carbon-14 Testing
Authors: Haley Gershon
Abstract:
The transition from using fossil fuel-based building material to formulating eco-friendly and biobased building materials plays a key role in sustainable building. The growing demand on a global level for biobased materials in the building and construction industries heightens the importance of carbon-14 testing, an analytical method used to determine the percentage of biobased content that comprises a material’s ingredients. This presentation will focus on the use of carbon-14 analysis within the building materials sector. Carbon-14, also known as radiocarbon, is a weakly radioactive isotope present in all living organisms. Any fossil material older than 50,000 years will not contain any carbon-14 content. The radiocarbon method is thus used to determine the amount of carbon-14 content present in a given sample. Carbon-14 testing is performed according to ASTM D6866, a standard test method developed specifically for biobased content determination of material in solid, liquid, or gaseous form, which requires radiocarbon dating. Samples are combusted and converted into a solid graphite form and then pressed onto a metal disc and mounted onto a wheel of an accelerator mass spectrometer (AMS) machine for the analysis. The AMS instrument is used in order to count the amount of carbon-14 present. By submitting samples for carbon-14 analysis, manufacturers of building materials can confirm the biobased content of ingredients used. Biobased testing through carbon-14 analysis reports results as percent biobased content, indicating the percentage of ingredients coming from biomass sourced carbon versus fossil carbon. The analysis is performed according to standardized methods such as ASTM D6866, ISO 16620, and EN 16640. Products 100% sourced from plants, animals, or microbiological material are therefore 100% biobased, while products sourced only from fossil fuel material are 0% biobased. Any result in between 0% and 100% biobased indicates that there is a mixture of both biomass-derived and fossil fuel-derived sources. Furthermore, biobased testing for building materials allows manufacturers to submit eligible material for certification and eco-label programs such as the United States Department of Agriculture (USDA) BioPreferred Program. This program includes a voluntary labeling initiative for biobased products, in which companies may apply to receive and display the USDA Certified Biobased Product label, stating third-party verification and displaying a product’s percentage of biobased content. The USDA program includes a specific category for Building Materials. In order to qualify for the biobased certification under this product category, examples of product criteria that must be met include minimum 62% biobased content for wall coverings, minimum 25% biobased content for lumber, and a minimum 91% biobased content for floor coverings (non-carpet). As a result, consumers can easily identify plant-based products in the marketplace.Keywords: carbon-14 testing, biobased, biobased content, radiocarbon dating, accelerator mass spectrometry, AMS, materials
Procedia PDF Downloads 15720778 Bayesian Flexibility Modelling of the Conditional Autoregressive Prior in a Disease Mapping Model
Authors: Davies Obaromi, Qin Yongsong, James Ndege, Azeez Adeboye, Akinwumi Odeyemi
Abstract:
The basic model usually used in disease mapping, is the Besag, York and Mollie (BYM) model and which combines the spatially structured and spatially unstructured priors as random effects. Bayesian Conditional Autoregressive (CAR) model is a disease mapping method that is commonly used for smoothening the relative risk of any disease as used in the Besag, York and Mollie (BYM) model. This model (CAR), which is also usually assigned as a prior to one of the spatial random effects in the BYM model, successfully uses information from adjacent sites to improve estimates for individual sites. To our knowledge, there are some unrealistic or counter-intuitive consequences on the posterior covariance matrix of the CAR prior for the spatial random effects. In the conventional BYM (Besag, York and Mollie) model, the spatially structured and the unstructured random components cannot be seen independently, and which challenges the prior definitions for the hyperparameters of the two random effects. Therefore, the main objective of this study is to construct and utilize an extended Bayesian spatial CAR model for studying tuberculosis patterns in the Eastern Cape Province of South Africa, and then compare for flexibility with some existing CAR models. The results of the study revealed the flexibility and robustness of this alternative extended CAR to the commonly used CAR models by comparison, using the deviance information criteria. The extended Bayesian spatial CAR model is proved to be a useful and robust tool for disease modeling and as a prior for the structured spatial random effects because of the inclusion of an extra hyperparameter.Keywords: Besag2, CAR models, disease mapping, INLA, spatial models
Procedia PDF Downloads 27720777 GE as a Channel Material in P-Type MOSFETs
Authors: S. Slimani, B. Djellouli
Abstract:
Novel materials and innovative device structures has become necessary for the future of CMOS. High mobility materials like Ge is a very promising material due to its high mobility and is being considered to replace Si in the channel to achieve higher drive currents and switching speeds .Various approaches to circumvent the scaling limits to benchmark the performance of nanoscale MOSFETS with different channel materials, the optimized structure is simulated within nextnano in order to highlight the quantum effects on DG MOSFETs when Si is replaced by Ge and SiO2 is replaced by ZrO2 and HfO2as the gate dielectric. The results have shown that Ge MOSFET have the highest mobility and high permittivity oxides serve to maintain high drive current. The simulations show significant improvements compared with DGMOSFET using SiO2 gate dielectric and Si channel.Keywords: high mobility, high-k, quantum effects, SOI-DGMOSFET
Procedia PDF Downloads 36620776 Topology Enhancement of a Straight Fin Using a Porous Media Computational Fluid Dynamics Simulation Approach
Authors: S. Wakim, M. Nemer, B. Zeghondy, B. Ghannam, C. Bouallou
Abstract:
Designing the optimal heat exchanger is still an essential objective to be achieved. Parametrical optimization involves the evaluation of the heat exchanger dimensions to find those that best satisfy certain objectives. This method contributes to an enhanced design rather than an optimized one. On the contrary, topology optimization finds the optimal structure that satisfies the design objectives. The huge development in metal additive manufacturing allowed topology optimization to find its way into engineering applications especially in the aerospace field to optimize metal structures. Using topology optimization in 3d heat and mass transfer problems requires huge computational time, therefore coupling it with CFD simulations can reduce this it. However, existed CFD models cannot be coupled with topology optimization. The CFD model must allow creating a uniform mesh despite the initial geometry complexity and also to swap the cells from fluid to solid and vice versa. In this paper, a porous media approach compatible with topology optimization criteria is developed. It consists of modeling the fluid region of the heat exchanger as porous media having high porosity and similarly the solid region is modeled as porous media having low porosity. The switching from fluid to solid cells required by topology optimization is simply done by changing each cell porosity using a user defined function. This model is tested on a plate and fin heat exchanger and validated by comparing its results to experimental data and simulations results. Furthermore, this model is used to perform a material reallocation based on local criteria to optimize a plate and fin heat exchanger under a constant heat duty constraint. The optimized fin uses 20% fewer materials than the first while the pressure drop is reduced by about 13%.Keywords: computational methods, finite element method, heat exchanger, porous media, topology optimization
Procedia PDF Downloads 15320775 Numerical Investigation of Wave Interaction with Double Vertical Slotted Walls
Authors: H. Ahmed, A. Schlenkhoff
Abstract:
Recently, permeable breakwaters have been suggested to overcome the disadvantages of fully protection breakwaters. These protection structures have minor impacts on the coastal environment and neighboring beaches where they provide a more economical protection from waves and currents. For regular waves, a numerical model is used (FLOW-3D, VOF) to investigate the hydraulic performance of a permeable breakwater. The model of permeable breakwater consists of a pair of identical vertical slotted walls with an impermeable upper and lower part, where the draft is a decimal multiple of the total depth. The middle part is permeable with a porosity of 50%. The second barrier is located at distant of 0.5 and 1.5 of the water depth from the first one. The numerical model is validated by comparisons with previous laboratory data and semi-analytical results of the same model. A good agreement between the numerical results and both laboratory data and semi-analytical results has been shown and the results indicate the applicability of the numerical model to reproduce most of the important features of the interaction. Through the numerical investigation, the friction factor of the model is carefully discussed.Keywords: coastal structures, permeable breakwater, slotted wall, numerical model, energy dissipation coefficient
Procedia PDF Downloads 38920774 Optimization of Platinum Utilization by Using Stochastic Modeling of Carbon-Supported Platinum Catalyst Layer of Proton Exchange Membrane Fuel Cells
Authors: Ali Akbar, Seungho Shin, Sukkee Um
Abstract:
The composition of catalyst layers (CLs) plays an important role in the overall performance and cost of the proton exchange membrane fuel cells (PEMFCs). Low platinum loading, high utilization, and more durable catalyst still remain as critical challenges for PEMFCs. In this study, a three-dimensional material network model is developed to visualize the nanostructure of carbon supported platinum Pt/C and Pt/VACNT catalysts in pursuance of maximizing the catalyst utilization. The quadruple-phase randomly generated CLs domain is formulated using quasi-random stochastic Monte Carlo-based method. This unique statistical approach of four-phase (i.e., pore, ionomer, carbon, and platinum) model is closely mimic of manufacturing process of CLs. Various CLs compositions are simulated to elucidate the effect of electrons, ions, and mass transport paths on the catalyst utilization factor. Based on simulation results, the effect of key factors such as porosity, ionomer contents and Pt weight percentage in Pt/C catalyst have been investigated at the represented elementary volume (REV) scale. The results show that the relationship between ionomer content and Pt utilization is in good agreement with existing experimental calculations. Furthermore, this model is implemented on the state-of-the-art Pt/VACNT CLs. The simulation results on Pt/VACNT based CLs show exceptionally high catalyst utilization as compared to Pt/C with different composition ratios. More importantly, this study reveals that the maximum catalyst utilization depends on the distance spacing between the carbon nanotubes for Pt/VACNT. The current simulation results are expected to be utilized in the optimization of nano-structural construction and composition of Pt/C and Pt/VACNT CLs.Keywords: catalyst layer, platinum utilization, proton exchange membrane fuel cell, stochastic modeling
Procedia PDF Downloads 119