Search results for: cooperative networks
1701 Fault Location Detection in Active Distribution System
Authors: R. Rezaeipour, A. R. Mehrabi
Abstract:
Recent increase of the DGs and microgrids in distribution systems, disturbs the tradition structure of the system. Coordination between protection devices in such a system becomes the concern of the network operators. This paper presents a new method for fault location detection in the active distribution networks, independent of the fault type or its resistance. The method uses synchronized voltage and current measurements at the interconnection of DG units and is able to adapt to changes in the topology of the system. The method has been tested on a 38-bus distribution system, with very encouraging results.Keywords: fault location detection, active distribution system, micro grids, network operators
Procedia PDF Downloads 7891700 Recognition of Tifinagh Characters with Missing Parts Using Neural Network
Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui
Abstract:
In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.Keywords: Tifinagh character recognition, neural networks, local cost computation, ANN
Procedia PDF Downloads 3341699 Embedded Hybrid Intuition: A Deep Learning and Fuzzy Logic Approach to Collective Creation and Computational Assisted Narratives
Authors: Roberto Cabezas H
Abstract:
The current work shows the methodology developed to create narrative lighting spaces for the multimedia performance piece 'cluster: the vanished paradise.' This empirical research is focused on exploring unconventional roles for machines in subjective creative processes, by delving into the semantics of data and machine intelligence algorithms in hybrid technological, creative contexts to expand epistemic domains trough human-machine cooperation. The creative process in scenic and performing arts is guided mostly by intuition; from that idea, we developed an approach to embed collective intuition in computational creative systems, by joining the properties of Generative Adversarial Networks (GAN’s) and Fuzzy Clustering based on a semi-supervised data creation and analysis pipeline. The model makes use of GAN’s to learn from phenomenological data (data generated from experience with lighting scenography) and algorithmic design data (augmented data by procedural design methods), fuzzy logic clustering is then applied to artificially created data from GAN’s to define narrative transitions built on membership index; this process allowed for the creation of simple and complex spaces with expressive capabilities based on position and light intensity as the parameters to guide the narrative. Hybridization comes not only from the human-machine symbiosis but also on the integration of different techniques for the implementation of the aided design system. Machine intelligence tools as proposed in this work are well suited to redefine collaborative creation by learning to express and expand a conglomerate of ideas and a wide range of opinions for the creation of sensory experiences. We found in GAN’s and Fuzzy Logic an ideal tool to develop new computational models based on interaction, learning, emotion and imagination to expand the traditional algorithmic model of computation.Keywords: fuzzy clustering, generative adversarial networks, human-machine cooperation, hybrid collective data, multimedia performance
Procedia PDF Downloads 1421698 Collaborative Stylistic Group Project: A Drama Practical Analysis Application
Authors: Omnia F. Elkommos
Abstract:
In the course of teaching stylistics to undergraduate students of the Department of English Language and Literature, Faculty of Arts and Humanities, the linguistic tool kit of theories comes in handy and useful for the better understanding of the different literary genres: Poetry, drama, and short stories. In the present paper, a model of teaching of stylistics is compiled and suggested. It is a collaborative group project technique for use in the undergraduate diverse specialisms (Literature, Linguistics and Translation tracks) class. Students initially are introduced to the different linguistic tools and theories suitable for each literary genre. The second step is to apply these linguistic tools to texts. Students are required to watch videos performing the poems or play, for example, and search the net for interpretations of the texts by other authorities. They should be using a template (prepared by the researcher) that has guided questions leading students along in their analysis. Finally, a practical analysis would be written up using the practical analysis essay template (also prepared by the researcher). As per collaborative learning, all the steps include activities that are student-centered addressing differentiation and considering their three different specialisms. In the process of selecting the proper tools, the actual application and analysis discussion, students are given tasks that request their collaboration. They also work in small groups and the groups collaborate in seminars and group discussions. At the end of the course/module, students present their work also collaboratively and reflect and comment on their learning experience. The module/course uses a drama play that lends itself to the task: ‘The Bond’ by Amy Lowell and Robert Frost. The project results in an interpretation of its theme, characterization and plot. The linguistic tools are drawn from pragmatics, and discourse analysis among others.Keywords: applied linguistic theories, collaborative learning, cooperative principle, discourse analysis, drama analysis, group project, online acting performance, pragmatics, speech act theory, stylistics, technology enhanced learning
Procedia PDF Downloads 1841697 The Analysis of Questionnaires about the Health Condition of Students Involved in the Korean Medicine Doctors` Visiting School Program-Cohort Study: Middle and High School Participator of Seong-Nam-
Authors: Narae Yang, Hyun Kyung Sung, Seon Mi Shin, Hee Jung, Yong Ji Kim, Tae-Yong Park, Ho Yeon Go
Abstract:
The aim of this study was to build base-line data for the Korean Medicine Doctors` Visiting School Program (KMDVSP) by analyzing a student health survey filled out by the students. Korean medicine doctors assigned to 20 middle and high schools in Seong-nam visited these schools eight times in five months. During each visit, the assigned doctors performed health consultations and Korean medicine treatment, and taught health education classes. 12115 students answered self-reported questionnaires about their own physical condition at the beginning of the program. In a question about pain, 7080(58%) reported having a headache, while 4048(33%) said they had a backache, nuchal pain/shoulder pain was reported by 5993(49%), dyspepsia was present in 2736(23%), rhinitis/sinusitis was reported by 4176(34%), coughing/dyspnea by 7102(59%), itching/skin rash by 2840(23%), and constipation was reported by 1091(9%), while 2264(18%) said they had diarrhea. Increased urinary frequency/feeling of residual urine was reported by 569 students (5%), and 3324(27%) said they had insomnia/fitful sleep/morning fatigue. When asked about menstruation, 4450(83%) of the female students reported irregular menstruation or said they experienced menstrual pain. Understanding the health condition of adolescent students is the starting point to determining national health policy to prevent various diseases in the future. We have developed the pilot project of KMDVSP and collected research about students’ health. Based on this data, further studies should be performed in order to develop a cooperative program between schools and the Korean medical center.Keywords: korean medicine doctors` visiting school program(kmdvsp), student`s health condition, questionnaires, cohort study
Procedia PDF Downloads 4781696 Non-intrusive Hand Control of Drone Using an Inexpensive and Streamlined Convolutional Neural Network Approach
Authors: Evan Lowhorn, Rocio Alba-Flores
Abstract:
The purpose of this work is to develop a method for classifying hand signals and using the output in a drone control algorithm. To achieve this, methods based on Convolutional Neural Networks (CNN) were applied. CNN's are a subset of deep learning, which allows grid-like inputs to be processed and passed through a neural network to be trained for classification. This type of neural network allows for classification via imaging, which is less intrusive than previous methods using biosensors, such as EMG sensors. Classification CNN's operate purely from the pixel values in an image; therefore they can be used without additional exteroceptive sensors. A development bench was constructed using a desktop computer connected to a high-definition webcam mounted on a scissor arm. This allowed the camera to be pointed downwards at the desk to provide a constant solid background for the dataset and a clear detection area for the user. A MATLAB script was created to automate dataset image capture at the development bench and save the images to the desktop. This allowed the user to create their own dataset of 12,000 images within three hours. These images were evenly distributed among seven classes. The defined classes include forward, backward, left, right, idle, and land. The drone has a popular flip function which was also included as an additional class. To simplify control, the corresponding hand signals chosen were the numerical hand signs for one through five for movements, a fist for land, and the universal “ok” sign for the flip command. Transfer learning with PyTorch (Python) was performed using a pre-trained 18-layer residual learning network (ResNet-18) to retrain the network for custom classification. An algorithm was created to interpret the classification and send encoded messages to a Ryze Tello drone over its 2.4 GHz Wi-Fi connection. The drone’s movements were performed in half-meter distance increments at a constant speed. When combined with the drone control algorithm, the classification performed as desired with negligible latency when compared to the delay in the drone’s movement commands.Keywords: classification, computer vision, convolutional neural networks, drone control
Procedia PDF Downloads 2101695 Developing Scaffolds for Tissue Regeneration using Low Temperature Plasma (LTP)
Authors: Komal Vig
Abstract:
Cardiovascular disease (CVD)-related deaths occur in 17.3 million people globally each year, accounting for 30% of all deaths worldwide, with a predicted annual incidence of deaths to reach 23.3 million globally by 2030. Autologous bypass grafts remain an important therapeutic option for the treatment of CVD, but the poor quality of the donor patient’s blood vessels, the invasiveness of the resection surgery, and postoperative movement restrictions create issues. The present study is aimed to improve the endothelialization of intimal surface of graft by using low temperature plasma (LTP) to increase the cell attachment and proliferation. Polytetrafluoroethylene (PTFE) was treated with LTP. Air was used as the feed-gas, and the pressure in the plasma chamber was kept at 800 mTorr. Scaffolds were also modified with gelatin and collagen by dipping method. Human umbilical vein endothelial cells (HUVEC) were plated on the developed scaffolds, and cell proliferation was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and by microscopy. mRNA expressions levels of different cell markers were investigated using quantitative real-time PCR (qPCR). XPS confirmed the introduction of oxygenated functionalities from LTP. HUVEC cells showed 80% seeding efficiency on the scaffold. Microscopic and MTT assays indicated increase in cell viability in LTP treated scaffolds, especially when treated with gelatin or collagen, compared to untreated scaffolds. Gene expression studies shows enhanced expression of cell adhesion marker Integrin- α 5 gene after LTP treatment. LTP treated scaffolds exhibited better cell proliferation and viability compared to untreated scaffolds. Protein treatment of scaffold increased cell proliferation. Based on our initial results, more scaffolds alternatives will be developed and investigated for cell growth and vascularization studies. Acknowledgments: This work is supported by the NSF EPSCoR RII-Track-1 Cooperative Agreement OIA-2148653.Keywords: LTP, HUVEC cells, vascular graft, endothelialization
Procedia PDF Downloads 711694 Orthogonal Basis Extreme Learning Algorithm and Function Approximation
Abstract:
A new algorithm for single hidden layer feedforward neural networks (SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed and the algorithm derivation is given in the paper. The algorithm can decide both the NNs parameters and the neuron number of hidden layer(s) during training while providing extreme fast learning speed. It will provide a practical way to develop NNs. The simulation results of function approximation showed that the algorithm is effective and feasible with good accuracy and adaptability.Keywords: neural network, orthogonal basis extreme learning, function approximation
Procedia PDF Downloads 5341693 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning
Authors: Madhawa Basnayaka, Jouni Paltakari
Abstract:
Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.Keywords: artificial intelligence, chipless RFID, deep learning, machine learning
Procedia PDF Downloads 501692 Managing Maritime Security in the Mediterranean Sea: The Roles of the EU in Tackling Irregular Migration
Authors: Shazwanis Shukri
Abstract:
The Mediterranean Sea, at the crossroads of three continents has always been the focus of pan-European and worldwide attention. Over the past decade, the Mediterranean Sea has become a hotbed for irregular migration particularly from the African continent toward the Europe. Among the major transit routes in the Mediterranean Sea include the Strait of Gibraltar, Canary Island and island of Lampedusa. In recent years, Mediterranean Sea has witnessed significant numbers of accidents and shipwrecks involving the irregular migrants and refugees trying to reach Europe via the sea. The shipwrecks and traffickers exploitation of migrants draw most of the attention particularly for the European Union (EU). This incident has been a wakeup call for the EU and become the top political agenda in the EU policy to tackle irregular migration and human smuggling at sea. EU has repeatedly addressed irregular migration as one of the threats the EU and its citizens may be confronted with and therefore immediate measures are crucial to tackle the crisis. In light of this, various initiatives have been adopted by the EU to strengthen external border control and restrict access to irregular migrants, notably through the enforcement of Frontex and Eunavfor Med. This paper analyses current development of counter-migration operations by the EU in response to migration crisis in the Mediterranean Sea. The analysis is threefold. First, this study examines the patterns and trends of irregular migration’s movements from recent perspective. Second, this study concentrates on the evolution of the EU operations that are in place in the Mediterranean Sea, notably by Frontex and Eunavfor Med to curb the influx of irregular migrants to the European countries, including, among others, Greece and Italy. Third, this study investigates the EU approaches to fight against the proliferation of human trafficking networks at sea. This study is essential to determine the roles of the EU in tackling migration crisis and human trafficking in the Mediterranean Sea and the effectiveness of their counter-migration operations to reduce the number of irregular migrants travelling via the sea. Elite interviews and document analysis were used as a methodology in this study. The study discovers that the EU operations have successfully contributed to reduce the numbers of irregular migrant’s arrival to Europe. The study also shows that the operations were effective to disrupt smugglers business models particularly from Libya. This study provides essential understanding about the roles of the EU not limited to tackle the migration crisis and disrupt trafficking networks, but also pledged to prevent further loss of lives at sea.Keywords: European union, frontex, irregular migration, Mediterranean sea
Procedia PDF Downloads 3281691 Creating a Multilevel ESL Learning Community for Adults
Authors: Gloria Chen
Abstract:
When offering conventional level-appropriate ESL classes for adults is not feasible, a multilevel adult ESL class can be formed to benefit those who need to learn English for daily function. This paper examines the rationale, the process, the contents, and the outcomes of a multilevel ESL class for adults. The action research discusses a variety of assessments, lesson plans, teaching strategies that facilitate lifelong language learning. In small towns where adult ESL learners are only a handful, often advanced students and inexperienced students have to be placed in one class. Such class might not be viewed as desirable, but with on-going assessments, careful lesson plans, and purposeful strategies, a multilevel ESL class for adults can overcome the obstacles and help learners to reach a higher level of English proficiency. This research explores some hand-on strategies, such as group rotating, cooperative learning, and modifying textbook contents for practical purpose, and evaluate their effectiveness. The data collected in this research include Needs Assessment (beginning of class term), Mid-term Self-Assessment (5 months into class term), End-of-term Student Reflection (10 months into class), and End-of-term Assessment from the Instructor (10 months into class). A descriptive analysis of the data explains the practice of this particular learning community, and reveal the areas for improvement and enrichment. This research answers the following questions: (1) How do the assessments positively help both learners and instructors? (2) How do the learning strategies prepare students to become independent, life-long English learners? (3) How do materials, grouping, and class schedule enhance the learning? The result of the research contributes to the field of teaching and learning in language, not limited in English, by (a) examining strategies of conducting a multilevel adult class, (b) involving adult language learners with various backgrounds and learning styles for reflection and feedback, and (c) improving teaching and learning strategies upon research methods and results. One unique feature of this research is how students can work together with the instructor to form a learning community, seeking and exploring resources available to them, to become lifelong language learners.Keywords: adult language learning, assessment, multilevel, teaching strategies
Procedia PDF Downloads 3521690 Encoding the Design of the Memorial Park and the Family Network as the Icon of 9/11 in Amy Waldman's the Submission
Authors: Masami Usui
Abstract:
After 9/11, the American literary scene was confronted with new perspectives that enabled both writers and readers to recognize the hidden aspects of their political, economic, legal, social, and cultural phenomena. There appeared an argument over new and challenging multicultural aspects after 9/11 and this argument is presented by a tension of space related to 9/11. In Amy Waldman’s the Submission (2011), designing both the memorial park and the family network has a significant meaning in establishing the progress of understanding from multiple perspectives. The most intriguing and controversial topic of racism is reflected in the Submission, where one young architect’s blind entry to the competition for the memorial of Ground Zero is nominated, yet he is confronted with strong objections and hostility as soon as he turns out to be a Muslim named Mohammad Khan. This ‘Khan’ issue, immediately enlarged into a social controversial issue on American soil, causes repeated acts of hostility to Muslim women by ignorant citizens all over America. His idea of the park is to design a new concept of tracing the cultural background of the open space. Against his will, his name is identified as the ‘ingredient’ of the networking of the resistant community with his supporters: on the other hand, the post 9/11 hysteria and victimization is presented in such family associations as the Angry Family Members and Grieving Family Members. These rapidly expanding networks, whether political or not, constructed by the internet, embody the contemporary societal connection and representation. The contemporary quest for the significance of human relationships is recognized as a quest for global peace. Designing both the memorial park and the communication networks strengthens a process of facing the shared conflicts and healing the survivors’ trauma. The tension between the idea and networking of the Garden for the memorial site and the collapse of Ground Zero signifies the double mission of the site: to establish the space to ease the wounded and to remember the catastrophe. Reading the design of these icons of 9/11 in the Submission means that decoding the myth of globalization and its representations in this century.Keywords: American literature, cultural studies, globalization, literature of catastrophe
Procedia PDF Downloads 5331689 A Semi-Markov Chain-Based Model for the Prediction of Deterioration of Concrete Bridges in Quebec
Authors: Eslam Mohammed Abdelkader, Mohamed Marzouk, Tarek Zayed
Abstract:
Infrastructure systems are crucial to every aspect of life on Earth. Existing Infrastructure is subjected to degradation while the demands are growing for a better infrastructure system in response to the high standards of safety, health, population growth, and environmental protection. Bridges play a crucial role in urban transportation networks. Moreover, they are subjected to high level of deterioration because of the variable traffic loading, extreme weather conditions, cycles of freeze and thaw, etc. The development of Bridge Management Systems (BMSs) has become a fundamental imperative nowadays especially in the large transportation networks due to the huge variance between the need for maintenance actions, and the available funds to perform such actions. Deterioration models represent a very important aspect for the effective use of BMSs. This paper presents a probabilistic time-based model that is capable of predicting the condition ratings of the concrete bridge decks along its service life. The deterioration process of the concrete bridge decks is modeled using semi-Markov process. One of the main challenges of the Markov Chain Decision Process (MCDP) is the construction of the transition probability matrix. Yet, the proposed model overcomes this issue by modeling the sojourn times based on some probability density functions. The sojourn times of each condition state are fitted to probability density functions based on some goodness of fit tests such as Kolmogorov-Smirnov test, Anderson Darling, and chi-squared test. The parameters of the probability density functions are obtained using maximum likelihood estimation (MLE). The condition ratings obtained from the Ministry of Transportation in Quebec (MTQ) are utilized as a database to construct the deterioration model. Finally, a comparison is conducted between the Markov Chain and semi-Markov chain to select the most feasible prediction model.Keywords: bridge management system, bridge decks, deterioration model, Semi-Markov chain, sojourn times, maximum likelihood estimation
Procedia PDF Downloads 2111688 Satellite Connectivity for Sustainable Mobility
Authors: Roberta Mugellesi Dow
Abstract:
As the climate crisis becomes unignorable, it is imperative that new services are developed addressing not only the needs of customers but also taking into account its impact on the environment. The Telecommunication and Integrated Application (TIA) Directorate of ESA is supporting the green transition with particular attention to the sustainable mobility.“Accelerating the shift to sustainable and smart mobility” is at the core of the European Green Deal strategy, which seeks a 90% reduction in related emissions by 2050 . Transforming the way that people and goods move is essential to increasing mobility while decreasing environmental impact, and transport must be considered holistically to produce a shared vision of green intermodal mobility. The use of space technologies, integrated with terrestrial technologies, is an enabler of smarter traffic management and increased transport efficiency for automated and connected multimodal mobility. Satellite connectivity, including future 5G networks, and digital technologies such as Digital Twin, AI, Machine Learning, and cloud-based applications are key enablers of sustainable mobility.SatCom is essential to ensure that connectivity is ubiquitously available, even in remote and rural areas, or in case of a failure, by the convergence of terrestrial and SatCom connectivity networks, This is especially crucial when there are risks of network failures or cyber-attacks targeting terrestrial communication. SatCom ensures communication network robustness and resilience. The combination of terrestrial and satellite communication networks is making possible intelligent and ubiquitous V2X systems and PNT services with significantly enhanced reliability and security, hyper-fast wireless access, as well as much seamless communication coverage. SatNav is essential in providing accurate tracking and tracing capabilities for automated vehicles and in guiding them to target locations. SatNav can also enable location-based services like car sharing applications, parking assistance, and fare payment. In addition to GNSS receivers, wireless connections, radar, lidar, and other installed sensors can enable automated vehicles to monitor surroundings, to ‘talk to each other’ and with infrastructure in real-time, and to respond to changes instantaneously. SatEO can be used to provide the maps required by the traffic management, as well as evaluate the conditions on the ground, assess changes and provide key data for monitoring and forecasting air pollution and other important parameters. Earth Observation derived data are used to provide meteorological information such as wind speed and direction, humidity, and others that must be considered into models contributing to traffic management services. The paper will provide examples of services and applications that have been developed aiming to identify innovative solutions and new business models that are allowed by new digital technologies engaging space and non space ecosystem together to deliver value and providing innovative, greener solutions in the mobility sector. Examples include Connected Autonomous Vehicles, electric vehicles, green logistics, and others. For the technologies relevant are the hybrid satcom and 5G providing ubiquitous coverage, IoT integration with non space technologies, as well as navigation, PNT technology, and other space data.Keywords: sustainability, connectivity, mobility, satellites
Procedia PDF Downloads 1331687 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks
Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez
Abstract:
Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning
Procedia PDF Downloads 3391686 Optimising Transcranial Alternating Current Stimulation
Authors: Robert Lenzie
Abstract:
Transcranial electrical stimulation (tES) is significant in the research literature. However, the effects of tES on brain activity are still poorly understood at the surface level, the Brodmann Area level, and the impact on neural networks. Using a method like electroencephalography (EEG) in conjunction with tES might make it possible to comprehend the brain response and mechanisms behind published observed alterations in more depth. Using a method to directly see the effect of tES on EEG may offer high temporal resolution data on the brain activity changes/modulations brought on by tES that correlate to various processing stages within the brain. This paper provides unpublished information on a cutting-edge methodology that may reveal details about the dynamics of how the human brain works beyond what is now achievable with existing methods.Keywords: tACS, frequency, EEG, optimal
Procedia PDF Downloads 821685 Comparative Study of Case Files in the Context of H. P. Grice’s Pragmatic Theory
Authors: Tugce Arslan
Abstract:
For a communicative act to be carried out successfully, the speaker and the listener must consider certain principles in line with the intention–centered “Cooperative Principle” expressed by H. P. Grice. Violation of a communication principle causes the listener to make new inferences called “implicatures”. In this study, focusing on the linguistic use of H. P. Grice’s principles, we aim to find out which principles of conversation are generally followed in case files from different fields and which principles are frequently violated. Three case files were examined, and the violating and the abiding cases of the maxims were classified in terms of four categories (Quality, Quantity, Relevance and Manner). The results of this investigation is reported below (V: Violating, A: Abiding): Quality Quantity Relevance Manner V A V A V A V A Case 1 10 8 5 9 3 15 16 6 Case 2 4 5 11 6 2 11 7 14 Case 3 21 13 7 12 9 14 15 9 Total 35 26 23 27 14 40 38 29 The excerpts were selected from files covering three different areas: the Assize Court, the Family Court and the Commercial Court of First Instance. In this way, the relations between the types of violations and the types of courts are examined. Our main finding is that in the 1st and the 3rd file, as the cases of violation in “Quality” and “Manner” increase, the cases of violation in “Quantity” and “Relevance” decrease. In the second file, on the other hand, as the cases of violation in “Quantity” increase, the cases of violation in “Quality”, “Relevance” and “Manner” decrease. In the talk, we shall compare these results with the results obtained in the study of Tajabadi, Dowlatabadi, and Mehric (2014), which examined various case files in Iran. Our main finding is that in the study conducted in Iran, violations were found only on the principles of “Quantity” and “Relevance”, while violations were found on the principles of “Quality”, “Quantity” and “Manner” in this study. In this case, it shows us that there is a connection between at least two maxims. In both cases, it has been noticed that the “Quantity” maxim is a common denominator. Studies in this field can be enlightening for many areas such as discourse analysis, legal studies, etc. Accordingly, comments will be made about the nature of the violations mentioned in H. P. Grice’s “Cooperation Principle”. We shall also discuss various conversational practices that cannot be analysed with these maxims.Keywords: comparative analysis, cooperation principle, forensic linguistics, pragmatic.
Procedia PDF Downloads 2211684 Performance Analysis of Hierarchical Agglomerative Clustering in a Wireless Sensor Network Using Quantitative Data
Authors: Tapan Jain, Davender Singh Saini
Abstract:
Clustering is a useful mechanism in wireless sensor networks which helps to cope with scalability and data transmission problems. The basic aim of our research work is to provide efficient clustering using Hierarchical agglomerative clustering (HAC). If the distance between the sensing nodes is calculated using their location then it’s quantitative HAC. This paper compares the various agglomerative clustering techniques applied in a wireless sensor network using the quantitative data. The simulations are done in MATLAB and the comparisons are made between the different protocols using dendrograms.Keywords: routing, hierarchical clustering, agglomerative, quantitative, wireless sensor network
Procedia PDF Downloads 6151683 Fast Estimation of Fractional Process Parameters in Rough Financial Models Using Artificial Intelligence
Authors: Dávid Kovács, Bálint Csanády, Dániel Boros, Iván Ivkovic, Lóránt Nagy, Dalma Tóth-Lakits, László Márkus, András Lukács
Abstract:
The modeling practice of financial instruments has seen significant change over the last decade due to the recognition of time-dependent and stochastically changing correlations among the market prices or the prices and market characteristics. To represent this phenomenon, the Stochastic Correlation Process (SCP) has come to the fore in the joint modeling of prices, offering a more nuanced description of their interdependence. This approach has allowed for the attainment of realistic tail dependencies, highlighting that prices tend to synchronize more during intense or volatile trading periods, resulting in stronger correlations. Evidence in statistical literature suggests that, similarly to the volatility, the SCP of certain stock prices follows rough paths, which can be described using fractional differential equations. However, estimating parameters for these equations often involves complex and computation-intensive algorithms, creating a necessity for alternative solutions. In this regard, the Fractional Ornstein-Uhlenbeck (fOU) process from the family of fractional processes offers a promising path. We can effectively describe the rough SCP by utilizing certain transformations of the fOU. We employed neural networks to understand the behavior of these processes. We had to develop a fast algorithm to generate a valid and suitably large sample from the appropriate process to train the network. With an extensive training set, the neural network can estimate the process parameters accurately and efficiently. Although the initial focus was the fOU, the resulting model displayed broader applicability, thus paving the way for further investigation of other processes in the realm of financial mathematics. The utility of SCP extends beyond its immediate application. It also serves as a springboard for a deeper exploration of fractional processes and for extending existing models that use ordinary Wiener processes to fractional scenarios. In essence, deploying both SCP and fractional processes in financial models provides new, more accurate ways to depict market dynamics.Keywords: fractional Ornstein-Uhlenbeck process, fractional stochastic processes, Heston model, neural networks, stochastic correlation, stochastic differential equations, stochastic volatility
Procedia PDF Downloads 1181682 Electrospun Fibre Networks Loaded with Hydroxyapatite and Barium Titanate as Smart Scaffolds for Tissue Regeneration
Authors: C. Busuioc, I. Stancu, A. Nicoara, A. Zamfirescu, A. Evanghelidis
Abstract:
The field of tissue engineering has expanded its potential due to the use of composite biomaterials belonging to increasingly complex systems, leading to bone substitutes with properties that are continuously improving to meet the patient's specific needs. Furthermore, the development of biomaterials based on ceramic and polymeric phases is an unlimited resource for future scientific research, with the final aim of restoring the original tissue functionality. Thus, in the first stage, composite scaffolds based on polycaprolactone (PCL) or polylactic acid (PLA) and inorganic powders were prepared by employing the electrospinning technique. The targeted powders were: commercial and laboratory synthesized hydroxyapatite (HAp), as well as barium titanate (BT). By controlling the concentration of the powder within the precursor solution, together with the processing parameters, different types of three-dimensional architectures were achieved. In the second stage, both the mineral powders and hybrid composites were investigated in terms of composition, crystalline structure, and microstructure so that to demonstrate their suitability for tissue engineering applications. Regarding the scaffolds, these were proven to be homogeneous on large areas and loaded with mineral particles in different proportions. The biological assays demonstrated that the addition of inorganic powders leads to modified responses in the presence of simulated body fluid (SBF) or cell cultures. Through SBF immersion, the biodegradability coupled with bioactivity were highlighted, with fiber fragmentation and surface degradation, as well as apatite layer formation within the testing period. Moreover, the final composites represent supports accepted by the cells, favoring implant integration. Concluding, the purposed fibrous materials based on bioresorbable polymers and mineral powders, produced by the electrospinning technique, represent candidates with considerable potential in the field of tissue engineering. Future improvements can be attained by optimizing the synthesis process or by simultaneous incorporation of multiple inorganic phases with well-defined biological action in order to fabricate multifunctional composites.Keywords: barium titanate, electrospinning, fibre networks, hydroxyapatite, smart scaffolds
Procedia PDF Downloads 1111681 Connected Objects with Optical Rectenna for Wireless Information Systems
Authors: Chayma Bahar, Chokri Baccouch, Hedi Sakli, Nizar Sakli
Abstract:
Harvesting and transport of optical and radiofrequency signals are a topical subject with multiple challenges. In this paper, we present a Optical RECTENNA system. We propose here a hybrid system solar cell antenna for 5G mobile communications networks. Thus, we propose rectifying circuit. A parametric study is done to follow the influence of load resistance and input power on Optical RECTENNA system performance. Thus, we propose a solar cell antenna structure in the frequency band of future 5G standard in 2.45 GHz bands.Keywords: antenna, IoT, optical rectenna, solar cell
Procedia PDF Downloads 1781680 Teachers’ Conception of and Perception towards the New Curriculum of Ethiopian Higher Education: A Case of Debre Birhan University
Authors: Kassahun Tilahun Dessie
Abstract:
The purpose of this study was to explore the awareness of teachers and the attitude they have to the curriculum they implement as well as to assess the actual and desired magnitude of teachers' participation in curriculum development process. It also aimed at investigating the factors that affect teachers' level of conception and perception towards the new higher education curriculum. The study was carried out in Debre Birhan University. Teachers, course coordinators, team leaders and presidents were included in the study as research subjects. Teachers were proportionally selected from each department (of the six faculties) based on available sampling technique. Accordingly, a total of 103 teachers were chosen as a subject of the study. In order to collect first hand data from the teachers, a questionnaire with four parts was developed by the researcher. To this end, scales were designed for measuring the extent of teachers' awareness and attitude. Each of the scales encompasses 11 and 17 items respectively. An open ended questionnaire was also attached for the purpose of obtaining elaborated data on the issue. Information was also obtained from interviews with presidents, team leaders and course coordinators. The data obtained were analyzed qualitatively using descriptive statistical tools. The overall results of the analysis revealed that the awareness of teachers on the curriculum was low. The meager participation of teachers in the process of curriculum development and the deficiency of trainings on the concern were major factors. Teachers' perception towards the existence and implementation of the new curriculum was also inclined to the negative, though difficult to generalize. Lack of awareness, administrators poor approach and lack of facilitating appropriate incentives as well as absence of room for evaluating the curriculum etc plays big role in endangering teachers attitude while the up to datedness of the new curriculum, involvement of teachers in the curriculum development process, the wide ranging quality of the new curriculum etc laid a better ground to boost teachers attitude towards the curriculum. This may have implication to the university in that there is a need to facilitate workshops or awareness creation trainings, to have positive and cooperative administrators, and embracing committed teachers to implement the curriculum efficiently.Keywords: conception, perception, curriculum, higher education, Ethiopia
Procedia PDF Downloads 5071679 A Religious Book Translation by Pragmatic Approach: The Vajrachedika-Prajna-Paramita Sutra
Authors: Yoon-Cheol Park
Abstract:
This research focuses on examining the Chinese character-Korean language translation of the Vajrachedika-prajna-paramita sutra by a pragmatic approach. The background of this research is that there were no previous researches which looked into the Vajrachedika-prajna-paramita translation by pragmatic approach until now. Even though it is composed of conversational structures between Buddha and his disciple unlike other Buddhist sutras, most of its translation could find the traces to have pursued literal translation and still has now overlooked pragmatic elements in it. Accordingly, it is meaningful to examine the messages through speaker and hearer relation and between speaker intention and utterance meaning. Practically, the Vajrachedika-prajna-paramita sutra includes pragmatic elements, such as speech acts, presupposition, conversational implicature, the cooperative principle and politeness. First, speech acts in its sutra text show the translation to reveal obvious performance meanings of language to the target text. And presupposition in their dialogues is conveyed by paraphrasing or substituting abstruse language with easy expressions. Conversational implicature in utterances makes it possible to understand the meanings of holy words by relying on utterance contexts. In particular, relevance results in an increase of readability in the translation owing to previous utterance contexts. Finally, politeness in the target text is conveyed with natural stylistics through the honorific system of the Korean language. These elements mean that the pragmatic approach can function as a useful device in conveying holy words in a specific, practical and direct way depending on utterance contexts. Therefore, we expect that taking a pragmatic approach in translating the Vajrachedika-prajna-paramita sutra will provide a theoretical foundation for seeking better translation methods than the literal translations of the past. And it implies that the translation of Buddhist sutra needs to convey messages by translation methods which take into account the characteristic of sutra text like the Vajrachedika-prajna-paramita.Keywords: buddhist sutra, Chinese character-Korean language translation, pragmatic approach, utterance context
Procedia PDF Downloads 4021678 Learning Traffic Anomalies from Generative Models on Real-Time Observations
Authors: Fotis I. Giasemis, Alexandros Sopasakis
Abstract:
This study focuses on detecting traffic anomalies using generative models applied to real-time observations. By integrating a Graph Neural Network with an attention-based mechanism within the Spatiotemporal Generative Adversarial Network framework, we enhance the capture of both spatial and temporal dependencies in traffic data. Leveraging minute-by-minute observations from cameras distributed across Gothenburg, our approach provides a more detailed and precise anomaly detection system, effectively capturing the complex topology and dynamics of urban traffic networks.Keywords: traffic, anomaly detection, GNN, GAN
Procedia PDF Downloads 71677 Inter-Area Oscillation Monitoring in Maghrebian Power Grid Using Phasor Measurement Unit
Authors: M. Tsebia, H. Bentarzi
Abstract:
In the inter-connected power systems, a phenomenon called inter-area oscillation may be caused by several defects. In this paper, a study of the Maghreb countries inter-area power networks oscillation has been investigated. The inter-area oscillation monitoring can be enhanced by integrating Phasor Measurement Unit (PMU) technology installed in different places. The data provided by PMU and recorded by PDC will be used for the monitoring, analysis, and control purposes. The proposed approach has been validated by simulation using MATLAB/Simulink.Keywords: PMU, inter-area oscillation, Maghrebian power system, Simulink
Procedia PDF Downloads 3621676 Transformers in Gene Expression-Based Classification
Authors: Babak Forouraghi
Abstract:
A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.Keywords: transformers, generative ai, gene expression design, classification
Procedia PDF Downloads 591675 A Review on Investigating the Relations between Water Harvesting and Water Conflicts
Authors: B. Laurita
Abstract:
The importance of Water Harvesting (WH) as an effective mean to deal with water scarcity is universally recognized. The collection and storage of rainwater, floodwater or quick runoff and their conversion to productive uses can ensure water availability for domestic and agricultural use, enabling a lower exploitation of the aquifer, preventing erosion events and providing significant ecosystem services. At the same time, it has been proven that it can reduce the insurgence of water conflicts if supported by a cooperative process of planning and management. On the other hand, the construction of water harvesting structures changes the hydrological regime, affecting upstream-downstream dynamics and changing water allocation, often causing contentions. Furthermore, dynamics existing between water harvesting and water conflict are not properly investigated yet. Thus, objective of this study is to analyze the relations between water harvesting and the insurgence of water conflicts, providing a solid theoretical basis and foundations for future studies. Two search engines were selected in order to perform the study: Google Scholar and Scopus. Separate researches were conducted on the mutual influences between water conflicts and the four main water harvesting techniques: rooftop harvesting, surface harvesting, underground harvesting, runoff harvesting. Some of the aforementioned water harvesting techniques have been developed and implemented on scales ranging from the small, household-sided ones, to gargantuan dam systems. Instead of focusing on the collisions related to large-scale systems, this review is aimed to look for and collect examples of the effects that the implementation of small water harvesting systems has had on the access to the water resource and on water governance. The present research allowed to highlight that in the studies that have been conducted up to now, water harvesting, and in particular those structures that allow the collection and storage of water for domestic use, is usually recognized as a positive, palliative element during contentions. On the other hand, water harvesting can worsen and, in some cases, even generate conflicts for water management. This shows the necessity of studies that consider both benefits and negative influences of water harvesting, analyzing its role respectively as triggering or as mitigating factor of conflicting situations.Keywords: arid areas, governance, water conflicts, water harvesting
Procedia PDF Downloads 2031674 Criticality Assessment Model for Water Pipelines Using Fuzzy Analytical Network Process
Abstract:
Water networks (WNs) are responsible of providing adequate amounts of safe, high quality, water to the public. As other critical infrastructure systems, WNs are subjected to deterioration which increases the number of breaks and leaks and lower water quality. In Canada, 35% of water assets require critical attention and there is a significant gap between the needed and the implemented investments. Thus, the need for efficient rehabilitation programs is becoming more urgent given the paradigm of aging infrastructure and tight budget. The first step towards developing such programs is to formulate a Performance Index that reflects the current condition of water assets along with its criticality. While numerous studies in the literature have focused on various aspects of condition assessment and reliability, limited efforts have investigated the criticality of such components. Critical water mains are those whose failure cause significant economic, environmental or social impacts on a community. Inclusion of criticality in computing the performance index will serve as a prioritizing tool for the optimum allocating of the available resources and budget. In this study, several social, economic, and environmental factors that dictate the criticality of a water pipelines have been elicited from analyzing the literature. Expert opinions were sought to provide pairwise comparisons of the importance of such factors. Subsequently, Fuzzy Logic along with Analytical Network Process (ANP) was utilized to calculate the weights of several criteria factors. Multi Attribute Utility Theories (MAUT) was then employed to integrate the aforementioned weights with the attribute values of several pipelines in Montreal WN. The result is a criticality index, 0-1, that quantifies the severity of the consequence of failure of each pipeline. A novel contribution of this approach is that it accounts for both the interdependency between criteria factors as well as the inherited uncertainties in calculating the criticality. The practical value of the current study is represented by the automated tool, Excel-MATLAB, which can be used by the utility managers and decision makers in planning for future maintenance and rehabilitation activities where high-level efficiency in use of materials and time resources is required.Keywords: water networks, criticality assessment, asset management, fuzzy analytical network process
Procedia PDF Downloads 1471673 SOTM: A New Cooperation Based Trust Management System for VANET
Authors: Amel Ltifi, Ahmed Zouinkhi, Mohamed Salim Bouhlel
Abstract:
Security and trust management in Vehicular Ad-hoc NETworks (VANET) is a crucial research domain which is the scope of many researches and domains. Although, the majority of the proposed trust management systems for VANET are based on specific road infrastructure, which may not be present in all the roads. Therefore, road security should be managed by vehicles themselves. In this paper, we propose a new Self Organized Trust Management system (SOTM). This system has the responsibility to cut with the spread of false warnings in the network through four principal components: cooperation, trust management, communication and security.Keywords: ative vehicle, cooperation, trust management, VANET
Procedia PDF Downloads 4301672 Mobile Smart Application Proposal for Predicting Calories in Food
Authors: Marcos Valdez Alexander Junior, Igor Aguilar-Alonso
Abstract:
Malnutrition is the root of different diseases that universally affect everyone, diseases such as obesity and malnutrition. The objective of this research is to predict the calories of the food to be eaten, developing a smart mobile application to show the user if a meal is balanced. Due to the large percentage of obesity and malnutrition in Peru, the present work is carried out. The development of the intelligent application is proposed with a three-layer architecture, and for the prediction of the nutritional value of the food, the use of pre-trained models based on convolutional neural networks is proposed.Keywords: volume estimation, calorie estimation, artificial vision, food nutrition
Procedia PDF Downloads 99