Search results for: community detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7836

Search results for: community detection

6426 Self-Directed-Car on GT Road: Grand Trunk Road

Authors: Rameez Ahmad, Aqib Mehmood, Imran Khan

Abstract:

Self-directed car (SDC) that can drive itself from one fact to another without support from a driver. Certain trust that self-directed car obligate the probable to transform the transportation manufacturing while essentially removing coincidences, and cleaning up the environment. This study realizes the effects that SDC (also called a self-driving, driver or robotic) vehicle travel demands and ride scheme is likely to have. Without the typical obstacles that allows detection of a audio vision based hardware and software construction (It (SDC) and cost benefits, the vehicle technologies, Gold (Generic Obstacle and Lane Detection) to a knowledge-based system to predict their potential and consider the shape, color, or balance) and an organized environment with colored lane patterns, lane position ban. Discovery the problematic consequence of (SDC) on GT (grand trunk road) road and brand the car further effectual.

Keywords: SDC, gold, GT, knowledge-based system

Procedia PDF Downloads 370
6425 Combining Shallow and Deep Unsupervised Machine Learning Techniques to Detect Bad Actors in Complex Datasets

Authors: Jun Ming Moey, Zhiyaun Chen, David Nicholson

Abstract:

Bad actors are often hard to detect in data that imprints their behaviour patterns because they are comparatively rare events embedded in non-bad actor data. An unsupervised machine learning framework is applied here to detect bad actors in financial crime datasets that record millions of transactions undertaken by hundreds of actors (<0.01% bad). Specifically, the framework combines ‘shallow’ (PCA, Isolation Forest) and ‘deep’ (Autoencoder) methods to detect outlier patterns. Detection performance analysis for both the individual methods and their combination is reported.

Keywords: detection, machine learning, deep learning, unsupervised, outlier analysis, data science, fraud, financial crime

Procedia PDF Downloads 95
6424 Passport Bros: Exploring Neocolonial Masculinity and Sex Tourism as a Response to Shifting Gender Dynamics

Authors: Kellen Sharp

Abstract:

This study explores the phenomenon of ‘Passport Bros’, a subset within the manosphere responding to perceived crises in masculinity amidst changing gender dynamics. Focusing on a computational analysis of the passport bro community, the research addresses normative beliefs, deviations from MGTOW ideology, and discussions on nationality, race, and gender. Originating from the MGTOW movement, passport bros engage in a neocolonial approach by seeking traditional, non-Western women, attributing this pursuit to dissatisfaction with modern Western women. The paper examines how hetero pessimism within MGTOW shapes the emergence of passport bros, leading to the adoption of red pill ideologies and ultimately manifesting in the form of sex tourism. Analyzing data collected from passport bro forums through computer-assisted content analysis, the study identifies key discourses such as questions and answers, money, attitudes towards Western and traditional women, and discussions about the movement itself. The findings highlight the nuanced intersection of gender, race, and global power dynamics within the passport bro community, shedding light on their motivations and impact on neocolonial legacies.

Keywords: toxic online community, manosphere, gender and media, neocolonialism

Procedia PDF Downloads 75
6423 An Evaluative Study of Services Provided in Community Based Rehabilitation Centres in Jordan

Authors: Wesam Darawsheh

Abstract:

Purpose: There is an absence of studies directed to evaluate the effectiveness of Community Based Rehabilitation (CBR) programs in Jordan. This research study is aimed at investigating the effectiveness of the services of CBR programmes in Jordan. Method: A questionnaire anonymized survey was carried out with forty-seven participants (stakeholders and volunteers) from four CBR centres in Jordan. It comprised eighteen questions that collected both qualitative and quantitative data with both closed- and open-ended questions. The survey assessed participants’ knowledge of CBR and perception of the effectiveness of services provided. The quantitative data were analyzed using SPSS Version 22.0 (2016, IBM Corporation New York). Qualitative data were analyzed through thematic content and analysis and open coding to identify emergent themes. Results: The ROC curve revealed that the AUC for questions of the survey to be (AUC=0.846) which indicated a good specificity and sensitivity of the questions of the survey. The MANOVA revealed insignificant results in the effect of the CBR site (p= 0.157), and the level of education of participants (p=0.549), on the perception of the effectiveness of CBR services. There were insignificant differences between the scores of PWDs and volunteers (p=0.781). 40.4% evaluated the effectiveness of CBR services to be low. This mainly stemmed out from the lack of efforts of the CBR programmes to raise the knowledge of the local community about CBR, disability and the role toward PWDs. Conclusions: A speculation for priorities of CBR programmes in Jordan was offered where efforts need to be directed at promoting livelihood and the empowerment components, in order to actualize the main three principles of CBR mainly by promoting multispectral collaboration as a way of operation.

Keywords: community based rehabilitation (CBR), people with disabilities (PWDS), CBR centres, rehabilitation services, Jordan, mixed-methods, evaluative study

Procedia PDF Downloads 253
6422 Empirical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;

Procedia PDF Downloads 82
6421 Research on the Strategy of Old City Reconstruction under Market Orientation: Taking Mutoulong Community in Shenzhen as an Example

Authors: Ziwei Huang

Abstract:

In order to promote Inventory development in Shenzhen, the market-oriented real estate development mode has occupied a dominant position in the urban renewal activities of Shenzhen. This research is based on the theory of role relationship and urban regime, taking the Mutoulong community as the research object. Carries on the case depth analysis found that: Under the situation of absence and dislocation of the government's role, land property rights disputes and lack of communication platforms is the main reason for the problems of nail households and market failures, and the long-term delay in the progress of old city reconstruction. Through the analysis of the cause of the transformation problem and the upper planning and interest coordination mechanism, the optimization strategy of the old city transformation is finally proposed as follows: the establishment of interest coordination platform, the risk assessment of the government's intervention in the preliminary construction of the land, the adaptive construction of laws and regulations, and the re-examination of the interest relationship between the government and the market.

Keywords: Shenzhen city, Mutoulong community, urban regeneration, urban regime theory, role relationship theory

Procedia PDF Downloads 96
6420 Understanding Community’s Perception and Willingness to Accept Fortified Foods: An Exploratory Mixed-Method Study in Sudan

Authors: Sara Bashir, Arthur Pagiwa, Merlyn Chapfunga, Ali Ahmad Khan, Gugulethu Moyo, Osman Hassan

Abstract:

Micronutrient malnutrition (MNM) is a persistent health issue in Sudan, where food fortification (FF) has the potential to improve nutritional intake. However, community acceptance and understanding are critical to the success of fortification programs. This study aimed to explore community perspectives on food fortification in Sudan, assessing knowledge, acceptability, and misconceptions. Using a mixed-methods design, an online survey was conducted through social media, gathering responses from 1,118 participants from various demographic backgrounds. Approximately half of the respondents were not aware of what FF entails and there were prevalent misconceptions about FF, perceived health benefits, and acceptance influenced by individual beliefs and circumstances. The results highlight a considerable gap in understanding the purpose and benefits of FF, despite general awareness. This study underscores the need for targeted educational campaigns to address misconceptions and promote acceptance, with attention to gender and age-specific perspectives. Furthermore, the findings provide valuable insights for policymakers aiming to implement effective, culturally-sensitive FF initiatives and awareness campaigns in Sudan.

Keywords: food fortification, malnutrition, micronutrients, Sudan

Procedia PDF Downloads 2
6419 Strengthening Factors of Family Living with Disabilities

Authors: Supranee Sittikan, Darunee Jongudomkarn, Rutja Phuphaibul

Abstract:

Thai’s families with disabilities are diverse, poor economy, low education disproportionately characterized their living that includes stress and suffering. This article reports a preliminary study using a qualitative case study with six disabilities (five physical and one mental problem) Their six family caregivers who perceived they were managing well with their conditions as well. Data were collected by in-depth interviews during November-December 2017 in North-East of Thailand. Preliminary results were found factors of moving in comprised of three themes as followings Karma: the families believe that the disability happened because of bad-karma which attached to them. From the reason, the members of families have to deserve and accept it. Family attachment: the families believe in the importance of being the family so they have to take good care in one another whether happy or suffering Community support: the families can get more to received helping hands from local health care providers and community health volunteers. These activities are very important to be representative in taking the families through health accessibility, which help them face with disabling problems. Nevertheless, the study needs further exploring on other families’ and health care team's perspective in larger scales leading to develop an appropriate health care service system which can support and promote the well-being of the families living with disabilities in the future.

Keywords: families with disabilities, Karma, family attachment, community support

Procedia PDF Downloads 164
6418 Residual Evaluation by Thresholding and Neuro-Fuzzy System: Application to Actuator

Authors: Y. Kourd, D. Lefebvre, N. Guersi

Abstract:

The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. In this paper we propose a method of fault diagnosis based on neuro-fuzzy technique and the choice of a threshold. The validation of this method on a test bench "Actuator Electro DAMADICS Benchmark". In the first phase of the method, we construct a model represents the normal state of the system to fault detection. With residuals analysis generated and the choice of thresholds for signatures table. These signatures provide us with groups of non-detectable faults. In the second phase, we build faulty models to see the flaws in the system that are not located in the first phase.

Keywords: residuals analysis, threshold, neuro-fuzzy system, residual evaluation

Procedia PDF Downloads 446
6417 Refractometric Optical Sensing by Using Photonics Mach–Zehnder Interferometer

Authors: Gong Zhang, Hong Cai, Bin Dong, Jifang Tao, Aiqun Liu, Dim-Lee Kwong, Yuandong Gu

Abstract:

An on-chip refractive index sensor with high sensitivity and large measurement range is demonstrated in this paper. The sensing structures are based on Mach-Zehnder interferometer configuration, built on the SOI substrate. The wavelength sensitivity of the sensor is estimated to be 3129 nm/RIU. Meanwhile, according to the interference pattern period changes, the measured period sensitivities are 2.9 nm/RIU (TE mode) and 4.21 nm/RIU (TM mode), respectively. As such, the wavelength shift and the period shift can be used for fine index change detection and larger index change detection, respectively. Therefore, the sensor design provides an approach for large index change measurement with high sensitivity.

Keywords: Mach-Zehnder interferometer, nanotechnology, refractive index sensing, sensors

Procedia PDF Downloads 445
6416 Application of Remote Sensing and GIS in Assessing Land Cover Changes within Granite Quarries around Brits Area, South Africa

Authors: Refilwe Moeletsi

Abstract:

Dimension stone quarrying around Brits and Belfast areas started in the early 1930s and has been growing rapidly since then. Environmental impacts associated with these quarries have not been documented, and hence this study aims at detecting any change in the environment that might have been caused by these activities. Landsat images that were used to assess land use/land cover changes in Brits quarries from 1998 - 2015. A supervised classification using maximum likelihood classifier was applied to classify each image into different land use/land cover types. Classification accuracy was assessed using Google Earth™ as a source of reference data. Post-classification change detection method was used to determine changes. The results revealed significant increase in granite quarries and corresponding decrease in vegetation cover within the study region.

Keywords: remote sensing, GIS, change detection, granite quarries

Procedia PDF Downloads 314
6415 Scour Damaged Detection of Bridge Piers Using Vibration Analysis - Numerical Study of a Bridge

Authors: Solaine Hachem, Frédéric Bourquin, Dominique Siegert

Abstract:

The brutal collapse of bridges is mainly due to scour. Indeed, the soil erosion in the riverbed around a pier modifies the embedding conditions of the structure, reduces its overall stiffness and threatens its stability. Hence, finding an efficient technique that allows early scour detection becomes mandatory. Vibration analysis is an indirect method for scour detection that relies on real-time monitoring of the bridge. It tends to indicate the presence of a scour based on its consequences on the stability of the structure and its dynamic response. Most of the research in this field has focused on the dynamic behavior of a single pile and has examined the depth of the scour. In this paper, a bridge is fully modeled with all piles and spans and the scour is represented by a reduction in the foundation's stiffnesses. This work aims to identify the vibration modes sensitive to the rigidity’s loss in the foundations so that their variations can be considered as a scour indicator: the decrease in soil-structure interaction rigidity leads to a decrease in the natural frequencies’ values. By using the first-order perturbation method, the expression of sensitivity, which depends only on the selected vibration modes, is established to determine the deficiency of foundations stiffnesses. The solutions are obtained by using the singular value decomposition method for the regularization of the inverse problem. The propagation of uncertainties is also calculated to verify the efficiency of the inverse problem method. Numerical simulations describing different scenarios of scour are investigated on a simplified model of a real composite steel-concrete bridge located in France. The results of the modal analysis show that the modes corresponding to in-plane and out-of-plane piers vibrations are sensitive to the loss of foundation stiffness. While the deck bending modes are not affected by this damage.

Keywords: bridge’s piers, inverse problems, modal sensitivity, scour detection, vibration analysis

Procedia PDF Downloads 106
6414 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang

Abstract:

Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.

Keywords: CNN, classification, deep learning, GAN, Resnet50

Procedia PDF Downloads 88
6413 A Radiofrequency Based Navigation Method for Cooperative Robotic Communities in Surface Exploration Missions

Authors: Francisco J. García-de-Quirós, Gianmarco Radice

Abstract:

When considering small robots working in a cooperative community for Moon surface exploration, navigation and inter-nodes communication aspects become a critical issue for the mission success. For this approach to succeed, it is necessary however to deploy the required infrastructure for the robotic community to achieve efficient self-localization as well as relative positioning and communications between nodes. In this paper, an exploration mission concept in which two cooperative robotic systems co-exist is presented. This paradigm hinges on a community of reference agents that provide support in terms of communication and navigation to a second agent community tasked with exploration goals. The work focuses on the role of the agent community in charge of the overall support and, more specifically, will focus on the positioning and navigation methods implemented in RF microwave bands, which are combined with the communication services. An analysis of the different methods for range and position calculation are presented, as well as the main limiting factors for precision and resolution, such as phase and frequency noise in RF reference carriers and drift mechanisms such as thermal drift and random walk. The effects of carrier frequency instability due to phase noise are categorized in different contributing bands, and the impact of these spectrum regions are considered both in terms of the absolute position and the relative speed. A mission scenario is finally proposed, and key metrics in terms of mass and power consumption for the required payload hardware are also assessed. For this purpose, an application case involving an RF communication network in UHF Band is described, in coexistence with a communications network used for the single agents to communicate within the both the exploring agents as well as the community and with the mission support agents. The proposed approach implements a substantial improvement in planetary navigation since it provides self-localization capabilities for robotic agents characterized by very low mass, volume and power budgets, thus enabling precise navigation capabilities to agents of reduced dimensions. Furthermore, a common and shared localization radiofrequency infrastructure enables new interaction mechanisms such as spatial arrangement of agents over the area of interest for distributed sensing.

Keywords: cooperative robotics, localization, robot navigation, surface exploration

Procedia PDF Downloads 294
6412 High-Performance Liquid Chromatographic Method with Diode Array Detection (HPLC-DAD) Analysis of Naproxen and Omeprazole Active Isomers

Authors: Marwa Ragab, Eman El-Kimary

Abstract:

Chiral separation and analysis of omeprazole and naproxen enantiomers in tablets were achieved using high-performance liquid chromatographic method with diode array detection (HPLC-DAD). Kromasil Cellucoat chiral column was used as a stationary phase for separation and the eluting solvent consisted of hexane, isopropanol and trifluoroacetic acid in a ratio of: 90, 9.9 and 0.1, respectively. The chromatographic system was suitable for the enantiomeric separation and analysis of active isomers of the drugs. Resolution values of 2.17 and 3.84 were obtained after optimization of the chromatographic conditions for omeprazole and naproxen isomers, respectively. The determination of S-isomers of each drug in their dosage form was fully validated.

Keywords: chiral analysis, esomeprazole, S-Naproxen, HPLC-DAD

Procedia PDF Downloads 301
6411 Analyzing Social and Political Constraints in Development Aid Projects in Post Conflict Region of SWAT, Pakistan

Authors: Faizan Sultan

Abstract:

Non-government organizations (NGOs) in Pakistan have the potential to deliver services such as health, education, and rural development through targeting the most vulnerable communities of society. Having this significant importance, NGOs are facing numerous challenges in service delivery. So, there is a need to identify the challenges NGOs face in community development, particularly post-conflict development. The current study has analyzed the social and political constraints in development projects in the post-conflict region of the Swat district of Khyber Pakhtunkhwa. The objectives of this study are “What are the social and political constraints faced by the nongovernmental organizations in the implementation of development aid Projects in post-conflict development of Swat and to examine the challenges in coordination mechanism between government departments, NGOs, and community in reconstruction activities”. This research is based upon both the quantitative and qualitative data that is being gathered from the NGO representatives, government officials, and community members who were involved in post-conflict development interventions in the Swat region. A purposive sampling technique was used to select respondents from the community members/activists (25 in number) and government and NGO officials (10 in number). Based on analysis against our objectives, NGOs have faced numerous constraints such as Insecurity, Negative Perceptions about NGOs, restrictions on women's mobility, government policies and regulations, lack of coordination and networking, trust deficit, and political interference while implementing their project interventions. These findings concluded that constraints have affected project implementation to a greater extent, including women's participation, involvement of marginalized populations, and equal distribution of resources. In the Swat region, NGOs cannot openly discuss sensitive projects such as human rights, gender-based projects, or women empowerment as these issues are very sensitive to the local community due to their cultural values. The community may not allow their females to go outside their homes as this region is a male-dominated society. Similarly, lack of communication and poor networking for the arrangements of the project meetings were also the major constraints.

Keywords: national disaster management authority, millennium development goals, provincial disaster management authority, provincial reconstruction, rehabilitation and settlement authority

Procedia PDF Downloads 59
6410 A Combination of Anisotropic Diffusion and Sobel Operator to Enhance the Performance of the Morphological Component Analysis for Automatic Crack Detection

Authors: Ankur Dixit, Hiroaki Wagatsuma

Abstract:

The crack detection on a concrete bridge is an important and constant task in civil engineering. Chronically, humans are checking the bridge for inspection of cracks to maintain the quality and reliability of bridge. But this process is very long and costly. To overcome such limitations, we have used a drone with a digital camera, which took some images of bridge deck and these images are processed by morphological component analysis (MCA). MCA technique is a very strong application of sparse coding and it explores the possibility of separation of images. In this paper, MCA has been used to decompose the image into coarse and fine components with the effectiveness of two dictionaries namely anisotropic diffusion and wavelet transform. An anisotropic diffusion is an adaptive smoothing process used to adjust diffusion coefficient by finding gray level and gradient as features. These cracks in image are enhanced by subtracting the diffused coarse image into the original image and the results are treated by Sobel edge detector and binary filtering to exhibit the cracks in a fine way. Our results demonstrated that proposed MCA framework using anisotropic diffusion followed by Sobel operator and binary filtering may contribute to an automation of crack detection even in open field sever conditions such as bridge decks.

Keywords: anisotropic diffusion, coarse component, fine component, MCA, Sobel edge detector and wavelet transform

Procedia PDF Downloads 173
6409 A Plasmonic Mass Spectrometry Approach for Detection of Small Nutrients and Toxins

Authors: Haiyang Su, Kun Qian

Abstract:

We developed a novel plasmonic matrix assisted laser desorption/ionization mass spectrometry (MALDI MS) approach to detect small nutrients and toxin in complex biological emulsion samples. We used silver nanoshells (SiO₂@Ag) with optimized structures as matrices and achieved direct analysis of ~6 nL of human breast milk without any enrichment or separation. We performed identification and quantitation of small nutrients and toxins with limit-of-detection down to 0.4 pmol (for melamine) and reaction time shortened to minutes, superior to the conventional biochemical methods currently in use. Our approach contributed to the near-future application of MALDI MS in a broad field and personalized design of plasmonic materials for real case bio-analysis.

Keywords: plasmonic materials, laser desorption/ionization, mass spectrometry, small nutrients, toxins

Procedia PDF Downloads 211
6408 Sulfamethoxazole Removal and Ammonium Nitrogen Conversion by Microalgae-Bacteria Consortium in Ammonium-Rich Wastewater: Responses Analysis

Authors: Eheneden Iyobosa, Rongchang Wang, Adesina Odunayo Blessing, Gaoxiang Chen, Haijing Ren, Jianfu Zhao

Abstract:

In the treatment of ammonium-rich wastewater with 500 μg/L sulfamethoxazole (SMX) antibiotic by a Microalgae-Bacteria Consortium, diverse parameters were monitored to assess treatment efficacy. Over 14 days, residual SMX concentrations decreased markedly from 500 μg/L to 45.6 μg/L, and removal rates declined from 102.4 to 9.9 μg/L/day. Biomass exhibited consistent growth, reaching a peak of 542.6 mg/L on day 10. Chlorophyll-a, chlorophyll-b, and carotenoid levels varied over time, reflecting fluctuations in microalgal activity. Extracellular polymeric substances (EPS) production showed temporal variations, with protein content ranging from 69.4 to 162.3 mg/g Dry cell weight (DCW) and polysaccharides content from 50.6 to 82.8 mg/g DCW. Ammonium nitrogen concentration decreased steadily from 300 mg/L to 5 mg/L throughout the treatment period. The bacterial community composition was significantly altered in the presence of antibiotics, with notable increases in Bacteroidota and Proteobacteria. Community richness and diversity indices were higher in the antibiotics-treated group than in the control group, as evidenced by the Chao index (258 compared to 181), Shannon index (1.8085 compared to 1.1545), and Simpson index (0.5032 compared to 0.6478), indicating notable shifts in microbial community structure. These findings demonstrate the efficacy of the Microalgae-Bacteria Consortium in removing SMX from wastewater and suggest its potential to mitigate antibiotic pollution while maintaining microbial diversity.

Keywords: ammonium-rich wastewater, microalgae-bacteria consortium, sulfamethoxazole removal, microbial community diversity, biomass growth

Procedia PDF Downloads 25
6407 Ubuntu: A Holistic Social Framework for Preserving Ecosystem Amidst the Climate Change Challenges

Authors: Gabriel Sunday Ayayia

Abstract:

The paper argues that Ubuntu, as a philosophy that emphasizes the interconnectedness of all living things and importance of community and mutual support, can be used as a social framework to address the problems of climate change and promote environmental sustainability. The research demonstrate that Ubuntu is an ideological concept that encourages collective action on climate change, with the emphasis on individual and collective commitment to taking concrete action to address the problems of climate change. The paper shows that Ubuntu can be employed as a social tool that would enhance the cultivation of shared identity and promote the sense of shared response responsibility to develop the resilience to cope with climate change. Using qualitative and quantitative methodologies, the study establishes the imperativeness of mutual support and cooperation through the lens of Ubuntu as a human-centered scalable response to the debacle of climate change. It recommends that we can build a society that values the environment and promotes sustainable practices by encouraging community involvement in sustainable initiatives by integrating Ubuntu-based principles to our decision-making processes, collaboration, leadership, human agency and governance.

Keywords: ubuntu, climate change, humanity, collective actions, community-based

Procedia PDF Downloads 188
6406 Principle Component Analysis on Colon Cancer Detection

Authors: N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Rita Magdalena, R. D. Atmaja, Sofia Saidah, Ocky Tiaramukti

Abstract:

Colon cancer or colorectal cancer is a type of cancer that attacks the last part of the human digestive system. Lymphoma and carcinoma are types of cancer that attack human’s colon. Colon cancer causes deaths about half a million people every year. In Indonesia, colon cancer is the third largest cancer case for women and second in men. Unhealthy lifestyles such as minimum consumption of fiber, rarely exercising and lack of awareness for early detection are factors that cause high cases of colon cancer. The aim of this project is to produce a system that can detect and classify images into type of colon cancer lymphoma, carcinoma, or normal. The designed system used 198 data colon cancer tissue pathology, consist of 66 images for Lymphoma cancer, 66 images for carcinoma cancer and 66 for normal / healthy colon condition. This system will classify colon cancer starting from image preprocessing, feature extraction using Principal Component Analysis (PCA) and classification using K-Nearest Neighbor (K-NN) method. Several stages in preprocessing are resize, convert RGB image to grayscale, edge detection and last, histogram equalization. Tests will be done by trying some K-NN input parameter setting. The result of this project is an image processing system that can detect and classify the type of colon cancer with high accuracy and low computation time.

Keywords: carcinoma, colorectal cancer, k-nearest neighbor, lymphoma, principle component analysis

Procedia PDF Downloads 205
6405 Machine Learning Methods for Network Intrusion Detection

Authors: Mouhammad Alkasassbeh, Mohammad Almseidin

Abstract:

Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE.

Keywords: IDS, DDoS, MLP, KDD

Procedia PDF Downloads 235
6404 Automatic Early Breast Cancer Segmentation Enhancement by Image Analysis and Hough Transform

Authors: David Jurado, Carlos Ávila

Abstract:

Detection of early signs of breast cancer development is crucial to quickly diagnose the disease and to define adequate treatment to increase the survival probability of the patient. Computer Aided Detection systems (CADs), along with modern data techniques such as Machine Learning (ML) and Neural Networks (NN), have shown an overall improvement in digital mammography cancer diagnosis, reducing the false positive and false negative rates becoming important tools for the diagnostic evaluations performed by specialized radiologists. However, ML and NN-based algorithms rely on datasets that might bring issues to the segmentation tasks. In the present work, an automatic segmentation and detection algorithm is described. This algorithm uses image processing techniques along with the Hough transform to automatically identify microcalcifications that are highly correlated with breast cancer development in the early stages. Along with image processing, automatic segmentation of high-contrast objects is done using edge extraction and circle Hough transform. This provides the geometrical features needed for an automatic mask design which extracts statistical features of the regions of interest. The results shown in this study prove the potential of this tool for further diagnostics and classification of mammographic images due to the low sensitivity to noisy images and low contrast mammographies.

Keywords: breast cancer, segmentation, X-ray imaging, hough transform, image analysis

Procedia PDF Downloads 83
6403 Model of Learning Center on OTOP Production Process Based on Sufficiency Economic Philosophy

Authors: Chutikarn Sriviboon, Witthaya Mekhum

Abstract:

The purposes of this research were to analyze and evaluate successful factors in OTOP production process for the developing of learning center on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The research has been designed as a qualitative study to gather information from 30 OTOP producers in Bangkontee District, Samudsongkram Province. They were all interviewed on 3 main parts. Part 1 was about the production process including 1) production 2) product development 3) the community strength 4) marketing possibility and 5) product quality. Part 2 evaluated appropriate successful factors including 1) the analysis of the successful factors 2) evaluate the strategy based on Sufficiency Economic Philosophy and 3) the model of learning center on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The results showed that the production did not affect the environment with potential in continuing standard quality production. They used the raw materials in the country. On the aspect of product and community strength in the past 1 year, it was found that there was no appropriate packaging showing product identity according to global market standard. They needed the training on packaging especially for food and drink products. On the aspect of product quality and product specification, it was found that the products were certified by the local OTOP standard. There should be a responsible organization to help the uncertified producers pass the standard. However, there was a problem on food contamination which was hazardous to the consumers. The producers should cooperate with the government sector or educational institutes involving with food processing to reach FDA standard. The results from small group discussion showed that the community expected high education and better standard living. Some problems reported by the community included informal debt and drugs in the community. There were 8 steps in developing the model of learning center on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality.

Keywords: production process, OTOP, sufficiency economic philosophy, learning center

Procedia PDF Downloads 376
6402 Cameroon’s State Bilingualism: Mending Fences between Linguistic Communities

Authors: Charles Esambe Alobwede

Abstract:

From the time of the biblical story of the Tower of Babel, languages as well as people have learnt to co-exist. It is obvious that when languages co-exist, there is the inevitable tendency of linguistic influence. This is because a language can either be a unifying factor or a factor of division within a given community, especially in a multicultural and multi-linguistic community where such a situation has led to socio-political and economic tension. Thus, leaders of such communities have a duty to plan and implement a language policy that will meet the needs of all members of the community in order to enhance its corporateness. The present article will focus on some of the major reasons that prompted the government of Cameroon to embark on an official bilingual policy after independence in 1961 and then evaluate the evolution of the linguistic situation. The article will equally look at the consequences, especially on a socio-political platform and what today has been termed 'the Anglophone problem' in Cameroon which has caused a fuse between the country’s minority Anglophone population and the majority Francophone administration. Data for the present article is collected from literature on the state of official bilingualism in Cameroon, newspapers articles on the prevailing situation in the country and interviews with actors on the field.

Keywords: language policy, linguistic influence, multicultural, official bilingualism, socio-political tension

Procedia PDF Downloads 256
6401 [Keynote Talk]: Unlocking Transformational Resilience in the Aftermath of a Flood Disaster: A Case Study from Cumbria

Authors: Kate Crinion, Martin Haran, Stanley McGreal, David McIlhatton

Abstract:

Past research has demonstrated that disasters are continuing to escalate in frequency and magnitude worldwide, representing a key concern for the global community. Understanding and responding to the increasing risk posed by disaster events has become a key concern for disaster managers. An emerging trend within literature, acknowledges the need to move beyond a state of coping and reinstatement of the status quo, towards incremental adaptive change and transformational actions for long-term sustainable development. As such, a growing interest in research concerns the understanding of the change required to address ever increasing and unpredictable disaster events. Capturing transformational capacity and resilience, however is not without its difficulties and explains the dearth in attempts to capture this capacity. Adopting a case study approach, this research seeks to enhance an awareness of transformational resilience by identifying key components and indicators that determine the resilience of flood-affected communities within Cumbria. Grounding and testing a theoretical resilience framework within the case studies, permits the identification of how perceptions of risk influence community resilience actions. Further, it assesses how levels of social capital and connectedness impacts upon the extent of interplay between resources and capacities that drive transformational resilience. Thus, this research seeks to expand the existing body of knowledge by enhancing the awareness of resilience in post-disaster affected communities, by investigating indicators of community capacity building and resilience actions that facilitate transformational resilience during the recovery and reconstruction phase of a flood disaster.

Keywords: capacity building, community, flooding, transformational resilience

Procedia PDF Downloads 289
6400 Design and Development of Novel Anion Selective Chemosensors Derived from Vitamin B6 Cofactors

Authors: Darshna Sharma, Suban K. Sahoo

Abstract:

The detection of intracellular fluoride in human cancer cell HeLa was achieved by chemosensors derived from vitamin B6 cofactors using fluorescence imaging technique. These sensors were first synthesized by condensation of pyridoxal/pyridoxal phosphate with 2-amino(thio)phenol. The anion recognition ability was explored by experimental (UV-VIS, fluorescence and 1H NMR) and theoretical DFT [(B3LYP/6-31G(d,p)] methods in DMSO and mixed DMSO-H2O system. All the developed sensors showed both naked-eye detectable color change and remarkable fluorescence enhancement in the presence of F- and AcO-. The anion recognition was occurred through the formation of hydrogen bonded complexes between these anions and sensor, followed by the partial deprotonation of sensor. The detection limit of these sensors were down to micro(nano) molar level of F- and AcO-.

Keywords: chemosensors, fluoride, acetate, turn-on, live cells imaging, DFT

Procedia PDF Downloads 401
6399 Efficient Passenger Counting in Public Transport Based on Machine Learning

Authors: Chonlakorn Wiboonsiriruk, Ekachai Phaisangittisagul, Chadchai Srisurangkul, Itsuo Kumazawa

Abstract:

Public transportation is a crucial aspect of passenger transportation, with buses playing a vital role in the transportation service. Passenger counting is an essential tool for organizing and managing transportation services. However, manual counting is a tedious and time-consuming task, which is why computer vision algorithms are being utilized to make the process more efficient. In this study, different object detection algorithms combined with passenger tracking are investigated to compare passenger counting performance. The system employs the EfficientDet algorithm, which has demonstrated superior performance in terms of speed and accuracy. Our results show that the proposed system can accurately count passengers in varying conditions with an accuracy of 94%.

Keywords: computer vision, object detection, passenger counting, public transportation

Procedia PDF Downloads 155
6398 The Design of Multiple Detection Parallel Combined Spread Spectrum Communication System

Authors: Lixin Tian, Wei Xue

Abstract:

Many jobs in society go underground, such as mine mining, tunnel construction and subways, which are vital to the development of society. Once accidents occur in these places, the interruption of traditional wired communication is not conducive to the development of rescue work. In order to realize the positioning, early warning and command functions of underground personnel and improve rescue efficiency, it is necessary to develop and design an emergency ground communication system. It is easy to be subjected to narrowband interference when performing conventional underground communication. Spreading communication can be used for this problem. However, general spread spectrum methods such as direct spread communication are inefficient, so it is proposed to use parallel combined spread spectrum (PCSS) communication to improve efficiency. The PCSS communication not only has the anti-interference ability and the good concealment of the traditional spread spectrum system, but also has a relatively high frequency band utilization rate and a strong information transmission capability. So, this technology has been widely used in practice. This paper presents a PCSS communication model-multiple detection parallel combined spread spectrum (MDPCSS) communication system. In this paper, the principle of MDPCSS communication system is described, that is, the sequence at the transmitting end is processed in blocks and cyclically shifted to facilitate multiple detection at the receiving end. The block diagrams of the transmitter and receiver of the MDPCSS communication system are introduced. At the same time, the calculation formula of the system bit error rate (BER) is introduced, and the simulation and analysis of the BER of the system are completed. By comparing with the common parallel PCSS communication, we can draw a conclusion that it is indeed possible to reduce the BER and improve the system performance. Furthermore, the influence of different pseudo-code lengths selected on the system BER is simulated and analyzed, and the conclusion is that the larger the pseudo-code length is, the smaller the system error rate is.

Keywords: cyclic shift, multiple detection, parallel combined spread spectrum, PN code

Procedia PDF Downloads 137
6397 The Role of Organizational Identity in Disaster Response, Recovery and Prevention: A Case Study of an Italian Multi-Utility Company

Authors: Shanshan Zhou, Massimo Battaglia

Abstract:

Identity plays a critical role when an organization faces disasters. Individuals reflect on their working identities and identify themselves with the group and the organization, which facilitate collective sensemaking under crisis situations and enable coordinated actions to respond to and recover from disasters. In addition, an organization’s identity links it to its regional community, which fosters the mobilization of resources and contributes to rapid recovery. However, identity is also problematic for disaster prevention because of its persistence. An organization’s ego-defenses system prohibits the rethink of its identity and a rigid identity obstructs disaster prevention. This research aims to tackle the ‘problem’ of identity by study in-depth a case of an Italian multi–utility which experienced the 2012 Northern Italy earthquakes. Collecting data from 11 interviews with top managers and key players in the local community and archived materials, we find that the earthquakes triggered the rethink of the organization’s identity, which got reinforced afterward. This research highlighted the importance of identity in disaster response and recovery. More importantly, it explored the solution of overcoming the barrier of ego-defense that is to transform the organization into a learning organization which constantly rethinks its identity.

Keywords: community identity, disaster, identity, organizational learning

Procedia PDF Downloads 732