Search results for: artificial artery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2415

Search results for: artificial artery

1005 Cycle Number Estimation Method on Fatigue Crack Initiation Using Voronoi Tessellation and the Tanaka Mura Model

Authors: Mohammad Ridzwan Bin Abd Rahim, Siegfried Schmauder, Yupiter HP Manurung, Peter Binkele, Meor Iqram B. Meor Ahmad, Kiarash Dogahe

Abstract:

This paper deals with the short crack initiation of the material P91 under cyclic loading at two different temperatures, concluded with the estimation of the short crack initiation Wöhler (S/N) curve. An artificial but representative model microstructure was generated using Voronoi tessellation and the Finite Element Method, and the non-uniform stress distribution was calculated accordingly afterward. The number of cycles needed for crack initiation is estimated on the basis of the stress distribution in the model by applying the physically-based Tanaka-Mura model. Initial results show that the number of cycles to generate crack initiation is strongly correlated with temperature.

Keywords: short crack initiation, P91, Wöhler curve, Voronoi tessellation, Tanaka-Mura model

Procedia PDF Downloads 101
1004 Multimodal Biometric Cryptography Based Authentication in Cloud Environment to Enhance Information Security

Authors: D. Pugazhenthi, B. Sree Vidya

Abstract:

Cloud computing is one of the emerging technologies that enables end users to use the services of cloud on ‘pay per usage’ strategy. This technology grows in a fast pace and so is its security threat. One among the various services provided by cloud is storage. In this service, security plays a vital factor for both authenticating legitimate users and protection of information. This paper brings in efficient ways of authenticating users as well as securing information on the cloud. Initial phase proposed in this paper deals with an authentication technique using multi-factor and multi-dimensional authentication system with multi-level security. Unique identification and slow intrusive formulates an advanced reliability on user-behaviour based biometrics than conventional means of password authentication. By biometric systems, the accounts are accessed only by a legitimate user and not by a nonentity. The biometric templates employed here do not include single trait but multiple, viz., iris and finger prints. The coordinating stage of the authentication system functions on Ensemble Support Vector Machine (SVM) and optimization by assembling weights of base SVMs for SVM ensemble after individual SVM of ensemble is trained by the Artificial Fish Swarm Algorithm (AFSA). Thus it helps in generating a user-specific secure cryptographic key of the multimodal biometric template by fusion process. Data security problem is averted and enhanced security architecture is proposed using encryption and decryption system with double key cryptography based on Fuzzy Neural Network (FNN) for data storing and retrieval in cloud computing . The proposing scheme aims to protect the records from hackers by arresting the breaking of cipher text to original text. This improves the authentication performance that the proposed double cryptographic key scheme is capable of providing better user authentication and better security which distinguish between the genuine and fake users. Thus, there are three important modules in this proposed work such as 1) Feature extraction, 2) Multimodal biometric template generation and 3) Cryptographic key generation. The extraction of the feature and texture properties from the respective fingerprint and iris images has been done initially. Finally, with the help of fuzzy neural network and symmetric cryptography algorithm, the technique of double key encryption technique has been developed. As the proposed approach is based on neural networks, it has the advantage of not being decrypted by the hacker even though the data were hacked already. The results prove that authentication process is optimal and stored information is secured.

Keywords: artificial fish swarm algorithm (AFSA), biometric authentication, decryption, encryption, fingerprint, fusion, fuzzy neural network (FNN), iris, multi-modal, support vector machine classification

Procedia PDF Downloads 259
1003 Estimation of Rare and Clustered Population Mean Using Two Auxiliary Variables in Adaptive Cluster Sampling

Authors: Muhammad Nouman Qureshi, Muhammad Hanif

Abstract:

Adaptive cluster sampling (ACS) is specifically developed for the estimation of highly clumped populations and applied to a wide range of situations like animals of rare and endangered species, uneven minerals, HIV patients and drug users. In this paper, we proposed a generalized semi-exponential estimator with two auxiliary variables under the framework of ACS design. The expressions of approximate bias and mean square error (MSE) of the proposed estimator are derived. Theoretical comparisons of the proposed estimator have been made with existing estimators. A numerical study is conducted on real and artificial populations to demonstrate and compare the efficiencies of the proposed estimator. The results indicate that the proposed generalized semi-exponential estimator performed considerably better than all the adaptive and non-adaptive estimators considered in this paper.

Keywords: auxiliary information, adaptive cluster sampling, clustered populations, Hansen-Hurwitz estimation

Procedia PDF Downloads 238
1002 DURAFILE: A Collaborative Tool for Preserving Digital Media Files

Authors: Santiago Macho, Miquel Montaner, Raivo Ruusalepp, Ferran Candela, Xavier Tarres, Rando Rostok

Abstract:

During our lives, we generate a lot of personal information such as photos, music, text documents and videos that link us with our past. This data that used to be tangible is now digital information stored in our computers, which implies a software dependence to make them accessible in the future. Technology, however, constantly evolves and goes through regular shifts, quickly rendering various file formats obsolete. The need for accessing data in the future affects not only personal users but also organizations. In a digital environment, a reliable preservation plan and the ability to adapt to fast changing technology are essential for maintaining data collections in the long term. We present in this paper the European FP7 project called DURAFILE that provides the technology to preserve media files for personal users and organizations while maintaining their quality.

Keywords: artificial intelligence, digital preservation, social search, digital preservation plans

Procedia PDF Downloads 445
1001 Smoker Recognition from Lung X-Ray Images Using Convolutional Neural Network

Authors: Moumita Chanda, Md. Fazlul Karim Patwary

Abstract:

Smoking is one of the most popular recreational drug use behaviors, and it contributes to birth defects, COPD, heart attacks, and erectile dysfunction. To completely eradicate this disease, it is imperative that it be identified and treated. Numerous smoking cessation programs have been created, and they demonstrate how beneficial it may be to help someone stop smoking at the ideal time. A tomography meter is an effective smoking detector. Other wearables, such as RF-based proximity sensors worn on the collar and wrist to detect when the hand is close to the mouth, have been proposed in the past, but they are not impervious to deceptive variables. In this study, we create a machine that can discriminate between smokers and non-smokers in real-time with high sensitivity and specificity by watching and collecting the human lung and analyzing the X-ray data using machine learning. If it has the highest accuracy, this machine could be utilized in a hospital, in the selection of candidates for the army or police, or in university entrance.

Keywords: CNN, smoker detection, non-smoker detection, OpenCV, artificial Intelligence, X-ray Image detection

Procedia PDF Downloads 84
1000 The Impact of Artificial Intelligence on the Behavior of Children and Autism

Authors: Sara Fayez Fawzy Mikhael

Abstract:

Inclusive education services for students with Autism remains in its early developmental stages in Thailand. Despite many more children with autism are attending schools since the Thai government introduced the Education Provision for People with Disabilities Act in 2008, the services students with autism and their families receive are generally lacking. This quantitative study used Attitude and Preparedness to Teach Students with Autism Scale (APTSAS) to investigate 110 primary school teachers’ attitude and preparedness to teach students with autism in the general education classroom. Descriptive statistical analysis of the data found that student behavior was the most significant factor in building teachers’ negative attitudes students with autism. The majority of teachers also indicated that their pre-service education did not prepare them to meet the learning needs of children with autism in particular, those who are non-verbal. The study is significant and provides direction for enhancing teacher education for inclusivity in Thailand.

Keywords: attitude, autism, teachers, thailandsports activates, movement skills, motor skills

Procedia PDF Downloads 100
999 Block Based Imperial Competitive Algorithm with Greedy Search for Traveling Salesman Problem

Authors: Meng-Hui Chen, Chiao-Wei Yu, Pei-Chann Chang

Abstract:

Imperial competitive algorithm (ICA) simulates a multi-agent algorithm. Each agent is like a kingdom has its country, and the strongest country in each agent is called imperialist, others are colony. Countries are competitive with imperialist which in the same kingdom by evolving. So this country will move in the search space to find better solutions with higher fitness to be a new imperialist. The main idea in this paper is using the peculiarity of ICA to explore the search space to solve the kinds of combinational problems. Otherwise, we also study to use the greed search to increase the local search ability. To verify the proposed algorithm in this paper, the experimental results of traveling salesman problem (TSP) is according to the traveling salesman problem library (TSPLIB). The results show that the proposed algorithm has higher performance than the other known methods.

Keywords: traveling salesman problem, artificial chromosomes, greedy search, imperial competitive algorithm

Procedia PDF Downloads 458
998 The Impact of Artificial Intelligence on Autism Attitude and Skills

Authors: Samwail Fahmi Francis Yacoub

Abstract:

Inclusive education services for students with Autism remains in its early developmental stages in Thailand. Despite many more children with autism are attending schools since the Thai government introduced the Education Provision for People with Disabilities Act in 2008, the services students with autism and their families receive are generally lacking. This quantitative study used Attitude and Preparedness to Teach Students with Autism Scale (APTSAS) to investigate 110 primary school teachers’ attitude and preparedness to teach students with autism in the general education classroom. Descriptive statistical analysis of the data found that student behavior was the most significant factor in building teachers’ negative attitudes students with autism. The majority of teachers also indicated that their pre-service education did not prepare them to meet the learning needs of children with autism in particular, those who are non-verbal. The study is significant and provides direction for enhancing teacher education for inclusivity in Thailand.

Keywords: attitude, autism, teachers, movement skills, motor skills, children, behavior.

Procedia PDF Downloads 52
997 Knowledge Discovery and Data Mining Techniques in Textile Industry

Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler

Abstract:

This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.

Keywords: data mining, textile production, decision trees, classification

Procedia PDF Downloads 350
996 The Efficiency of Mechanization in Weed Control in Artificial Regeneration of Oriental Beech (Fagus orientalis Lipsky.)

Authors: Tuğrul Varol, Halil Barış Özel

Abstract:

In this study which has been conducted in Akçasu Forest Range District of Devrek Forest Directorate; 3 methods (cover removal with human force, cover removal with Hitachi F20 Excavator, and cover removal with agricultural equipment mounted on a Ferguson 240S agriculture tractor) utilized in weed control efforts in regeneration of degraded oriental beech forests have been compared. In this respect, 3 methods have been compared by determining certain work hours and standard durations of unit areas (1 hectare). For this purpose, evaluating the tasks made with human and machine force from the aspects of duration, productivity and costs, it has been aimed to determine the most productive method in accordance with the actual ecological conditions of research field. Within the scope of the study, the time studies have been conducted for 3 methods used in weed control efforts. While carrying out those studies, the performed implementations have been evaluated by dividing them into business stages. Also, the actual data have been used while calculating the cost accounts. In those calculations, the latest formulas and equations which are also used in developed countries have been utilized. The variance of analysis (ANOVA) was used in order to determine whether there is any statistically significant difference among obtained results, and the Duncan test was used for grouping if there is significant difference. According to the measurements and findings carried out within the scope of this study, it has been found during living cover removal efforts in regeneration efforts in demolished oriental beech forests that the removal of weed layer in 1 hectare of field has taken 920 hours with human force, 15.1 hours with excavator and 60 hours with an equipment mounted on a tractor. On the other hand, it has been determined that the cost of removal of living cover in unit area (1 hectare) was 3220.00 TL for man power, 788.70 TL for excavator and 2227.20 TL for equipment mounted on a tractor. According to the obtained results, it has been found that the utilization of excavator in weed control effort in regeneration of degraded oriental beech regions under actual ecological conditions of research field has been found to be more productive from both of aspects of duration and costs. These determinations carried out should be repeated in weed control efforts in degraded forest fields with different ecological conditions, it is compulsory for finding the most efficient weed control method. These findings will light the way of technical staff of forestry directorate in determination of the most effective and economic weed contol method. Thus, the more actual data will be used while preparing the weed control budgets, and there will be significant contributions to national economy. Also the results of this and similar studies are very important for developing the policies for our forestry in short and long term.

Keywords: artificial regeneration, weed control, oriental beech, productivity, mechanization, man power, cost analysis

Procedia PDF Downloads 418
995 Reconstruction of Age-Related Generations of Siberian Larch to Quantify the Climatogenic Dynamics of Woody Vegetation Close the Upper Limit of Its Growth

Authors: A. P. Mikhailovich, V. V. Fomin, E. M. Agapitov, V. E. Rogachev, E. A. Kostousova, E. S. Perekhodova

Abstract:

Woody vegetation among the upper limit of its habitat is a sensitive indicator of biota reaction to regional climate changes. Quantitative assessment of temporal and spatial changes in the distribution of trees and plant biocenoses calls for the development of new modeling approaches based upon selected data from measurements on the ground level and ultra-resolution aerial photography. Statistical models were developed for the study area located in the Polar Urals. These models allow obtaining probabilistic estimates for placing Siberian Larch trees into one of the three age intervals, namely 1-10, 11-40 and over 40 years, based on the Weilbull distribution of the maximum horizontal crown projection. Authors developed the distribution map for larch trees with crown diameters exceeding twenty centimeters by deciphering aerial photographs made by a UAV from an altitude equal to fifty meters. The total number of larches was equal to 88608, forming the following distribution row across the abovementioned intervals: 16980, 51740, and 19889 trees. The results demonstrate that two processes can be observed in the course of recent decades: first is the intensive forestation of previously barren or lightly wooded fragments of the study area located within the patches of wood, woodlands, and sparse stand, and second, expansion into mountain tundra. The current expansion of the Siberian Larch in the region replaced the depopulation process that occurred in the course of the Little Ice Age from the late 13ᵗʰ to the end of the 20ᵗʰ century. Using data from field measurements of Siberian larch specimen biometric parameters (including height, diameter at root collar and at 1.3 meters, and maximum projection of the crown in two orthogonal directions) and data on tree ages obtained at nine circular test sites, authors developed a model for artificial neural network including two layers with three and two neurons, respectively. The model allows quantitative assessment of a specimen's age based on height and maximum crone projection values. Tree height and crown diameters can be quantitatively assessed using data from aerial photographs and lidar scans. The resulting model can be used to assess the age of all Siberian larch trees. The proposed approach, after validation, can be applied to assessing the age of other tree species growing near the upper tree boundaries in other mountainous regions. This research was collaboratively funded by the Russian Ministry for Science and Education (project No. FEUG-2023-0002) and Russian Science Foundation (project No. 24-24-00235) in the field of data modeling on the basis of artificial neural network.

Keywords: treeline, dynamic, climate, modeling

Procedia PDF Downloads 83
994 Fourier Galerkin Approach to Wave Equation with Absorbing Boundary Conditions

Authors: Alexandra Leukauf, Alexander Schirrer, Emir Talic

Abstract:

Numerical computation of wave propagation in a large domain usually requires significant computational effort. Hence, the considered domain must be truncated to a smaller domain of interest. In addition, special boundary conditions, which absorb the outward travelling waves, need to be implemented in order to describe the system domains correctly. In this work, the linear one dimensional wave equation is approximated by utilizing the Fourier Galerkin approach. Furthermore, the artificial boundaries are realized with absorbing boundary conditions. Within this work, a systematic work flow for setting up the wave problem, including the absorbing boundary conditions, is proposed. As a result, a convenient modal system description with an effective absorbing boundary formulation is established. Moreover, the truncated model shows high accuracy compared to the global domain.

Keywords: absorbing boundary conditions, boundary control, Fourier Galerkin approach, modal approach, wave equation

Procedia PDF Downloads 396
993 Neural Nets Based Approach for 2-Cells Power Converter Control

Authors: Kamel Laidi, Khelifa Benmansour, Ouahid Bouchhida

Abstract:

Neural networks-based approach for 2-cells serial converter has been developed and implemented. The approach is based on a behavioural description of the different operating modes of the converter. Each operating mode represents a well-defined configuration, and for which is matched an operating zone satisfying given invariance conditions, depending on the capacitors' voltages and the load current of the converter. For each mode, a control vector whose components are the control signals to be applied to the converter switches has been associated. Therefore, the problem is reduced to a classification task of the different operating modes of the converter. The artificial neural nets-based approach, which constitutes a powerful tool for this kind of task, has been adopted and implemented. The application to a 2-cells chopper has allowed ensuring efficient and robust control of the load current and a high capacitors voltages balancing.

Keywords: neural nets, control, multicellular converters, 2-cells chopper

Procedia PDF Downloads 834
992 Modular Robotics and Terrain Detection Using Inertial Measurement Unit Sensor

Authors: Shubhakar Gupta, Dhruv Prakash, Apoorv Mehta

Abstract:

In this project, we design a modular robot capable of using and switching between multiple methods of propulsion and classifying terrain, based on an Inertial Measurement Unit (IMU) input. We wanted to make a robot that is not only intelligent in its functioning but also versatile in its physical design. The advantage of a modular robot is that it can be designed to hold several movement-apparatuses, such as wheels, legs for a hexapod or a quadpod setup, propellers for underwater locomotion, and any other solution that may be needed. The robot takes roughness input from a gyroscope and an accelerometer in the IMU, and based on the terrain classification from an artificial neural network; it decides which method of propulsion would best optimize its movement. This provides the bot with adaptability over a set of terrains, which means it can optimize its locomotion on a terrain based on its roughness. A feature like this would be a great asset to have in autonomous exploration or research drones.

Keywords: modular robotics, terrain detection, terrain classification, neural network

Procedia PDF Downloads 145
991 The Physics of Turbulence Generation in a Fluid: Numerical Investigation Using a 1D Damped-MNLS Equation

Authors: Praveen Kumar, R. Uma, R. P. Sharma

Abstract:

This study investigates the generation of turbulence in a deep-fluid environment using a damped 1D-modified nonlinear Schrödinger equation model. The well-known damped modified nonlinear Schrödinger equation (d-MNLS) is solved using numerical methods. Artificial damping is added to the MNLS equation, and turbulence generation is investigated through a numerical simulation. The numerical simulation employs a finite difference method for temporal evolution and a pseudo-spectral approach to characterize spatial patterns. The results reveal a recurring periodic pattern in both space and time when the nonlinear Schrödinger equation is considered. Additionally, the study shows that the modified nonlinear Schrödinger equation disrupts the localization of structure and the recurrence of the Fermi-Pasta-Ulam (FPU) phenomenon. The energy spectrum exhibits a power-law behavior, closely following Kolmogorov's spectra steeper than k⁻⁵/³ in the inertial sub-range.

Keywords: water waves, modulation instability, hydrodynamics, nonlinear Schrödinger's equation

Procedia PDF Downloads 73
990 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Pegah Eshraghi, Zahra Sadat Zomorodian, Mohammad Tahsildoost

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 99
989 A Review Paper on Data Security in Precision Agriculture Using Internet of Things

Authors: Tonderai Muchenje, Xolani Mkhwanazi

Abstract:

Precision agriculture uses a number of technologies, devices, protocols, and computing paradigms to optimize agricultural processes. Big data, artificial intelligence, cloud computing, and edge computing are all used to handle the huge amounts of data generated by precision agriculture. However, precision agriculture is still emerging and has a low level of security features. Furthermore, future solutions will demand data availability and accuracy as key points to help farmers, and security is important to build robust and efficient systems. Since precision agriculture comprises a wide variety and quantity of resources, security addresses issues such as compatibility, constrained resources, and massive data. Moreover, conventional protection schemes used in the traditional internet may not be useful for agricultural systems, creating extra demands and opportunities. Therefore, this paper aims at reviewing state of the art of precision agriculture security, particularly in open field agriculture, discussing its architecture, describing security issues, and presenting the major challenges and future directions.

Keywords: precision agriculture, security, IoT, EIDE

Procedia PDF Downloads 90
988 Safety and Feasibility of Distal Radial Balloon Aortic Valvuloplasty - The DR-BAV Study

Authors: Alexandru Achim, Tamás Szűcsborus, Viktor Sasi, Ferenc Nagy, Zoltán Jambrik, Attila Nemes, Albert Varga, Călin Homorodean, Olivier F. Bertrand, Zoltán Ruzsa

Abstract:

Aim: Our study aimed to establish the safety and the technical success of distal radial access for balloon aortic valvuloplasty (DR-BAV). The secondary objective was to determine the effectiveness and appropriate role of DR-BAV within half year follow-up. Methods: Clinical and angiographic data from 32 consecutive patients with symptomatic aortic stenosis were evaluated in a prospective pilot single-center study. Between 2020 and 2021, the patients were treated utilizing dual distal radial access with 6-10F compatible balloons. The efficacy endpoint was divided into technical success (successful valvuloplasty balloon inflation at the aortic valve and absence of intra- or periprocedural major complications), hemodynamic success (a reduction of the mean invasive gradient >30%), and clinical success (an improvement of at least one clinical category in the NYHA classification). The safety endpoints were vascular complications (major and minor Valve Academic Research Consortium (VARC)-2 bleeding, diminished or lost arterial pulse or the presence of any pseudo-aneurysm or arteriovenous fistula during the clinical follow-up) and major adverse events, MAEs (the composite of death, stroke, myocardial infarction, and urgent major aortic valve replacement or implantation during the hospital stay and or at one-month follow-up). Results: 32 patients (40 % male, mean age 80 ± 8,5) with severe aortic valve stenosis were included in the study and 4 patients were excluded. Technical success was achieved in all patients (100%). Hemodynamic success was achieved in 30 patients (93,75%). Invasive max and mean gradients were reduced from 73±22 mm Hg and 49±22 mm Hg to 49±19 mm Hg and 20±13 mm Hg, respectively (p = <.001). Clinical success was achieved in 29 patients (90,6%). In total, no major adverse cardiac or cerebrovascular event nor vascular complications (according to VARC 2 criteria) occurred during the intervention. All-cause death at 6 months was 12%. Conclusion: According to our study, dual distal radial artery access is a safe and effective option for balloon aortic valvuloplasty in patients with severe aortic valve stenosis and can be performed in all patients with sufficient lumen diameter. Future randomized studies are warranted to investigate whether this technique is superior to other approaches.

Keywords: mean invasive gradient, distal radial access for balloon aortic valvuloplasty (DR-BAV), aortic valve stenosis, pseudo-aneurysm, arteriovenous fistula, valve academic research consortium (VARC)-2

Procedia PDF Downloads 94
987 Impact of Syngenetic Elements on the Physico-Chemical Properties of Lignocellulosic Biochar

Authors: Edita Baltrėnaitė, Pranas Baltrėnas, Eglė MarčIulaitienė, Mantas PranskevičIus, Valeriia Chemerys

Abstract:

The growing demand for organic products in the market promotes their use in various fields. One of such products is biochar. Among the innovative environmental applications, biochar has the potential as an adsorbent for retaining contaminants in environmental engineering and agrotechnical systems. Artificial modification of biochar can improve its adsorption capacity. However, indirect/natural change of biochar composition (e.g., contaminated biomass) based on syngenetic elements provides prospects for new applications of biochar as well as decreases the modification costs. Natural lignocellulosic and biochar composition variations would lead to a new field of application of biochar and reduce resources for biochar modifications. The aim of this study was to determine the influence of syngenetic elements of biochar’s feedstock on the physicochemical properties of lignocellulosic biochar. Syngenetic elements (e.g., Zn, Cu, Ni, Pb, Mg) and other intrinsic properties (e.g., lignin, COHN, moisture, ash) of indifferent types of lignocellulosic feedstock on the physicochemical characteristics of biochar are discussed.

Keywords: adsorption, lignocellulosic biochar, instrinsic properties, syngenetic elements

Procedia PDF Downloads 199
986 Technology Impact in Learning and Teaching English Language Writing

Authors: Laura Naka

Abstract:

The invention of computer writing programs has changed the way of teaching second language writing. This artificial intelligence engine can provide students with feedback on their essays, on their grammatical and spelling errors, convenient writing and editing tools to facilitate student’s writing process. However, it is not yet proved if this technology is helping students to improve their writing skills. There are several programs that are of great assistance for students concerning their writing skills. New technology provides students with different software programs which enable them to be more creative, to express their opinions and ideas in words, pictures and sounds, but at the end main and most correct feedback should be given by their teachers. No matter how new technology affects in writing skills, always comes from their teachers. This research will try to present some of the advantages and disadvantages that new technology has in writing process for students. The research takes place in the University of Gjakova ‘’Fehmi Agani’’ Faculty of Education-Preschool Program. The research aims to provide random sample response by using questionnaires and observation.

Keywords: English language learning, technology, academic writing, teaching L2.

Procedia PDF Downloads 572
985 Artificial Steady-State-Based Nonlinear MPC for Wheeled Mobile Robot

Authors: M. H. Korayem, Sh. Ameri, N. Yousefi Lademakhi

Abstract:

To ensure the stability of closed-loop nonlinear model predictive control (NMPC) within a finite horizon, there is a need for appropriate design terminal ingredients, which can be a time-consuming and challenging effort. Otherwise, in order to ensure the stability of the control system, it is necessary to consider an infinite predictive horizon. Increasing the prediction horizon increases computational demand and slows down the implementation of the method. In this study, a new technique has been proposed to ensure system stability without terminal ingredients. This technique has been employed in the design of the NMPC algorithm, leading to a reduction in the computational complexity of designing terminal ingredients and computational burden. The studied system is a wheeled mobile robot (WMR) subjected to non-holonomic constraints. Simulation has been investigated for two problems: trajectory tracking and adjustment mode.

Keywords: wheeled mobile robot, nonlinear model predictive control, stability, without terminal ingredients

Procedia PDF Downloads 91
984 Intelligent Prediction of Breast Cancer Severity

Authors: Wahab Ali, Oyebade K. Oyedotun, Adnan Khashman

Abstract:

Breast cancer remains a threat to the woman’s world in view of survival rates, it early diagnosis and mortality statistics. So far, research has shown that many survivors of breast cancer cases are in the ones with early diagnosis. Breast cancer is usually categorized into stages which indicates its severity and corresponding survival rates for patients. Investigations show that the farther into the stages before diagnosis the lesser the chance of survival; hence the early diagnosis of breast cancer becomes imperative, and consequently the application of novel technologies to achieving this. Over the year, mammograms have used in the diagnosis of breast cancer, but the inconclusive deductions made from such scans lead to either false negative cases where cancer patients may be left untreated or false positive where unnecessary biopsies are carried out. This paper presents the application of artificial neural networks in the prediction of severity of breast tumour (whether benign or malignant) using mammography reports and other factors that are related to breast cancer.

Keywords: breast cancer, intelligent classification, neural networks, mammography

Procedia PDF Downloads 487
983 Microbiological Analysis on Anatomical Specimens of Cats for Use in Veterinary Surgery

Authors: Raphael C. Zero, Marita V. Cardozo, Thiago A. S. S. Rocha, Mariana T. Kihara, Fernando A. Ávila, Fabrício S. Oliveira

Abstract:

There are several fixative and preservative solutions for use on cadavers, many of them using formaldehyde as the fixative or anatomical part preservative. In some countries, such as Brazil, this toxic agent has been increasingly restricted. The objective of this study was to microbiologically identify and quantify the key agents in tanks containing 96GL ethanol or sodium chloride solutions, used respectively as fixatives and preservatives of cat cadavers. Eight adult cat corpses, three females and five males, with an average weight of 4.3 kg, were used. After injection via the external common carotid artery (120 ml/kg, 95% 96GL ethyl alcohol and 5% pure glycerin), the cadavers were fixed in a plastic tank with 96GL ethanol for 60 days. After fixing, they were stored in a 30% sodium chloride aqueous solution for 120 days in a similar tank. Samples were collected at the start of the experiment - before the animals were placed in the ethanol tanks, and monthly thereafter. The bacterial count was performed by Pour Plate Method in BHI agar (Brain Heart Infusion) and the plates were incubated aerobically and anaerobically for 24h at 37ºC. MacConkey agar, SPS agar (Sulfite Polymyxin Sulfadizine) and MYP Agar Base were used to isolate the microorganisms. There was no microbial growth in the samples prior to alcohol fixation. After 30 days of fixation in the alcohol solution, total aerobic and anaerobic (<1.0 x 10 CFU/ml) were found and Pseudomonas sp., Staphylococcus sp., Clostridium sp. were the identified agents. After 60 days in the alcohol fixation solution, total aerobes (<1.0 x 10 CFU/ml) and total anaerobes (<2.2 x 10 CFU/mL) were found, and the identified agents were the same. After 30 days of storage in the aqueous solution of 30% sodium chloride, total aerobic (<5.2 x 10 CFU/ml) and total anaerobes (<3.7 x 10 CFU/mL) were found and the agents identified were Staphylococcus sp., Clostridium sp., and fungi. After 60 days of sodium chloride storage, total aerobic (<3.0 x 10 CFU / ml) and total anaerobes (<7.0 x 10 CFU/mL) were found and the identified agents remained the same: Staphylococcus sp., Clostridium sp., and fungi. The microbiological count was low and visual inspection did not reveal signs of contamination in the tanks. There was no strong odor or purification, which proved the technique to be microbiologically effective in fixing and preserving the cat cadavers for the four-month period in which they are provided to undergraduate students of University of Veterinary Medicine for surgery practice. All experimental procedures were approved by the Municipal Legal Department (protocol 02.2014.000027-1). The project was funded by FAPESP (protocol 2015-08259-9).

Keywords: anatomy, fixation, microbiology, small animal, surgery

Procedia PDF Downloads 289
982 Implementation and Design of Fuzzy Controller for High Performance Dc-Dc Boost Converters

Authors: A. Mansouri, F. Krim

Abstract:

This paper discusses the implementation and design of both linear PI and fuzzy controllers for DC-DC boost converters. Design of PI controllers is based on temporal response of closed-loop converters, while fuzzy controllers design is based on heuristic knowledge of boost converters. Linear controller implementation is quite straightforward relying on mathematical models, while fuzzy controller implementation employs one or more artificial intelligences techniques. Comparison between these boost controllers is made in design aspect. Experimental results show that the proposed fuzzy controller system is robust against input voltage and load resistance changing and in respect of start-up transient. Results indicate that fuzzy controller can achieve best control performance concerning faster transient response, steady-state response good stability and accuracy under different operating conditions. Fuzzy controller is more suitable to control boost converters.

Keywords: boost DC-DC converter, fuzzy, PI controllers, power electronics and control system

Procedia PDF Downloads 475
981 Black Swans Public Administration and Informatics

Authors: Anastasis Petrou

Abstract:

Black Swan Theories (BSTs) have existed since the 2nd Century BC. However, problematisation in the interdisciplinary field of Public Administration and Informatics (PA&I) about the impact of Black Swans as rare events in Society is a more recent phenomenon but with a growing, although dispersed, body of research literature. This paper offers a synopsis of core issues and questions raised in PA&I literature about the impacts of rare events in Society, the need for knowledge accumulation and explainability processes about rare events and asks what could help explain the occurrence, severity, heterogeneity, overall impact of Black Swans and the challenges they represent to established scientific methods. The second part of the paper considers how the use of Artificial Intelligence (AI) could assist researchers in better explaining rare events in PA&I. However, the research shows that whilst AI use at the start of knowledge accumulation and explainability processes about rare events is beneficial it is also fraught with challenges discussed herein. The paper concludes with recommendations for future research.

Keywords: black swans, public administration, AI, informatics

Procedia PDF Downloads 15
980 An Experimental Investigation of Air Entrainment Due to Water Jets in Crossflows

Authors: Mina Esmi Jahromi, Mehdi Khiadani

Abstract:

Vertical water jets discharging into free surface turbulent cross flows result in the ingression of a large amount of air in the body of water and form a region of two-phase air-water flow with a considerable interfacial area. This research presents an experimental study of the two-phase bubbly flow using image processing technique. The air ingression and the trajectories of bubble swarms under different experimental conditions are evaluated. The rate of air entrainment and the bubble characteristics such as penetration depth, and dispersion pattern were found to be affected by the most influential parameters of water jet and cross flow including water jet-to-crossflow velocity ratio, water jet falling height, and cross flow depth. This research improves understanding of the underwater flow structure due to the water jet impingement in crossflow and advances the practical applications of water jets such as artificial aeration, circulation, and mixing where crossflow is present.

Keywords: air entrainment, image processing, jet in cross flow, two-phase flow

Procedia PDF Downloads 369
979 The Effect of Artificial Intelligence on Human Rights Legislations and Evolution

Authors: Nawal Yacoub Halim Abdelmasih

Abstract:

The link between terrorism and human rights has grown to be a chief challenge in the combat against terrorism around the sector. This is primarily based on the truth that terrorism and human rights are so closely related that after the former starts, the latter is violated. This direct connection is identified in the Vienna Declaration and program of movement adopted by way of the sector Convention on Human Rights in Vienna on June 25, 1993, which acknowledges that acts of terrorism in all their paperwork and manifestations intended to damage the human rights of people. Terrorism, therefore, represents an assault on our maximum fundamental human rights. To this stop, the first part of this article makes a specialty of the connections between terrorism and human rights and seeks to spotlight the interdependence between those two standards. The second part discusses the rising idea of cyberterrorism and its manifestations. An evaluation of the fight against cyberterrorism inside the context of human rights is likewise performed.

Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security.

Procedia PDF Downloads 6
978 TMIF: Transformer-Based Multi-Modal Interactive Fusion for Rumor Detection

Authors: Jiandong Lv, Xingang Wang, Cuiling Shao

Abstract:

The rapid development of social media platforms has made it one of the important news sources. While it provides people with convenient real-time communication channels, fake news and rumors are also spread rapidly through social media platforms, misleading the public and even causing bad social impact in view of the slow speed and poor consistency of artificial rumor detection. We propose an end-to-end rumor detection model-TIMF, which captures the dependencies between multimodal data based on the interactive attention mechanism, uses a transformer for cross-modal feature sequence mapping and combines hybrid fusion strategies to obtain decision results. This paper verifies two multi-modal rumor detection datasets and proves the superior performance and early detection performance of the proposed model.

Keywords: hybrid fusion, multimodal fusion, rumor detection, social media, transformer

Procedia PDF Downloads 246
977 Observational Versus Angioembolisation in Blunt Splenic Trauma: A Systematic Review

Authors: E. Gopi, E. Devaindran

Abstract:

Objective: Non-operative management of blunt splenic trauma have started to overtake the traditional splenectomy in recent years across the grade of splenic injury. The two main non-operative methods are observation and angioembolisation. However, the post management convalescence in these groups are still being investigated. The study attempts to quantify the clinical indicators among the two in particular complications, mortalities, conversions to operative management and duration of inpatient stay. Methodology: A systematic search was done via PUBMED, MEDLINE, and EMBASE. A total of 639 articles identified and subsequently 68 articles were identified post duplicates, full text, and inclusion and exclusion criteria. Main exclusions were non-English articles without English translation, pure observational or angioembolisation articles of which no comparison data could be identified and articles looking into pure hemodynamically unstable patients. Results: 24 non randomized controlled trial, 5 clinical control trial and 39 retrospective studies analyzing a total of 23700 patients with blunt splenic trauma. Discrepancies in data were noted in the group who had observational management versus angioembolisation in particular as data was compared among the classes of splenic rupture, the protocol of management in different centers, availability of angiogram suite, and the study design. Further variability was also noted in the angioembolisation arm as the preference for treatment differs between distal versus proximal splenic artery involvement. Overall the cumulative mortality in both observational and angioembolisation group were similar, 2.78% and 5.97% respectively. The cause of death however is not directly attributed to the management itself but rather patient comorbidities, other associated injuries and conversions to splenectomy leading to post splenectomy complications. The cumulative morbidity among each group appears to be same approximately 12% in observational versus 15% in angioembolisation. However, the type of complications varies with the observational group having higher rates of inpatient stay and intrabdominal hematoma infection and angioembolisation group developing more splenic infarcts and bleeds. There were significant disparity in reporting the actual data on duration of inpatient stay and complications to allow a statistically significant quantitative analysis to be done, 15 articles however are currently being considered. Conclusions: Observational management appears to be much effective in managing lower grade splenic trauma (grade 1 and 2) where else angioembolisation appears to play a bigger role in intermediate grades (grade 3-4) in ensuring splenic function preservation. Care has to be taken however in the angioembolisation group in view of distal splenic infarct group compromising splenic function. The cumulated data of 15 articles are now being considered for a meta-analysis.

Keywords: blunt splenic trauma, conservative, non-operative, angioembolisation

Procedia PDF Downloads 267
976 Energy Efficiency Analysis of Electrical Submersible Pump on Mature Oil Field Offshore Java Sea

Authors: Marda Vidrianto, Tania Surya Utami

Abstract:

Electrical Submersible Pump (ESP) is an artificial lift of choice to produce oil on Offshore Java Sea. It is selected based on the production rate capacity and running life expectation. ESP performance in a mature field is highly affected by oil well conditions. The presence of sand, scale, gas, and low influx will create unstable ESP operation hence lowering the run life expectation and system efficiency. This paper reviews the current energy usage and efficiency on every part of the ESP system. The hydraulic and electrical losses, as well as system efficiency for each well, are calculated to identify energy losses and the possibility for improvement. It is shown that high back pressure on the system and low-efficiency pump are the major contributors to energy losses. It was found that optimized production rate and the use of advanced technology on pump and motor unit could improve energy efficiency.

Keywords: advance technology, energy efficiency, ESP, mature field, production rate

Procedia PDF Downloads 342