Search results for: structural priming
3003 Structural Analysis of Phase Transformation and Particle Formation in Metastable Metallic Thin Films Grown by Plasma-Enhanced Atomic Layer Deposition
Authors: Pouyan Motamedi, Ken Bosnick, Ken Cadien, James Hogan
Abstract:
Growth of conformal ultrathin metal films has attracted a considerable amount of attention recently. Plasma-enhanced atomic layer deposition (PEALD) is a method capable of growing conformal thin films at low temperatures, with an exemplary control over thickness. The authors have recently reported on growth of metastable epitaxial nickel thin films via PEALD, along with a comprehensive characterization of the films and a study on the relationship between the growth parameters and the film characteristics. The goal of the current study is to use the mentioned films as a case study to investigate the temperature-activated phase transformation and agglomeration in ultrathin metallic films. For this purpose, metastable hexagonal nickel thin films were annealed using a controlled heating/cooling apparatus. The transformations in the crystal structure were observed via in-situ synchrotron x-ray diffraction. The samples were annealed to various temperatures in the range of 400-1100° C. The onset and progression of particle formation were studied in-situ via laser measurements. In addition, a four-point probe measurement tool was used to record the changes in the resistivity of the films, which is affected by phase transformation, as well as roughening and agglomeration. Thin films annealed at various temperature steps were then studied via atomic force microscopy, scanning electron microscopy and high-resolution transmission electron microscopy, in order to get a better understanding of the correlated mechanisms, through which phase transformation and particle formation occur. The results indicate that the onset of hcp-to-bcc transformation is at 400°C, while particle formations commences at 590° C. If the annealed films are quenched after transformation, but prior to agglomeration, they show a noticeable drop in resistivity. This can be attributed to the fact that the hcp films are grown epitaxially, and are under severe tensile strain, and annealing leads to relaxation of the mismatch strain. In general, the results shed light on the nature of structural transformation in nickel thin films, as well as metallic thin films, in general.Keywords: atomic layer deposition, metastable, nickel, phase transformation, thin film
Procedia PDF Downloads 3293002 Gendered Water Insecurity: a Structural Equation Approach for Female-Headed Households in South Africa
Authors: Saul Ngarava, Leocadia Zhou, Nomakhaya Monde
Abstract:
Water crises have the fourth most significant societal impact after weapons of mass destruction, climate change, and extreme weather conditions, ahead of natural disasters. Intricacies between women and water are central to achieving the 2030 Sustainable Development Goals (SDGs). The majority of the 1.2 billion poor people worldwide, with two-thirds being women, and mostly located in Sub Sahara Africa (SSA) and South Asia, do not have access to safe and reliable sources of water. There exist gendered differences in water security based on the division of labour associating women with water. Globally, women and girls are responsible for water collection in 80% of the households which have no water on their premises. Women spend 16 million hours a day collecting water, while men and children spend 6 million and 4 million per day, respectively, which is time foregone in the pursuit of other livelihood activities. Due to their proximity and activities concerning water, women are vulnerable to water insecurity through exposures to water-borne diseases, fatigue from physically carrying water, and exposure to sexual and physical harassment, amongst others. Proximity to treated water and their wellbeing also has an effect on their sensitivity and adaptive capacity to water insecurity. The great distances, difficult terrain and heavy lifting expose women to vulnerabilities of water insecurity. However, few studies have quantified the vulnerabilities and burdens on women, with a few taking a phenomenological qualitative approach. Vulnerability studies have also been scanty in the water security realm, with most studies taking linear forms of either quantifying exposures, sensitivities or adaptive capacities in climate change studies. The current study argues for the need for a water insecurity vulnerability assessment, especially for women into research agendas as well as policy interventions, monitoring, and evaluation. The study sought to identify and provide pathways through which female-headed households were water insecure in South Africa, the 30th driest country in the world. This was through linking the drinking water decision as well as the vulnerability frameworks. Secondary data collected during the 2016 General Household Survey (GHS) was utilised, with a sample of 5928 female-headed households. Principal Component Analysis and Structural Equation Modelling were used to analyse the data. The results show dynamic relationships between water characteristics and water treatment. There were also associations between water access and wealth status of the female-headed households. Association was also found between water access and water treatment as well as between wealth status and water treatment. The study concludes that there are dynamic relationships in water insecurity (exposure, sensitivity, and adaptive capacity) for female-headed households in South Africa. The study recommends that a multi-prong approach is required in tackling exposures, sensitivities, and adaptive capacities to water insecurity. This should include capacitating and empowering women for wealth generation, improve access to water treatment equipment as well as prioritising the improvement of infrastructure that brings piped and safe water to female-headed households.Keywords: gender, principal component analysis, structural equation modelling, vulnerability, water insecurity
Procedia PDF Downloads 1223001 D-Lysine Assisted 1-Ethyl-3-(3-Dimethylaminopropyl)Carbodiimide / N-Hydroxy Succinimide Initiated Crosslinked Collagen Scaffold with Controlled Structural and Surface Properties
Authors: G. Krishnamoorthy, S. Anandhakumar
Abstract:
The effect of D-Lysine (D-Lys) on collagen with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide(EDC)/N-hydroxysuccinimide(NHS) initiated cross linking using experimental and modelling tools are evaluated. The results of the Coll-D-Lys-EDC/NHS scaffold also indicate an increase in the tensile strength (TS), percentage of elongation (% E), denaturation temperature (Td), and decrease the decomposition rate compared to L-Lys-EDC/NHS. Scanning electron microscopic (SEM) and atomic force microscopic (AFM) analyses revealed a well ordered with properly oriented and well-aligned structure of scaffold. The D-Lys stabilizes the scaffold against degradation by collagenase than L-Lys. The cell assay showed more than 98% fibroblast viability (NIH3T3) and improved cell adhesions, protein adsorption after 72h of culture when compared with native scaffold. Cell attachment after 74h was robust, with cytoskeletal analysis showing that the attached cells were aligned along the fibers assuming a spindle-shape appearance, despite, gene expression analyses revealed no apparent alterations in mRNA levels, although cell proliferation was not adversely affected. D-Lysine (D-Lys) plays a pivotal role in the self-assembly and conformation of collagen fibrils. The D-Lys assisted EDC/NHS initiated cross-linking induces the formation of an carboxamide by the activation of the side chain -COOH group, followed by aminolysis of the O-iso acylurea intermediates by the -NH2 groups are directly joined via an isopeptides bond. This leads to the formation of intra- and inter-helical cross links. Modeling studies indicated that D-Lys bind with collagen-like peptide (CLP) through multiple H-bonding and hydrophobic interactions. Orientational changes in collagenase on CLP-D-Lys are observed which may decrease its accessibility to degradation and stabilize CLP against the action of the former. D-Lys has lowest binding energy and improved fibrillar-assembly and staggered alignment without the undesired structural stiffness and aggregations. The proteolytic machinery is not well equipped to deal with Coll-D-Lys than Coll-L-Lys scaffold. The information derived from the present study could help in designing collagenolytically stable heterochiral collagen based scaffold for biomedical applications.Keywords: collagen, collagenase, collagen like peptide, D-lysine, heterochiral collagen scaffold
Procedia PDF Downloads 3933000 A New Distribution and Application on the Lifetime Data
Authors: Gamze Ozel, Selen Cakmakyapan
Abstract:
We introduce a new model called the Marshall-Olkin Rayleigh distribution which extends the Rayleigh distribution using Marshall-Olkin transformation and has increasing and decreasing shapes for the hazard rate function. Various structural properties of the new distribution are derived including explicit expressions for the moments, generating and quantile function, some entropy measures, and order statistics are presented. The model parameters are estimated by the method of maximum likelihood and the observed information matrix is determined. The potentiality of the new model is illustrated by means of real life data set.Keywords: Marshall-Olkin distribution, Rayleigh distribution, estimation, maximum likelihood
Procedia PDF Downloads 5022999 The Role of Strategic Metals in Cr-Al-Pt-V Composition of Protective Bond Coats
Authors: A. M. Pashayev, A. S. Samedov, T. B. Usubaliyev, N. Sh. Yusifov
Abstract:
Different types of coating technologies are widely used for gas turbine blades. Thermal barrier coatings, consisting of ceramic top coat, thermally grown oxide and a metallic bond coat are used in applications for thermal protection of hot section components in gas turbine engines. Operational characteristics and longevity of high-temperature turbine blades substantially depend on a right choice of composition of the protective thermal barrier coatings. At a choice of composition of a coating and content of the basic elements it is necessary to consider following factors, as minimum distinctions of coefficients of thermal expansions of elements, level of working temperatures and composition of the oxidizing environment, defining the conditions for the formation of protective layers, intensity of diffusive processes and degradation speed of protective properties of elements, extent of influence on the fatigue durability of details during operation, using of elements with high characteristics of thermal stability and satisfactory resilience of gas corrosion, density, hardness, thermal conduction and other physical characteristics. Forecasting and a choice of a thermal barrier coating composition, all above factors at the same time cannot be considered, as some of these characteristics are defined by experimental studies. The implemented studies and investigations show that one of the main failures of coatings used on gas turbine blades is related to not fully taking the physical-chemical features of elements into consideration during the determination of the composition of alloys. It leads to the formation of more difficult spatial structure, composition which also changes chaotically in some interval of concentration that doesn't promote thermal and structural firmness of a coating. For the purpose of increasing the thermal and structural resistant of gas turbine blade coatings is offered a new approach to forecasting of composition on the basis of analysis of physical-chemical characteristics of alloys taking into account the size factor, electron configuration, type of crystal lattices and Darken-Gurry method. As a result, of calculations and experimental investigations is offered the new four-component metallic bond coat on the basis of chrome for the gas turbine blades.Keywords: gas turbine blades, thermal barrier coating, metallic bond coat, strategic metals, physical-chemical features
Procedia PDF Downloads 3202998 Role of Functional Divergence in Specific Inhibitor Design: Using γ-Glutamyltranspeptidase (GGT) as a Model Protein
Authors: Ved Vrat Verma, Rani Gupta, Manisha Goel
Abstract:
γ-glutamyltranspeptidase (GGT: EC 2.3.2.2) is an N-terminal nucleophile hydrolase conserved in all three domains of life. GGT plays a key role in glutathione metabolism where it catalyzes the breakage of the γ-glutamyl bonds and transfer of γ-glutamyl group to water (hydrolytic activity) or amino acids or short peptides (transpeptidase activity). GGTs from bacteria, archaea, and eukaryotes (human, rat and mouse) are homologous proteins sharing >50% sequence similarity and conserved four layered αββα sandwich like three dimensional structural fold. These proteins though similar in their structure to each other, are quite diverse in their enzyme activity: some GGTs are better at hydrolysis reactions but poor in transpeptidase activity, whereas many others may show opposite behaviour. GGT is known to be involved in various diseases like asthma, parkinson, arthritis, and gastric cancer. Its inhibition prior to chemotherapy treatments has been shown to sensitize tumours to the treatment. Microbial GGT is known to be a virulence factor too, important for the colonization of bacteria in host. However, all known inhibitors (mimics of its native substrate, glutamate) are highly toxic because they interfere with other enzyme pathways. However, a few successful efforts have been reported previously in designing species specific inhibitors. We aim to leverage the diversity seen in GGT family (pathogen vs. eukaryotes) for designing specific inhibitors. Thus, in the present study, we have used DIVERGE software to identify sites in GGT proteins, which are crucial for the functional and structural divergence of these proteins. Since, type II divergence sites vary in clade specific manner, so type II divergent sites were our focus of interest throughout the study. Type II divergent sites were identified for pathogen vs. eukaryotes clusters and sites were marked on clade specific representative structures HpGGT (2QM6) and HmGGT (4ZCG) of pathogen and eukaryotes clade respectively. The crucial divergent sites within 15 A radii of the binding cavity were highlighted, and in-silico mutations were performed on these sites to delineate the role of these sites on the mechanism of catalysis and protein folding. Further, the amino acid network (AAN) analysis was also performed by Cytoscape to delineate assortative mixing for cavity divergent sites which could strengthen our hypothesis. Additionally, molecular dynamics simulations were performed for wild complexes and mutant complexes close to physiological conditions (pH 7.0, 0.1 M ionic strength and 1 atm pressure) and the role of putative divergence sites and structural integrities of the homologous proteins have been analysed. The dynamics data were scrutinized in terms of RMSD, RMSF, non-native H-bonds and salt bridges. The RMSD, RMSF fluctuations of proteins complexes are compared, and the changes at protein ligand binding sites were highlighted. The outcomes of our study highlighted some crucial divergent sites which could be used for novel inhibitors designing in a species-specific manner. Since, for drug development, it is challenging to design novel drug by targeting similar protein which exists in eukaryotes, so this study could set up an initial platform to overcome this challenge and help to deduce the more effective targets for novel drug discovery.Keywords: γ-glutamyltranspeptidase, divergence, species-specific, drug design
Procedia PDF Downloads 2712997 Asymmetric Synthesis of β- and γ-Borylated Amines via Rh-Catalyzed Hydroboration of Allylamine Derivatives
Authors: Rukshani Wickrama-Arachchi, Tanner Metz, James M. Takacs
Abstract:
Amines bearing γ-stereocenters are important structural motifs found in many biologically active compounds. Regioselective Rh-catalyzed asymmetric hydroboration of acyclic allylamines is used to synthesize amines bearing chiral β- and γ-boronic esters yields up to 70% with 98:2 enantioselectivity. The major enantiomeric outcome can be independent of starting alkene geometry, revealing that cis/trans-isomerization of alkene can occur before hydroboration. Stereospecific transformations of the newly generated C-B bond illustrates the utility of these chiral synthons.Keywords: allylamines, borylated amines, chiral amines, hydroboration, rhodium-catalysis
Procedia PDF Downloads 1912996 Arabic Handwriting Recognition Using Local Approach
Authors: Mohammed Arif, Abdessalam Kifouche
Abstract:
Optical character recognition (OCR) has a main role in the present time. It's capable to solve many serious problems and simplify human activities. The OCR yields to 70's, since many solutions has been proposed, but unfortunately, it was supportive to nothing but Latin languages. This work proposes a system of recognition of an off-line Arabic handwriting. This system is based on a structural segmentation method and uses support vector machines (SVM) in the classification phase. We have presented a state of art of the characters segmentation methods, after that a view of the OCR area, also we will address the normalization problems we went through. After a comparison between the Arabic handwritten characters & the segmentation methods, we had introduced a contribution through a segmentation algorithm.Keywords: OCR, segmentation, Arabic characters, PAW, post-processing, SVM
Procedia PDF Downloads 742995 Hydrogen Production By Photoreforming Of n-Butanol And Structural Isomers Over Pt Doped Titanate Catalyst
Authors: Hristina Šalipur, Jasmina Dostanić, Davor Lončarević, Matej Huš
Abstract:
Photocatalytic water splitting/alcohol photoreforming has been used for the conversion of sunlight energy in the process of hydrogen production due to its sustainability, environmental safety, effectiveness and simplicity. Titanate nanotubes are frequently studied materials since they combine the properties of photo-active semiconductors with the properties of layered titanates, such as the ion-exchange ability. Platinum (Pt) doping into titanate structure has been considered an effective strategy in better separation efficiency of electron-hole pairs and lowering the overpotential for hydrogen production, which results in higher photocatalytic activity. In our work, Pt doped titanate catalysts were synthesized via simple alkaline hydrothermal treatment, incipient wetness impregnation method and temperature-programmed reduction. The structural, morphological and optical properties of the prepared catalysts were investigated using various characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 physisorption, and diffuse reflectance spectroscopy (DRS). The activities of the prepared Pt-doped titanate photocatalysts were tested for hydrogen production via photocatalytic water splitting/alcohol photoreforming process under simulated solar light irradiation. Characterization of synthesized Pt doped titanate catalysts showed crystalline anatase phase, preserved nanotubular structure and high specific surface area. The result showed enhancement of activity in photocatalytic water splitting/alcohol photoreforming in the following order 2-butanol>1-butanol>tert-butanol, with obtained maximal hydrogen production rate of 7.5, 5.3 and 2 mmol g-1 h-1, respectively. Different possible factors influencing the hole scavenging ability, such as hole scavenger redox potential and diffusivity, adsorption and desorption rate of the hole scavenger on the surface and stability of the alcohol radical species generated via hole scavenging, were investigated. The theoretical evaluation using density functional theory (DFT) further elucidated the reaction kinetics and detailed mechanism of photocatalytic water splitting/alcohol photoreforming.Keywords: hydrogen production, platinum, semiconductor, water splitting, density functional theory
Procedia PDF Downloads 1132994 Existing Cardiovascular Risk among Children Diagnosed with Type 1 Diabetes Mellitus at the Emergency Clinic
Authors: Masuma Novak, Daniel Novak
Abstract:
Background: Sweden along with other Nordic countries has the highest incidence of type 1 diabetes mellitus (T1DM) worldwide. The trend is increasing globally. The diagnosis is often given at the emergency clinic when children arrive with cardinal symptom of T1DM. Children with T1DM are known to have an increased risk of microvascular- and macrovascular complications. A family history of cardiovascular complications may further increase their risk. Clinically evident diabetes-related vascular complications are however rarely visible in childhood and adolescence, whereby an intensive diabetes treatment and normoglycemic control is a goal for every child. This study is a risk evaluation of children with T1DM based on their family’s cardiovascular history. Method: Since 2005 the Better Diabetes Diagnosis (BDD) study is a nationwide Swedish prospective cohort study that recruits new-onset T1DM who are less than 18 years old at time of diagnosis. For each newly diagnosed child, blood samples are collected for specific HLA genotyping and islet autoantibody assays and their family’s cardiovascular history is evaluated. As part of the BDD study, during the years 2010-2013 all children diagnosed with T1DM at the Queen Silvia’s Children’s Hospital in Sweden were asked about their family’s cardiovascular history. Questions regarded maternal and paternal high blood pressure, stroke, and myocardial infarction before the age of 55 years, and hyperlipidemia were answered. A maximum risk score of eight was possible. All children are clinically observed prospectively for early functional and structural abnormalities such as protein uremia, blood pressure, and retinopathy. Results: A total of 275 children aged 0 to 18 years were diagnosed with T1DM at the Queen Silvia’s Children’s Hospital emergency clinic during this four year period. The participation rate was 99.7%. 26.4% of the children had no hereditary cardiovascular risk factors. 22.7 % had one risk factor and 18.8% had two risk factors. 14.8% had three risk factors. 9.7% had four risk factors and 7.5% had five risk factors or more. Conclusion: Among children with T1DM in Sweden there is a difference in hereditary cardiovascular risk factors. These results indicate that children with T1DM who also have increased hereditary cardiovascular risk factors should be monitored closely with early screening for functional and structural cardiovascular abnormalities. This is a very preliminary and ongoing study which will be complemented with the cardiovascular risk analysis among children without T1DM.Keywords: children, type I diabetes, emergency clinic, CVD risk
Procedia PDF Downloads 3662993 A Primer to the Learning Readiness Assessment to Raise the Sharing of E-Health Knowledge amongst Libyan Nurses
Authors: Mohamed Elhadi M. Sharif, Mona Masood
Abstract:
The usage of e-health facilities is seen to be the first priority by the Libyan government. As such, this paper focuses on how the key factors or elements of working size in terms of technological availability, structural environment, and other competence-related matters may affect nurses’ sharing of knowledge in e-health. Hence, this paper investigates learning readiness assessment to raise e-health for Libyan regional hospitals by using e-health services in nursing education.Keywords: Libyan nurses, e-learning readiness, e-health, nursing education
Procedia PDF Downloads 4942992 Quercetin Nanoparticles and Their Hypoglycemic Effect in a CD1 Mouse Model with Type 2 Diabetes Induced by Streptozotocin and a High-Fat and High-Sugar Diet
Authors: Adriana Garcia-Gurrola, Carlos Adrian Peña Natividad, Ana Laura Martinez Martinez, Alberto Abraham Escobar Puentes, Estefania Ochoa Ruiz, Aracely Serrano Medina, Abraham Wall Medrano, Simon Yobanny Reyes Lopez
Abstract:
Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by elevated blood glucose levels. Quercetin is a natural flavonoid with a hypoglycemic effect, but reported data are inconsistent due mainly to the structural instability and low solubility of quercetin. Nanoencapsulation is a distinct strategy to overcome the intrinsic limitations of quercetin. Therefore, this work aims to develop a quercetin nano-formulation based on biopolymeric starch nanoparticles to enhance the release and hypoglycemic effect of quercetin in T2DM induced mice model. Starch-quercetin nanoparticles were synthesized using high-intensity ultrasonication, and structural and colloidal properties were determined by FTIR and DLS. For in vivo studies, CD1 male mice (n=25) were divided into five groups (n=5). T2DM was induced using a high-fat and high-sugar diet for 32 weeks and streptozotocin injection. Group 1 consisted of healthy mice fed with a normal diet and water ad libitum; Group 2 were diabetic mice treated with saline solution; Group 3 were diabetic mice treated with glibenclamide; Group 4 were diabetic mice treated with empty nanoparticles; and Group 5 was diabetic mice treated with quercetin nanoparticles. Quercetin nanoparticles had a hydrodynamic size of 232 ± 88.45 nm, a PDI of 0.310 ± 0.04 and a zeta potential of -4 ± 0.85 mV. The encapsulation efficiency of nanoparticles was 58 ± 3.33 %. No significant differences (p = > 0.05) were observed in biochemical parameters (lipids, insulin, and peptide C). Groups 3 and 5 showed a similar hypoglycemic effect, but quercetin nanoparticles showed a longer-lasting effect. Histopathological studies reveal that T2DM mice groups showed degenerated and fatty liver tissue; however, a treated group with quercetin nanoparticles showed liver tissue like that of the healthy mice group. These results demonstrate that quercetin nano-formulations based on starch nanoparticles are effective alternatives with hypoglycemic effects.Keywords: quercetin, diabetes mellitus tipo 2, in vivo study, nanoparticles
Procedia PDF Downloads 392991 A Study on the Planning of Urban Road Traffic Signs Based on the Leisure Involvement of Self-Driving Tourists
Authors: Chun-Lin Zhang, Min Wan
Abstract:
With the upgrade development of the tourism industry from the simple sightseeing tour to the leisure and vacation, people's travel idea has undergone a fundamental change. More and more people begin to pursue liberal and personal tourism, so self-driving tourism has become the main form of current tourism activities. With the self-driving tourism representing the general trend, the importance of convenient tourism transportation and perfect road traffic signs have become more and more prominent. A clear urban road traffic signs can help visitors quickly identify the direction and distance to the tourism destination. The purpose of this article is analyzing the planning of urban road traffic signs which can bring positive impact on the participation in the recreation involved of self-driving tourists. The content of this article is divided into three parts. Based on the literature review and theoretical analysis, the first part constructs a structural variance model. The model is from three dimensions: the attention of the self-driving tourists to the urban traffic signs along the road, the perception of the self-driving tourists to the road traffic signs itself, the perceptions of the self-driving tourists to the tourism destination information on the traffic signs. Through this model, the paper aims to explore the influence of the urban road traffic signs to the leisure psychological involvement and leisure behavior involvement of the self-driving tourists. The second part aims to verify through the hypothesis model the questionnaire survey and come to preliminary conclusions. The preliminary conclusions are as follows: firstly, the color, shape, size, setting mode and occurrence frequency of urban road traffic sign have significant influence on the leisure psychological involvement and leisure behavior involvement of the self-driving tourists. Secondly, the influence on the leisure behavior involvement is obviously higher than the influence on the leisure psychological involvement. Thirdly, the information about the tourism destination marked on the urban road traffic signs has not obviously influence on the leisure psychological involvement, but it has distinct influence on the leisure behavior involvement of self-driving tourists. The third part puts forward that the planning of urban road traffic signs should focus on the angle of the impact of road traffic signs on people's psychology and behavior. On the basis of the above conclusions, the paper researches the color, shape, size, setting mode and information labeling of urban road traffic signs so that they can preferably satisfy the demand of the leisure involvement of self-driving tourists.Keywords: leisure involvement, self-driving tourism, structural equation, urban road traffic signs
Procedia PDF Downloads 2382990 Influence of Transverse Steel and Casting Direction on Shear Response and Ductility of Reinforced Ultra High Performance Concrete Beams
Authors: Timothy E. Frank, Peter J. Amaddio, Elizabeth D. Decko, Alexis M. Tri, Darcy A. Farrell, Cole M. Landes
Abstract:
Ultra high performance concrete (UHPC) is a class of cementitious composites with a relatively large percentage of cement generating high compressive strength. Additionally, UHPC contains disbursed fibers, which control crack width, carry the tensile load across narrow cracks, and limit spalling. These characteristics lend themselves to a wide range of structural applications when UHPC members are reinforced with longitudinal steel. Efficient use of fibers and longitudinal steel is required to keep lifecycle cost competitive in reinforced UHPC members; this requires full utilization of both the compressive and tensile qualities of the reinforced cementitious composite. The objective of this study is to investigate the shear response of steel-reinforced UHPC beams to guide design decisions that keep initial costs reasonable, limit serviceability crack widths, and ensure a ductile structural response and failure path. Five small-scale, reinforced UHPC beams were experimentally tested. Longitudinal steel, transverse steel, and casting direction were varied. Results indicate that an increase in transverse steel in short-spanned reinforced UHPC beams provided additional shear capacity and increased the peak load achieved. Beams with very large longitudinal steel reinforcement ratios did not achieve yield and fully utilized the tension properties of the longitudinal steel. Casting the UHPC beams from the end or from the middle affected load-carrying capacity and ductility, but image analysis determined the fiber orientation was not significantly different. It is believed the presence of transverse and longitudinal steel reinforcement minimized the effect of different UHPC casting directions. Results support recent recommendations in the literature suggesting a 1% fiber volume fraction is sufficient within UHPC to prevent spalling and provide compressive fracture toughness under extreme loading conditions.Keywords: fiber orientation, reinforced ultra high performance concrete beams, shear, transverse steel
Procedia PDF Downloads 1132989 The Evolution and Driving Forces Analysis of Urban Spatial Pattern in Tibet Based on Archetype Theory
Authors: Qiuyu Chen, Bin Long, Junxi Yang
Abstract:
Located in the southwest of the "roof of the world", Tibet is the origin center of Tibetan Culture.Lhasa, Shigatse and Gyantse are three famous historical and cultural cities in Tibet. They have always been prominent political, economic and cultural cities, and have accumulated the unique aesthetic orientation and value consciousness of Tibet's urban construction. "Archetype" usually refers to the theoretical origin of things, which is the collective unconscious precipitation. The archetype theory fundamentally explores the dialectical relationship between image expression, original form and behavior mode. By abstracting and describing typical phenomena or imagery of the archetype object can observe the essence of objects, explore ways in which object phenomena arise. Applying archetype theory to the field of urban planning helps to gain insight, evaluation, and restructuring of the complex and ever-changing internal structural units of cities. According to existing field investigations, it has been found that Dzong, Temple, Linka and traditional residential systems are important structural units that constitute the urban space of Lhasa, Shigatse and Gyantse. This article applies the thinking method of archetype theory, starting from the imagery expression of urban spatial pattern, using technologies such as ArcGIS, Depthmap, and Computer Vision to descriptively identify the spatial representation and plane relationship of three cities through remote sensing images and historical maps. Based on historical records, the spatial characteristics of cities in different historical periods are interpreted in a hierarchical manner, attempting to clarify the origin of the formation and evolution of urban pattern imagery from the perspectives of geopolitical environment, social structure, religious theory, etc, and expose the growth laws and key driving forces of cities. The research results can provide technical and material support for important behaviors such as urban restoration, spatial intervention, and promoting transformation in the region.Keywords: archetype theory, urban spatial imagery, original form and pattern, behavioral driving force, Tibet
Procedia PDF Downloads 682988 Structural and Electrical Characterization of Polypyrrole and Cobalt Aluminum Oxide Nanocomposites
Authors: Sutar Rani Ananda, M. V. Murugendrappa
Abstract:
To investigate electrical properties of conducting polypyrrole (PPy) and cobalt aluminum oxide (CAO) nanocomposites, impedance analyzer in frequency range of 100 Hz to 5 MHz is used. In this work, PPy/CAO nanocomposites were synthesized by chemical oxidation polymerization method in different weight percent of CAO in PPy. The dielectric properties and AC conductivity studies were carried out for different nanocomposites in temperature range of room temperature to 180 °C. With the increase in frequency, the dielectric constant for all the nanocomposites was observed to decrease. AC conductivity of PPy was improved by addition of CAO nanopowder.Keywords: polypyrrole, dielectric constant, dielectric loss, AC conductivity
Procedia PDF Downloads 2962987 Therapeutic Effects of Toll Like Receptor 9 Ligand CpG-ODN on Radiation Injury
Authors: Jianming Cai
Abstract:
Exposure to ionizing radiation causes severe damage to human body and an safe and effective radioprotector is urgently required for alleviating radiation damage. In 2008, flagellin, an agonist of TLR5, was found to exert radioprotective effects on radiation injury through activating NF-kB signaling pathway. From then, the radioprotective effects of TLR ligands has shed new lights on radiation protection. CpG-ODN is an unmethylated oligonucleotide which activates TLR9 signaling pathway. In this study, we demonstrated that CpG-ODN has therapeutic effects on radiation injuries induced by γ ray and 12C6+ heavy ion particles. Our data showed that CpG-ODN increased the survival rate of mice after whole body irradiation and increased the number of leukocytes as well as the bone marrow cells. CpG-ODN also alleviated radiation damage on intestinal crypt through regulating apoptosis signaling pathway including bcl2, bax, and caspase 3 etc. By using a radiation-induced pulmonary fibrosis model, we found that CpG-ODN could alleviate structural damage, within 20 week after whole–thorax 15Gy irradiation. In this model, Th1/Th2 imbalance induced by irradiation was also reversed by CpG-ODN. We also found that TGFβ-Smad signaling pathway was regulated by CpG-ODN, which accounts for the therapeutic effects of CpG-ODN in radiation-induced pulmonary injury. On another hand, for high LET radiation protection, we investigated protective effects of CpG-ODN against 12C6+ heavy ion irradiation and found that after CpG-ODN treatment, the apoptosis and cell cycle arrest induced by 12C6+ irradiation was reduced. CpG-ODN also reduced the expression of Bax and caspase 3, while increased the level of bcl2. Then we detected the effect of CpG-ODN on heavy ion induced immune dysfunction. Our data showed that CpG-ODN increased the survival rate of mice and also the leukocytes after 12C6+ irradiation. Besides, the structural damage of immune organ such as thymus and spleen was also alleviated by CpG-ODN treatment. In conclusion, we found that TLR9 ligand, CpG-ODN reduced radiation injuries in response to γ ray and 12C6+ heavy ion irradiation. On one hand, CpG-ODN inhibited the activation of apoptosis induced by radiation through regulating bcl2, bax and caspase 3. On another hand, through activating TLR9, CpG-ODN recruit MyD88-IRAK-TRAF6 complex, activating TAK1, IRF5 and NF-kB pathway, and thus alleviates radiation damage. This study provides novel insights into protection and therapy of radiation damages.Keywords: TLR9, CpG-ODN, radiation injury, high LET radiation
Procedia PDF Downloads 4812986 Exploring Penicillin Resistance in Gonococcal Penicillin Binding Protein-2: Molecular Docking and Ligand Interaction Analysis
Authors: Sinethemba Yakobi, Lindiwe Zuma, Ofentse Pooe
Abstract:
Gonococcal infections present a notable public health issue, and the major approach for treatment involves using β-lactam antibiotics that specifically target penicillin-binding protein 2 (PBP2) in Neisseria gonorrhoeae. This study examines the influence of flavonoids, namely rutin, on the structural changes of PBP2 in both penicillin-resistant (FA6140) and penicillin-susceptible (FA19) strains. The research clarifies the structural effects of particular mutations, such as inserting an aspartate residue at position 345 (Asp-345a) in the PBP2 protein. The strain FA6140, which is resistant to penicillin, shows specific changes that lead to a decrease in penicillin binding. These mutations, namely P551S and F504L, significantly impact the pace at which acylation occurs and the stability of the strain under high temperatures. Molecular docking analyses investigate the antibacterial activities of rutin and other phytocompounds, emphasizing its exceptional binding affinity and potential as an inhibitor of PBP2. Quercetin and protocatechuic acid have encouraging antibacterial effectiveness, with quercetin displaying characteristics similar to those of drugs. Molecular dynamics simulations offer a detailed comprehension of the interactions between flavonoids and PBP2, highlighting rutin's exceptional antioxidant effects and strong affinity for the substrate binding site. The study's wider ramifications pertain to the pressing requirement for antiviral treatments in the context of the ongoing COVID-19 epidemic. Flavonoids have a strong affinity for binding to PBP2, indicating their potential as inhibitors to impair cell wall formation in N. gonorrhoeae. Ultimately, this study provides extensive knowledge on the interactions between proteins and ligands, the dynamics of the structure, and the ability of flavonoids to combat penicillin-resistant N. gonorrhoeae bacteria. The verified simulation outcomes establish a basis for creating potent inhibitors and medicinal therapies to combat infectious illnesses.Keywords: phytochemicals, penicillin-binding protein 2, gonococcal infection, ligand-protein interaction, binding energy, neisseria gonorrhoeae FA19, neisseria gonorrhoeae FA6140, flavonoids
Procedia PDF Downloads 702985 Mechanical, Thermal and Biodegradable Properties of Bioplast-Spruce Green Wood Polymer Composites
Authors: A. Atli, K. Candelier, J. Alteyrac
Abstract:
Environmental and sustainability concerns push the industries to manufacture alternative materials having less environmental impact. The Wood Plastic Composites (WPCs) produced by blending the biopolymers and natural fillers permit not only to tailor the desired properties of materials but also are the solution to meet the environmental and sustainability requirements. This work presents the elaboration and characterization of the fully green WPCs prepared by blending a biopolymer, BIOPLAST® GS 2189 and spruce sawdust used as filler with different amounts. Since both components are bio-based, the resulting material is entirely environmentally friendly. The mechanical, thermal, structural properties of these WPCs were characterized by different analytical methods like tensile, flexural and impact tests, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and X-ray Diffraction (XRD). Their water absorption properties and resistance to the termite and fungal attacks were determined in relation with different wood filler content. The tensile and flexural moduli of WPCs increased with increasing amount of wood fillers into the biopolymer, but WPCs became more brittle compared to the neat polymer. Incorporation of spruce sawdust modified the thermal properties of polymer: The degradation, cold crystallization, and melting temperatures shifted to higher temperatures when spruce sawdust was added into polymer. The termite, fungal and water absorption resistance of WPCs decreased with increasing wood amount in WPCs, but remained in durability class 1 (durable) concerning fungal resistance and quoted 1 (attempted attack) in visual rating regarding to the termites resistance except that the WPC with the highest wood content (30 wt%) rated 2 (slight attack) indicating a long term durability. All the results showed the possibility to elaborate the easy injectable composite materials with adjustable properties by incorporation of BIOPLAST® GS 2189 and spruce sawdust. Therefore, lightweight WPCs allow both to recycle wood industry byproducts and to produce a full ecologic material.Keywords: biodegradability, color measurements, durability, mechanical properties, melt flow index, MFI, structural properties, thermal properties, wood-plastic composites, WPCs
Procedia PDF Downloads 1382984 Youth Conflict-Related Trauma through Generations: An Ethnography on the Relationship between Health and Society in Post-Conflict Northern Ireland
Authors: Chiara Magliacane
Abstract:
This project aims to analyse the relationship between the post-conflict Northern Irish environment and youth trauma in deprived areas. Using an anthropological perspective and methodology, the study investigates the possible contribution that a socio-cultural perspective can give to the current research on the field, with a special focus on the role of transgenerational trauma. The recognition of the role that socio-economic determinants have on health is usually a challenge for social researchers. In post-conflict Northern Ireland, the overall lack of research about connections between the social context and youth trauma opens the way to the present project. Anthropological studies on social implications of mental disorders have achieved impressive results in many societies; they show how conditions of sufferance and poverty are not intrinsically given, but are the products of historical processes and events. The continuum of violence and the politics of victimhood sustains a culture of silence and fear in deprived areas; this implies the need of investigating the structural and symbolic violence that lies behind the diffusion of mental suffering. The project refers to these concepts from Medical Anthropology and looks at connections between trauma and social, political and economic structures. Accordingly, the study considers factors such as poverty, unemployment, social inequality and gender and class perspectives. At the same time, the project problematises categories such as youth and trauma. 'Trauma' is currently debated within the social sciences since the 'invention' of the Post-Traumatic Stress Disorder (PTSD) in 1980. Current critics made to its clinical conception show how trauma has been mainly analysed as a memory of the past. On the contrary, medical anthropological research focuses on wider perspectives on society and its structures; this is a new and original approach to the study of youth trauma considering that, to author’s best knowledge, there is no research of this kind regarding Northern Ireland. Methods: Qualitative interviews, participant observation. Expected Impact: Local Northern Ireland organizations, i.e. specific charities that provide mental health support. Ongoing and present connections will ensure they will hear about this research.Keywords: health and social inequalities, Northern Ireland, structural violence, youth
Procedia PDF Downloads 2112983 'Talent Schools' in North Rhine-Westphalia: Aims, Opportunities and Challenges of a 6-Year Study
Authors: Laura Beckmann, Sabrina Rutter, Isabell Van Ackeren, Nina Bremm, Esther Dominique Klein, Kathrin Racherbäumer
Abstract:
Current evidence demonstrates that schools in socially disadvantaged contexts are often characterized by lower school performance and lower educational qualifications among the student body, compared to schools in more privileged socio-spacial contexts. At the same time, national and international findings on schools with structural and social challenges show that certain school and classroom development strategies, as well as human and material resources, can significantly contribute to improved school performance of students. The aim of this contribution is to present a 6-year mixed-methods study (Talent Schools in North Rhine-Westphalia), which is designed as a school experiment addressing the well-acknowledged inequality of educational opportunities in the German school system. Started in the year 2019 and funded by the Ministry for School and Education of the State of North Rhine-Westphalia, the study targets schools in socio-spatially disadvantaged areas, which have increasingly been the focus of both public debate and educational policy. In the German-speaking countries, however, there is little knowledge available on the structure and design of complex strategies for school and classroom development that describe successful approaches to the further development of schools in disadvantaged locations in a process-oriented manner. Given these shortcomings, the present study aims at a longitudinal analysis of school and classroom development processes within 60 ‘talent schools’, whereby concrete micro-progressions within individual schools are documented and aggregated to general processes that may either impede or promote development. The main research question is the following: With the help of which strategies and (teaching) concepts, with which use of resources and with which forms of cooperation can schools contribute to the development of student achievement, including educational qualifications and transition rates in education and employment? Thus, the ‘talent schools’ may serve as examples of how social background can successfully be decoupled from educational success at schools with special structural and procedural challenges. The major chances and challenges of this project will be discussed.Keywords: educational inequality, school development, student achievement, mixed-methods study
Procedia PDF Downloads 1292982 Impact of Elevated Temperature on Spot Blotch Development in Wheat and Induction of Resistance by Plant Growth Promoting Rhizobacteria
Authors: Jayanwita Sarkar, Usha Chakraborty, Bishwanath Chakraborty
Abstract:
Plants are constantly interacting with various abiotic and biotic stresses. In changing climate scenario plants are continuously modifying physiological processes to adapt to changing environmental conditions which profoundly affect plant-pathogen interactions. Spot blotch in wheat is a fast-rising disease in the warmer plains of South Asia where the rise in minimum average temperature over most of the year already affecting wheat production. Hence, the study was undertaken to explore the role of elevated temperature in spot blotch disease development and modulation of antioxidative responses by plant growth promoting rhizobacteria (PGPR) for biocontrol of spot blotch at high temperature. Elevated temperature significantly increases the susceptibility of wheat plants to spot blotch causing pathogen Bipolaris sorokiniana. Two PGPR Bacillus safensis (W10) and Ochrobactrum pseudogrignonense (IP8) isolated from wheat (Triticum aestivum L.) and blady grass (Imperata cylindrical L.) rhizophere respectively, showing in vitro antagonistic activity against Bipolaris sorokiniana were tested for growth promotion and induction of resistance against spot blotch in wheat. GC-MS analysis showed that Bacillus safensis (W10) and Ochrobactrum pseudogrignonense (IP8) produced antifungal and antimicrobial compounds in culture. Seed priming with these two bacteria significantly increase growth, modulate antioxidative signaling and induce resistance and eventually reduce disease incidence in wheat plants at optimum as well as elevated temperature which was further confirmed by indirect immunofluorescence assay using polyclonal antibody raised against Bipolaris sorokiniana. Application of the PGPR led to enhancement in activities of plant defense enzymes- phenylalanine ammonia lyase, peroxidase, chitinase and β-1,3 glucanase in infected leaves. Immunolocalization of chitinase and β-1,3 glucanase in PGPR primed and pathogen inoculated leaf tissue was further confirmed by transmission electron microscopy using PAb of chitinase, β-1,3 glucanase and gold labelled conjugates. Activity of ascorbate-glutathione redox cycle related enzymes such as ascorbate peroxidase, superoxide dismutase and glutathione reductase along with antioxidants such as carotenoids, glutathione and ascorbate and osmolytes like proline and glycine betain accumulation were also increased during disease development in PGPR primed plant in comparison to unprimed plants at high temperature. Real-time PCR analysis revealed enhanced expression of defense genes- chalcone synthase and phenyl alanineammonia lyase. Over expression of heat shock proteins like HSP 70, small HSP 26.3 and heat shock factor HsfA3 in PGPR primed plants effectively protect plants against spot blotch infection at elevated temperature as compared with control plants. Our results revealed dynamic biochemical cross talk between elevated temperature and spot blotch disease development and furthermore highlight PGPR mediated array of antioxidative and molecular alterations responsible for induction of resistance against spot blotch disease at elevated temperature which seems to be associated with up-regulation of defense genes, heat shock proteins and heat shock factors, less ROS production, membrane damage, increased expression of redox enzymes and accumulation of osmolytes and antioxidants.Keywords: antioxidative enzymes, defense enzymes, elevated temperature, heat shock proteins, PGPR, Real-Time PCR, spot blotch, wheat
Procedia PDF Downloads 1722981 New Method for the Synthesis of Different Pyrroloquinazolinoquinolin Alkaloids
Authors: Abdulkareem M. Hamid, Yaseen Elhebshi, Adam Daïch
Abstract:
Luotonins and its derivatives (Isoluotonins) are alkaloids from the aerial parts of Peganum nigellastrum Bunge that display three major skeleton types. Luotonins A, B, and E are pyrroloquinazolinoquinoline alkaloids. A few methods were known for the sysnthesis of Isoluotonin. All luotonins have shown promising cytotoxicities towards selected human cancer cell lines, especially against leukemia P-388 cells. Luotonin A is the most active one, with its activity stemming from topoisomerase I-dependent DNA-cleavage. Such intriguing biological activities and unique structures have led not only to the development of synthetic methods for the efficient synthesis of these compounds, but also to interest in structural modifications for improving the biological properties. Recent progress in the study of luotonins is covered.Keywords: luotonin A, isoluotonin, pyrroloquiolines, alkaloids
Procedia PDF Downloads 4172980 The Impacts of Technology on Operations Costs: The Mediating Role of Operation Flexibility
Authors: Fazli Idris, Jihad Mohammad
Abstract:
The study aims to determine the impact of technology and service operations flexibility, which is divided into external flexibility and internal robustness, on operations costs. A mediation model is proposed that links technology to operations costs via operation flexibility. Drawing on a sample of 475 of operations managers of various service sectors in Malaysia and South Africa, Structural Equation Modeling (SEM) was employed to test the relationship using Smart-PLS procedures. It was found that a significant relationship was established between technologies to operations costs via both operations flexibility dimensions. Theoretical and managerial implications are offered to explain the results.Keywords: Operations flexibility, technology, costs, mediation
Procedia PDF Downloads 6132979 Research on the Spatial Organization and Collaborative Innovation of Innovation Corridors from the Perspective of Ecological Niche: A Case Study of Seven Municipal Districts in Jiangsu Province, China
Authors: Weikang Peng
Abstract:
The innovation corridor is an important spatial carrier to promote regional collaborative innovation, and its development process is the spatial re-organization process of regional innovation resources. This paper takes the Nanjing-Zhenjiang G312 Industrial Innovation Corridor, which involves seven municipal districts in Jiangsu Province, as empirical evidence. Based on multi-source spatial big data in 2010, 2016, and 2022, this paper applies triangulated irregular network (TIN), head/tail breaks, regional innovation ecosystem (RIE) niche fitness evaluation model, and social network analysis to carry out empirical research on the spatial organization and functional structural evolution characteristics of innovation corridors and their correlation with the structural evolution of collaborative innovation network. The results show, first, the development of innovation patches in the corridor has fractal characteristics in time and space and tends to be multi-center and cluster layout along the Nanjing Bypass Highway and National Highway G312. Second, there are large differences in the spatial distribution pattern of niche fitness in the corridor in various dimensions, and the niche fitness of innovation patches along the highway has increased significantly. Third, the scale of the collaborative innovation network in the corridor is expanding fast. The core of the network is shifting from the main urban area to the periphery of the city along the highway, with small-world and hierarchical levels, and the core-edge network structure is highlighted. With the development of the Innovation Corridor, the main collaborative mode in the corridor is changing from collaboration within innovation patches to collaboration between innovation patches, and innovation patches with high ecological suitability tend to be the active areas of collaborative innovation. Overall, polycentric spatial layout, graded functional structure, diversified innovation clusters, and differentiated environmental support play an important role in effectively constructing collaborative innovation linkages and the stable expansion of the scale of collaborative innovation within the innovation corridor.Keywords: innovation corridor development, spatial structure, niche fitness evaluation model, head/tail breaks, innovation network
Procedia PDF Downloads 222978 Enhanced Dielectric and Ferroelectric Properties in Holmium Substituted Stoichiometric and Non-Stoichiometric SBT Ferroelectric Ceramics
Authors: Sugandha Gupta, Arun Kumar Jha
Abstract:
A large number of ferroelectric materials have been intensely investigated for applications in non-volatile ferroelectric random access memories (FeRAMs), piezoelectric transducers, actuators, pyroelectric sensors, high dielectric constant capacitors, etc. Bismuth layered ferroelectric materials such as Strontium Bismuth Tantalate (SBT) has attracted a lot of attention due to low leakage current, high remnant polarization and high fatigue endurance up to 1012 switching cycles. However, pure SBT suffers from various major limitations such as high dielectric loss, low remnant polarization values, high processing temperature, bismuth volatilization, etc. Significant efforts have been made to improve the dielectric and ferroelectric properties of this compound. Firstly, it has been reported that electrical properties vary with the Sr/ Bi content ratio in the SrBi2Ta2O9 compsition i.e. non-stoichiometric compositions with Sr-deficient / Bi excess content have higher remnant polarization values than stoichiometic SBT compositions. With the objective to improve structural, dielectric, ferroelectric and piezoelectric properties of SBT compound, rare earth holmium (Ho3+) was chosen as a donor cation for substitution onto the Bi2O2 layer. Moreover, hardly any report on holmium substitution in stoichiometric SrBi2Ta2O9 and non-stoichiometric Sr0.8Bi2.2Ta2O9 compositions were available in the literature. The holmium substituted SrBi2-xHoxTa2O9 (x= 0.00-2.0) and Sr0.8Bi2.2Ta2O9 (x=0.0 and 0.01) compositions were synthesized by the solid state reaction method. The synthesized specimens were characterized for their structural and electrical properties. X-ray diffractograms reveal single phase layered perovskite structure formation for holmium content in stoichiometric SBT samples up to x ≤ 0.1. The granular morphology of the samples was investigated using scanning electron microscope (Hitachi, S-3700 N). The dielectric measurements were carried out using a precision LCR meter (Agilent 4284A) operating at oscillation amplitude of 1V. The variation of dielectric constant with temperature shows that the Curie temperature (Tc) decreases on increasing the holmium content. The specimen with x=2.0 i.e. the bismuth free specimen, has very low dielectric constant and does not show any appreciable variation with temperature. The dielectric loss reduces significantly with holmium substitution. The polarization–electric field (P–E) hysteresis loops were recorded using a P–E loop tracer based on Sawyer–Tower circuit. It is observed that the ferroelectric property improve with Ho substitution. Holmium substituted specimen exhibits enhanced value of remnant polarization (Pr= 9.22 μC/cm²) as compared to holmium free specimen (Pr= 2.55 μC/cm²). Piezoelectric co-efficient (d33 values) was measured using a piezo meter system (Piezo Test PM300). It is observed that holmium substitution enhances piezoelectric coefficient. Further, the optimized holmium content (x=0.01) in stoichiometric SrBi2-xHoxTa2O9 composition has been substituted in non-stoichiometric Sr0.8Bi2.2Ta2O9 composition to obtain further enhanced structural and electrical characteristics. It is expected that a new class of ferroelectric materials i.e. Rare Earth Layered Structured Ferroelectrics (RLSF) derived from Bismuth Layered Structured Ferroelectrics (BLSF) will generate which can be used to replace static (SRAM) and dynamic (DRAM) random access memories with ferroelectric random access memories (FeRAMS).Keywords: dielectrics, ferroelectrics, piezoelectrics, strontium bismuth tantalate
Procedia PDF Downloads 2102977 Synthesis and Characterisation of Bi-Substituted Magnetite Nanoparticles by Mechanochemical Processing (MCP)
Authors: Morteza Mohri Esfahani, Amir S. H. Rozatian, Morteza Mozaffari
Abstract:
Single phase magnetite nanoparticles and Bi-substituted ones were prepared by mechanochemical processing (MCP). The effects of Bi-substitution on the structural and magnetic properties of the nanoparticles were studied by X-ray Diffraction (XRD) and magnetometry techniques, respectively. The XRD results showed that all samples have spinel phase and by increasing Bi content, the main diffraction peaks were shifted to higher angles, which means the lattice parameter decreases from 0.843 to 0.838 nm and then increases to 0.841 nm. Also, the results revealed that increasing Bi content lead to a decrease in saturation magnetization (Ms) from 74.9 to 48.8 emu/g and an increase in coercivity (Hc) from 96.8 to 137.1 Oe.Keywords: bi-substituted magnetite nanoparticles, mechanochemical processing, X-ray diffraction, magnetism
Procedia PDF Downloads 5372976 Numerical Study for Structural Design of Composite Rotor with Crack Initiation
Authors: A. Chellil, A. Nour, S. Lecheb, H.Mechakra, A. Bouderba, H. Kebir
Abstract:
In this paper, the numerical study for the instability of a composite rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor is developed. The use of the composite material for the rotor, offers a good Stability. Numerical calculations on the model develop of three dimensions prove that the damage effect has a negative effect on the stability of the rotor. The study of the composite rotor in transient system allowed to determine the vibratory responses due to various excitations.Keywords: rotor, composite, damage, finite element, numerical
Procedia PDF Downloads 4892975 Evaluation of Commercial Back-analysis Package in Condition Assessment of Railways
Authors: Shadi Fathi, Moura Mehravar, Mujib Rahman
Abstract:
Over the years,increased demands on railways, the emergence of high-speed trains and heavy axle loads, ageing, and deterioration of the existing tracks, is imposing costly maintenance actions on the railway sector. The need for developing a fast andcost-efficient non-destructive assessment method for the structural evaluation of railway tracksis therefore critically important. The layer modulus is the main parameter used in the structural design and evaluation of the railway track substructure (foundation). Among many recently developed NDTs, Falling Weight Deflectometer (FWD) test, widely used in pavement evaluation, has shown promising results for railway track substructure monitoring. The surface deflection data collected by FWD are used to estimate the modulus of substructure layers through the back-analysis technique. Although there are different commerciallyavailableback-analysis programs are used for pavement applications, there are onlya limited number of research-based techniques have been so far developed for railway track evaluation. In this paper, the suitability, accuracy, and reliability of the BAKFAAsoftware are investigated. The main rationale for selecting BAKFAA as it has a relatively straightforward user interfacethat is freely available and widely used in highway and airport pavement evaluation. As part of the study, a finite element (FE) model of a railway track section near Leominsterstation, Herefordshire, UK subjected to the FWD test, was developed and validated against available field data. Then, a virtual experimental database (including 218 sets of FWD testing data) was generated using theFE model and employed as the measured database for the BAKFAA software. This database was generated considering various layers’ moduli for each layer of track substructure over a predefined range. The BAKFAA predictions were compared against the cone penetration test (CPT) data (available from literature; conducted near to Leominster station same section as the FWD was performed). The results reveal that BAKFAA overestimatesthe layers’ moduli of each substructure layer. To adjust the BAKFA with the CPT data, this study introduces a correlation model to make the BAKFAA applicable in railway applications.Keywords: back-analysis, bakfaa, railway track substructure, falling weight deflectometer (FWD), cone penetration test (CPT)
Procedia PDF Downloads 1302974 Multifield Problems in 3D Structural Analysis of Advanced Composite Plates and Shells
Authors: Salvatore Brischetto, Domenico Cesare
Abstract:
Major improvements in future aircraft and spacecraft could be those dependent on an increasing use of conventional and unconventional multilayered structures embedding composite materials, functionally graded materials, piezoelectric or piezomagnetic materials, and soft foam or honeycomb cores. Layers made of such materials can be combined in different ways to obtain structures that are able to fulfill several structural requirements. The next generation of aircraft and spacecraft will be manufactured as multilayered structures under the action of a combination of two or more physical fields. In multifield problems for multilayered structures, several physical fields (thermal, hygroscopic, electric and magnetic ones) interact each other with different levels of influence and importance. An exact 3D shell model is here proposed for these types of analyses. This model is based on a coupled system including 3D equilibrium equations, 3D Fourier heat conduction equation, 3D Fick diffusion equation and electric and magnetic divergence equations. The set of partial differential equations of second order in z is written using a mixed curvilinear orthogonal reference system valid for spherical and cylindrical shell panels, cylinders and plates. The order of partial differential equations is reduced to the first one thanks to the redoubling of the number of variables. The solution in the thickness z direction is obtained by means of the exponential matrix method and the correct imposition of interlaminar continuity conditions in terms of displacements, transverse stresses, electric and magnetic potentials, temperature, moisture content and transverse normal multifield fluxes. The investigated structures have simply supported sides in order to obtain a closed form solution in the in-plane directions. Moreover, a layerwise approach is proposed which allows a 3D correct description of multilayered anisotropic structures subjected to field loads. Several results will be proposed in tabular and graphical formto evaluate displacements, stresses and strains when mechanical loads, temperature gradients, moisture content gradients, electric potentials and magnetic potentials are applied at the external surfaces of the structures in steady-state conditions. In the case of inclusions of piezoelectric and piezomagnetic layers in the multilayered structures, so called smart structures are obtained. In this case, a free vibration analysis in open and closed circuit configurations and a static analysis for sensor and actuator applications will be proposed. The proposed results will be useful to better understand the physical and structural behaviour of multilayered advanced composite structures in the case of multifield interactions. Moreover, these analytical results could be used as reference solutions for those scientists interested in the development of 3D and 2D numerical shell/plate models based, for example, on the finite element approach or on the differential quadrature methodology. The correct impositions of boundary geometrical and load conditions, interlaminar continuity conditions and the zigzag behaviour description due to transverse anisotropy will be also discussed and verified.Keywords: composite structures, 3D shell model, stress analysis, multifield loads, exponential matrix method, layer wise approach
Procedia PDF Downloads 68