Search results for: fraud prevention and detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5000

Search results for: fraud prevention and detection

3620 The Effects of the GAA15 (Gaelic Athletic Association 15) on Lower Extremity Injury Incidence and Neuromuscular Functional Outcomes in Collegiate Gaelic Games: A 2 Year Prospective Study

Authors: Brenagh E. Schlingermann, Clare Lodge, Paula Rankin

Abstract:

Background: Gaelic football, hurling and camogie are highly popular field games in Ireland. Research into the epidemiology of injury in Gaelic games revealed that approximately three quarters of the injuries in the games occur in the lower extremity. These injuries can have player, team and institutional impacts due to multiple factors including financial burden and time loss from competition. Research has shown it is possible to record injury data consistently with the GAA through a closed online recording system known as the GAA injury surveillance database. It has been established that determining the incidence of injury is the first step of injury prevention. The goals of this study were to create a dynamic GAA15 injury prevention programme which addressed five key components/goals; avoid positions associated with a high risk of injury, enhance flexibility, enhance strength, optimize plyometrics and address sports specific agilities. These key components are internationally recognized through the Prevent Injury, Enhance performance (PEP) programme which has proven reductions in ACL injuries by 74%. In national Gaelic games the programme is known as the GAA15 which has been devised from the principles of the PEP. No such injury prevention strategies have been published on this cohort in Gaelic games to date. This study will investigate the effects of the GAA15 on injury incidence and neuromuscular function in Gaelic games. Methods: A total of 154 players (mean age 20.32 ± 2.84) were recruited from the GAA teams within the Institute of Technology Carlow (ITC). Preseason and post season testing involved two objective screening tests; Y balance test and Three Hop Test. Practical workshops, with ongoing liaison, were provided to the coaches on the implementation of the GAA15. The programme was performed before every training session and game and the existing GAA injury surveillance database was accessed to monitor player’s injuries by the college sports rehabilitation athletic therapist. Retrospective analysis of the ITC clinic records were performed in conjunction with the database analysis as a means of tracking injuries that may have been missed. The effects of the programme were analysed by comparing the intervention groups Y balance and three hop test scores to an age/gender matched control group. Results: Year 1 results revealed significant increases in neuromuscular function as a result of the GAA15. Y Balance test scores for the intervention group increased in both the posterolateral (p=.005 and p=.001) and posteromedial reach directions (p= .001 and p=.001). A decrease in performance was determined for the three hop test (p=.039). Overall twenty-five injuries were reported during the season resulting in an injury rate of 3.00 injuries/1000hrs of participation; 1.25 injuries/1000hrs training and 4.25 injuries/1000hrs match play. Non-contact injuries accounted for 40% of the injuries sustained. Year 2 results are pending and expected April 2016. Conclusion: It is envisaged that implementation of the GAA15 will continue to reduce the risk of injury and improve neuromuscular function in collegiate Gaelic games athletes.

Keywords: GAA15, Gaelic games, injury prevention, neuromuscular training

Procedia PDF Downloads 339
3619 Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images

Authors: A. Biran, P. Sobhe Bidari, A. Almazroe, V. Lakshminarayanan, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively.

Keywords: diabetic retinopathy, fundus images, STARE, Gabor filter, support vector machine

Procedia PDF Downloads 294
3618 Sex Education for Children with Special Needs

Authors: Nefrijanti Sutikno

Abstract:

This paper highlights puberty and sexuality on children with special needs (SNC) in which they are very vulnerable to child sexual abuse (CSA). By providing sufficient knowledge and skill to teachers, they can synergise with parents to better anticipate, prevent and reduce the possibility of CSA and when it has already happened, together they are able to provide proper support and assistance to the victims of CSA.

Keywords: Special Needs Children (SNC), puberty, sexuality, child sexual abuse (CSA), prevention of CSA, anticipation of CSA

Procedia PDF Downloads 288
3617 A Smartphone-Based Real-Time Activity Recognition and Fall Detection System

Authors: Manutchanok Jongprasithporn, Rawiphorn Srivilai, Paweena Pongsopha

Abstract:

Fall is the most serious accident leading to increased unintentional injuries and mortality. Falls are not only the cause of suffering and functional impairments to the individuals, but also the cause of increasing medical cost and days away from work. The early detection of falls could be an advantage to reduce fall-related injuries and consequences of falls. Smartphones, embedded accelerometer, have become a common device in everyday life due to decreasing technology cost. This paper explores a physical activity monitoring and fall detection application in smartphones which is a non-invasive biomedical device to determine physical activities and fall event. The combination of application and sensors could perform as a biomedical sensor to monitor physical activities and recognize a fall. We have chosen Android-based smartphone in this study since android operating system is an open-source and no cost. Moreover, android phone users become a majority of Thai’s smartphone users. We developed Thai 3 Axis (TH3AX) as a physical activities and fall detection application which included command, manual, results in Thai language. The smartphone was attached to right hip of 10 young, healthy adult subjects (5 males, 5 females; aged< 35y) to collect accelerometer and gyroscope data during performing physical activities (e.g., walking, running, sitting, and lying down) and falling to determine threshold for each activity. Dependent variables are including accelerometer data (acceleration, peak acceleration, average resultant acceleration, and time between peak acceleration). A repeated measures ANOVA was performed to test whether there are any differences between DVs’ means. Statistical analyses were considered significant at p<0.05. After finding threshold, the results were used as training data for a predictive model of activity recognition. In the future, accuracies of activity recognition will be performed to assess the overall performance of the classifier. Moreover, to help improve the quality of life, our system will be implemented with patients and elderly people who need intensive care in hospitals and nursing homes in Thailand.

Keywords: activity recognition, accelerometer, fall, gyroscope, smartphone

Procedia PDF Downloads 692
3616 The Combination Of Aortic Dissection Detection Risk Score (ADD-RS) With D-dimer As A Diagnostic Tool To Exclude The Diagnosis Of Acute Aortic Syndrome (AAS)

Authors: Mohamed Hamada Abdelkader Fayed

Abstract:

Background: To evaluate the diagnostic accuracy of (ADD-RS) with D-dimer as a screening test to exclude AAS. Methods: We conducted research for the studies examining the diagnostic accuracy of (ADD- RS)+ D-dimer to exclude the diagnosis of AAS, We searched MEDLINE, Embase, and Cochrane of Trials up to 31 December 2020. Results: We identified 3 studies using (ADD-RS) with D-dimer as a diagnostic tool for AAS, involving 3261 patients were AAS was diagnosed in 559(17.14%) patients. Overall results showed that the pooled sensitivities were 97.6 (95% CI 0.95.6, 99.6) at (ADD-RS)≤1(low risk group) with D-dimer and 97.4(95% CI 0.95.4,, 99.4) at (ADD-RS)>1(High risk group) with D-dimer., the failure rate was 0.48% at low risk group and 4.3% at high risk group respectively. Conclusions: (ADD-RS) with D-dimer was a useful screening test with high sensitivity to exclude Acute Aortic Syndrome.

Keywords: aortic dissection detection risk score, D-dimer, acute aortic syndrome, diagnostic accuracy

Procedia PDF Downloads 215
3615 Automated Detection of Women Dehumanization in English Text

Authors: Maha Wiss, Wael Khreich

Abstract:

Animals, objects, foods, plants, and other non-human terms are commonly used as a source of metaphors to describe females in formal and slang language. Comparing women to non-human items not only reflects cultural views that might conceptualize women as subordinates or in a lower position than humans, yet it conveys this degradation to the listeners. Moreover, the dehumanizing representation of females in the language normalizes the derogation and even encourages sexism and aggressiveness against women. Although dehumanization has been a popular research topic for decades, according to our knowledge, no studies have linked women's dehumanizing language to the machine learning field. Therefore, we introduce our research work as one of the first attempts to create a tool for the automated detection of the dehumanizing depiction of females in English texts. We also present the first labeled dataset on the charted topic, which is used for training supervised machine learning algorithms to build an accurate classification model. The importance of this work is that it accomplishes the first step toward mitigating dehumanizing language against females.

Keywords: gender bias, machine learning, NLP, women dehumanization

Procedia PDF Downloads 80
3614 Implementation of Industrial Ecology Principles in the Production and Recycling of Solar Cells and Solar Modules

Authors: Julius Denafas, Irina Kliopova, Gintaras Denafas

Abstract:

Three opportunities for implementation of industrial ecology principles in the real industrial production of c-Si solar cells and modules are presented in this study. It includes: material flow dematerialisation, product modification and industrial symbiosis. Firstly, it is shown how the collaboration between R&D institutes and industry helps to achieve significant reduction of material consumption by a) refuse from phosphor silicate glass cleaning process and b) shortening of silicon nitride coating production step. Secondly, it was shown how the modification of solar module design can reduce the CO2 footprint for this product and enhance waste prevention. It was achieved by implementing a frameless glass/glass solar module design instead of glass/backsheet with aluminium frame. Such a design change is possible without purchasing new equipment and without loss of main product properties like efficiency, rigidity and longevity. Thirdly, industrial symbiosis in the solar cell production is possible in such case when manufacturing waste (silicon wafer and solar cell breakage) also used solar modules are collected, sorted and supplied as raw-materials to other companies involved in the production chain of c-Si solar cells. The obtained results showed that solar cells produced from recycled silicon can have a comparable electrical parameters like produced from standard, commercial silicon wafers. The above mentioned work was performed at solar cell producer Soli Tek R&D in the frame of H2020 projects CABRISS and Eco-Solar.

Keywords: manufacturing, process optimisation, recycling, solar cells, solar modules, waste prevention

Procedia PDF Downloads 142
3613 Preliminary Study of Gold Nanostars/Enhanced Filter for Keratitis Microorganism Raman Fingerprint Analysis

Authors: Chi-Chang Lin, Jian-Rong Wu, Jiun-Yan Chiu

Abstract:

Myopia, ubiquitous symptom that is necessary to correct the eyesight by optical lens struggles many people for their daily life. Recent years, younger people raise interesting on using contact lens because of its convenience and aesthetics. In clinical, the risk of eye infections increases owing to the behavior of incorrectly using contact lens unsupervised cleaning which raising the infection risk of cornea, named ocular keratitis. In order to overcome the identification needs, new detection or analysis method with rapid and more accurate identification for clinical microorganism is importantly needed. In our study, we take advantage of Raman spectroscopy having unique fingerprint for different functional groups as the distinct and fast examination tool on microorganism. As we know, Raman scatting signals are normally too weak for the detection, especially in biological field. Here, we applied special SERS enhancement substrates to generate higher Raman signals. SERS filter we designed in this article that prepared by deposition of silver nanoparticles directly onto cellulose filter surface and suspension nanoparticles - gold nanostars (AuNSs) also be introduced together to achieve better enhancement for lower concentration analyte (i.e., various bacteria). Research targets also focusing on studying the shape effect of synthetic AuNSs, needle-like surface morphology may possible creates more hot-spot for getting higher SERS enhance ability. We utilized new designed SERS technology to distinguish the bacteria from ocular keratitis under strain level, and specific Raman and SERS fingerprint were grouped under pattern recognition process. We reported a new method combined different SERS substrates can be applied for clinical microorganism detection under strain level with simple, rapid preparation and low cost. Our presenting SERS technology not only shows the great potential for clinical bacteria detection but also can be used for environmental pollution and food safety analysis.

Keywords: bacteria, gold nanostars, Raman spectroscopy surface-enhanced Raman scattering filter

Procedia PDF Downloads 168
3612 Flashover Detection Algorithm Based on Mother Function

Authors: John A. Morales, Guillermo Guidi, B. M. Keune

Abstract:

Electric Power supply is a crucial topic for economic and social development. Power outages statistics show that discharges atmospherics are imperative phenomena to produce those outages. In this context, it is necessary to correctly detect when overhead line insulators are faulted. In this paper, an algorithm to detect if a lightning stroke generates or not permanent fault on insulator strings is proposed. On top of that, lightning stroke simulations developed by using the Alternative Transients Program, are used. Based on these insights, a novel approach is designed that depends on mother functions analysis corresponding to the given variance-covariance matrix. Signals registered at the insulator string are projected on corresponding axes by the means of Principal Component Analysis. By exploiting these new axes, it is possible to determine a flashover characteristic zone useful to a good insulation design. The proposed methodology for flashover detection extends the existing approaches for the analysis and study of lightning performance on transmission lines.

Keywords: mother function, outages, lightning, sensitivity analysis

Procedia PDF Downloads 587
3611 Knowledge, Attitudes, and Practices regarding Anthrax among Community Members, Health and Veterinary Workers in Maragua, Kenya

Authors: Isaiah Chacha, Samuel Arimi, Andrew Thaiya

Abstract:

Background: This study was conducted to assess knowledge, attitudes and practices regarding anthrax in Maragua, Kenya to provide baseline information to design interventions. Methods: A cross sectional survey was conducted among head of households, health and veterinary workers in Maragua Sub-county in August and September 2014. Administered questionnaires were used to collect data from household members and a key informant interview held with health and veterinary workers. Multi stage sampling was used to obtain participants’ knowledge, attitudes and practices. Questions were scored and descriptively analyzed using Excel spreadsheet then exported to GenStat Discovery Edition 4. Results: A total of 293 community members were recruited in this study. The overall level of knowledge was 77.9% of all community members regarding cause, transmission, symptoms and prevention of the disease in both humans and animals. Majority of the participants (96.3%) had heard about anthrax. A total of 99 (33.8%) correspondents had seen a person with anthrax and 75.1% think that anthrax is a very serious disease in the area. Of the interviewed correspondents, 14.3% of them have had their animals (mostly cattle) suffer from anthrax while 15.7% had either suffered from anthrax or have had their family member who suffered from anthrax. Conclusion: The study findings indicate above average knowledge on cause, symptoms, transmission and prevention of anthrax among community members in humans and animals. Practices in this study were still risk among community members. Veterinary and Medical health planners should design anthrax awareness interventions as a team targeting to reach these communities and the public through barazas, radio, CHW and other communication channel on a regular basis.

Keywords: anthrax, attitudes, Kenya, knowledge, Maragua, practices

Procedia PDF Downloads 317
3610 Heterogeneity, Asymmetry and Extreme Risk Perception; Dynamic Evolution Detection From Implied Risk Neutral Density

Authors: Abderrahmen Aloulou, Younes Boujelbene

Abstract:

The current paper displays a new method of extracting information content from options prices by eliminating biases caused by daily variation of contract maturity. Based on Kernel regression tool, this non-parametric technique serves to obtain a spectrum of interpolated options with constant maturity horizons from negotiated optional contracts on the S&P TSX 60 index. This method makes it plausible to compare daily risk neutral densities from which extracting time continuous indicators allows the detection traders attitudes’ evolution, such as, belief homogeneity, asymmetry and extreme Risk Perception. Our findings indicate that the applied method contribute to develop effective trading strategies and to adjust monetary policies through controlling trader’s reactions to economic and monetary news.

Keywords: risk neutral densities, kernel, constant maturity horizons, homogeneity, asymmetry and extreme risk perception

Procedia PDF Downloads 486
3609 A Fast Chemiresistive H₂ Gas Sensor Based on Sputter Grown Nanocrystalline P-TiO₂ Thin Film Decorated with Catalytic Pd-Pt Layer on P-Si Substrate

Authors: Jyoti Jaiswal, Satyendra Mourya, Gaurav Malik, Ramesh Chandra

Abstract:

In the present work, we have fabricated and studied a resistive H₂ gas sensor based on Pd-Pt decorated room temperature sputter grown nanocrystalline porous titanium dioxide (p-TiO₂) thin film on porous silicon (p-Si) substrate for fast H₂ detection. The gas sensing performance of Pd-Pt/p-TiO₂/p-Si sensing electrode towards H₂ gas under low (10-500 ppm) detection limit and operating temperature regime (25-200 °C) was discussed. The sensor is highly sensitive even at room temperature, with response (Ra/Rg) reaching ~102 for 500 ppm H₂ in dry air and its capability of sensing H₂ concentrations as low as ~10 ppm was demonstrated. At elevated temperature of 200 ℃, the response reached more than ~103 for 500 ppm H₂. Overall the fabricated resistive gas sensor exhibited high selectivity, good sensing response, and fast response/recovery time with good stability towards H₂.

Keywords: sputtering, porous silicon (p-Si), TiO₂ thin film, hydrogen gas sensor

Procedia PDF Downloads 258
3608 Low-Cost Parking Lot Mapping and Localization for Home Zone Parking Pilot

Authors: Hongbo Zhang, Xinlu Tang, Jiangwei Li, Chi Yan

Abstract:

Home zone parking pilot (HPP) is a fast-growing segment in low-speed autonomous driving applications. It requires the car automatically cruise around a parking lot and park itself in a range of up to 100 meters inside a recurrent home/office parking lot, which requires precise parking lot mapping and localization solution. Although Lidar is ideal for SLAM, the car OEMs favor a low-cost fish-eye camera based visual SLAM approach. Recent approaches have employed segmentation models to extract semantic features and improve mapping accuracy, but these AI models are memory unfriendly and computationally expensive, making deploying on embedded ADAS systems difficult. To address this issue, we proposed a new method that utilizes object detection models to extract robust and accurate parking lot features. The proposed method could reduce computational costs while maintaining high accuracy. Once combined with vehicles’ wheel-pulse information, the system could construct maps and locate the vehicle in real-time. This article will discuss in detail (1) the fish-eye based Around View Monitoring (AVM) with transparent chassis images as the inputs, (2) an Object Detection (OD) based feature point extraction algorithm to generate point cloud, (3) a low computational parking lot mapping algorithm and (4) the real-time localization algorithm. At last, we will demonstrate the experiment results with an embedded ADAS system installed on a real car in the underground parking lot.

Keywords: ADAS, home zone parking pilot, object detection, visual SLAM

Procedia PDF Downloads 67
3607 A Study of Permission-Based Malware Detection Using Machine Learning

Authors: Ratun Rahman, Rafid Islam, Akin Ahmed, Kamrul Hasan, Hasan Mahmud

Abstract:

Malware is becoming more prevalent, and several threat categories have risen dramatically in recent years. This paper provides a bird's-eye view of the world of malware analysis. The efficiency of five different machine learning methods (Naive Bayes, K-Nearest Neighbor, Decision Tree, Random Forest, and TensorFlow Decision Forest) combined with features picked from the retrieval of Android permissions to categorize applications as harmful or benign is investigated in this study. The test set consists of 1,168 samples (among these android applications, 602 are malware and 566 are benign applications), each consisting of 948 features (permissions). Using the permission-based dataset, the machine learning algorithms then produce accuracy rates above 80%, except the Naive Bayes Algorithm with 65% accuracy. Of the considered algorithms TensorFlow Decision Forest performed the best with an accuracy of 90%.

Keywords: android malware detection, machine learning, malware, malware analysis

Procedia PDF Downloads 167
3606 Quartz Crystal Microbalance Based Hydrophobic Nanosensor for Lysozyme Detection

Authors: F. Yılmaz, Y. Saylan, A. Derazshamshir, S. Atay, A. Denizli

Abstract:

Quartz crystal microbalance (QCM), high-resolution mass-sensing technique, measures changes in mass on oscillating quartz crystal surface by measuring changes in oscillation frequency of crystal in real time. Protein adsorption techniques via hydrophobic interaction between protein and solid support, called hydrophobic interaction chromatography (HIC), can be favorable in many cases. Some nanoparticles can be effectively applied for HIC. HIC takes advantage of the hydrophobicity of proteins by promoting its separation on the basis of hydrophobic interactions between immobilized hydrophobic ligands and nonpolar regions on the surface of the proteins. Lysozyme is found in a variety of vertebrate cells and secretions, such as spleen, milk, tears, and egg white. Its common applications are as a cell-disrupting agent for extraction of bacterial intracellular products, as an antibacterial agent in ophthalmologic preparations, as a food additive in milk products and as a drug for treatment of ulcers and infections. Lysozyme has also been used in cancer chemotherapy. The aim of this study is the synthesis of hydrophobic nanoparticles for Lysozyme detection. For this purpose, methacryoyl-L-phenylalanine was chosen as a hydrophobic matrix. The hydrophobic nanoparticles were synthesized by micro-emulsion polymerization method. Then, hydrophobic QCM nanosensor was characterized by Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM) and zeta size analysis. Hydrophobic QCM nanosensor was tested for real-time detection of Lysozyme from aqueous solution. The kinetic and affinity studies were determined by using Lysozyme solutions with different concentrations. The responses related to a mass (Δm) and frequency (Δf) shifts were used to evaluate adsorption properties.

Keywords: nanosensor, HIC, lysozyme, QCM

Procedia PDF Downloads 348
3605 HPSEC Application as a New Indicator of Nitrification Occurrence in Water Distribution Systems

Authors: Sina Moradi, Sanly Liu, Christopher W. K. Chow, John Van Leeuwen, David Cook, Mary Drikas, Soha Habibi, Rose Amal

Abstract:

In recent years, chloramine has been widely used for both primary and secondary disinfection. However, a major concern with the use of chloramine as a secondary disinfectant is the decay of chloramine and nitrification occurrence. The management of chloramine decay and the prevention of nitrification are critical for water utilities managing chloraminated drinking water distribution systems. The detection and monitoring of nitrification episodes is usually carried out through measuring certain water quality parameters, which are commonly referred to as indicators of nitrification. The approach taken in this study was to collect water samples from different sites throughout a drinking water distribution systems, Tailem Bend – Keith (TBK) in South Australia, and analyse the samples by high performance size exclusion chromatography (HPSEC). We investigated potential association between the water qualities from HPSEC analysis with chloramine decay and/or nitrification occurrence. MATLAB 8.4 was used for data processing of HPSEC data and chloramine decay. An increase in the absorbance signal of HPSEC profiles at λ=230 nm between apparent molecular weights of 200 to 1000 Da was observed at sampling sites that experienced rapid chloramine decay and nitrification while its absorbance signal of HPSEC profiles at λ=254 nm decreased. An increase in absorbance at λ=230 nm and AMW < 500 Da was detected for Raukkan CT (R.C.T), a location that experienced nitrification and had significantly lower chloramine residual (<0.1 mg/L). This increase in absorbance was not detected in other sites that did not experience nitrification. Moreover, the UV absorbance at 254 nm of the HPSEC spectra was lower at R.C.T. than other sites. In this study, a chloramine residual index (C.R.I) was introduced as a new indicator of chloramine decay and nitrification occurrence, and is defined based on the ratio of area underneath the HPSEC spectra at two different wavelengths of 230 and 254 nm. The C.R.I index is able to indicate DS sites that experienced nitrification and rapid chloramine loss. This index could be useful for water treatment and distribution system managers to know if nitrification is occurring at a specific location in water distribution systems.

Keywords: nitrification, HPSEC, chloramine decay, chloramine residual index

Procedia PDF Downloads 298
3604 PRENACEL: Development and Evaluation of an M-Health Strategy to Improve Prenatal Care in Brazil

Authors: E. M. Vieira, C. S. Vieira, L. P. Bonifácio, L. M. de Oliveira Ciabati, A. C. A. Franzon, F. S. Zaratini, J. A. C. Sanchez, M. S. Andrade, J. P. Dias de Souza

Abstract:

The quality of prenatal care is key to reduce maternal morbidity and mortality. Communication between the health service and users can stimulate prevention and care. M-health has been an important and low cost strategy to health education. The PRENACEL programme (prenatal in the cell phone) was developed. It consists of a programme of information via SMS from the 20th week of pregnancy up to 12th week after delivery. Messages were about prenatal care, birth, contraception and breastfeeding. Communication of the pregnant woman asking questions about their health was possible. The objective of this study was to evaluate the implementation of PRENACEL as a useful complement to the standard prenatal care. Twenty health clinics were selected and randomized by cluster, 10 as the intervention group and 10 as the control group. In the intervention group, women and their partner were invited to participate. The control group received the standard prenatal care. All women were interviewed in the immediate post-partum and in the 12th and 24th week post-partum. Most women were married, had more than 8 years of schooling and visit the clinic more than 6 times during prenatal care. The intervention group presented lowest percentage of higher economic participants (5.6%), less single mothers and no drug user. It also presented more prenatal care visits than the control group and it was less likely to present Severe Acute Maternal Mortality when compared to control group as well as higher percentage of partners (75.4%) was present at the birth compared to control group. Although the study is still being carried out, preliminary data are showing positive results of the compliance of women to prenatal care.

Keywords: cellphone, health technology, prenatal care, prevention

Procedia PDF Downloads 389
3603 Thermolysin Entrapment in a Gold Nanoparticles/Polymer Composite: Construction of an Efficient Biosensor for Ochratoxin a Detection

Authors: Fatma Dridi, Mouna Marrakchi, Mohammed Gargouri, Alvaro Garcia Cruz, Sergei V. Dzyadevych, Francis Vocanson, Joëlle Saulnier, Nicole Jaffrezic-Renault, Florence Lagarde

Abstract:

An original method has been successfully developed for the immobilization of thermolysin onto gold interdigitated electrodes for the detection of ochratoxin A (OTA) in olive oil samples. A mix of polyvinyl alcohol (PVA), polyethylenimine (PEI) and gold nanoparticles (AuNPs) was used. Cross-linking sensors chip was made by using a saturated glutaraldehyde (GA) vapor atmosphere in order to render the two polymers water stable. Performance of AuNPs/ (PVA/PEI) modified electrode was compared to a traditional immobilized enzymatic method using bovine serum albumin (BSA). Atomic force microscopy (AFM) experiments were employed to provide a useful insight into the structure and morphology of the immobilized thermolysin composite membranes. The enzyme immobilization method influence the topography and the texture of the deposited layer. Biosensors optimization and analytical characteristics properties were studied. Under optimal conditions AuNPs/ (PVA/PEI) modified electrode showed a higher increment in sensitivity. A 700 enhancement factor could be achieved with a detection limit of 1 nM. The newly designed OTA biosensors showed a long-term stability and good reproducibility. The relevance of the method was evaluated using commercial doped olive oil samples. No pretreatment of the sample was needed for testing and no matrix effect was observed. Recovery values were close to 100% demonstrating the suitability of the proposed method for OTA screening in olive oil.

Keywords: thermolysin, A. ochratoxin , polyvinyl alcohol, polyethylenimine, gold nanoparticles, olive oil

Procedia PDF Downloads 590
3602 Highly-Sensitive Nanopore-Based Sensors for Point-Of-Care Medical Diagnostics

Authors: Leyla Esfandiari

Abstract:

Rapid, sensitive detection of nucleic acid (NA) molecules of specific sequence is of interest for a range of diverse health-related applications such as screening for genetic diseases, detecting pathogenic microbes in food and water, and identifying biological warfare agents in homeland security. Sequence-specific nucleic acid detection platforms rely on base pairing interaction between two complementary single stranded NAs, which can be detected by the optical, mechanical, or electrochemical readout. However, many of the existing platforms require amplification by polymerase chain reaction (PCR), fluorescent or enzymatic labels, and expensive or bulky instrumentation. In an effort to address these shortcomings, our research is focused on utilizing the cutting edge nanotechnology and microfluidics along with resistive pulse electrical measurements to design and develop a cost-effective, handheld and highly-sensitive nanopore-based sensor for point-of-care medical diagnostics.

Keywords: diagnostics, nanopore, nucleic acids, sensor

Procedia PDF Downloads 465
3601 Directly Observed Treatment Short-Course (DOTS) for TB Control Program: A Ten Years Experience

Authors: Solomon Sisay, Belete Mengistu, Woldargay Erku, Desalegne Woldeyohannes

Abstract:

Background: Tuberculosis is still the leading cause of illness in the world which accounted for 2.5% of the global burden of disease, and 25% of all avoidable deaths in developing countries. Objectives: The aim of study was to assess impact of DOTS strategy on tuberculosis case finding and treatment outcome in Gambella Regional State, Ethiopia from 2003 up to 2012 and from 2002 up to 2011, respectively. Methods: Health facility-based retrospective study was conducted. Data were collected and reported in quarterly basis using WHO reporting format for TB case finding and treatment outcome from all DOTS implementing health facilities in all zones of the region to Federal Ministry of Health. Results: A total of 10024 all form of TB cases had been registered between the periods from 2003 up to 2012. Of them, 4100 (40.9%) were smear-positive pulmonary TB, 3164 (31.6%) were smear-negative pulmonary TB and 2760 (27.5%) had extra-pulmonary TB. Case detection rate of smear-positive pulmonary TB had increased from 31.7% to 46.5% from the total TB cases and treatment success rate increased from 13% to 92% with average mean value of being 40.9% (SD= 0.1) and 55.7% (SD=0.28), respectively for the specified year periods. Moreover, the average values of treatment defaulter and treatment failure rates were 4.2% and 0.3%, respectively. Conclusion: It is possible to achieve the recommended WHO target which is 70% of CDR for smear-positive pulmonary TB, and 85% of TSR as it was already been fulfilled the targets for treatments more than 85% from 2009 up to 2011 in the region. However, it requires strong efforts to enhance case detection rate of 40.9% for smear-positive pulmonary TB through implementing alternative case finding strategies.

Keywords: Gambella Region, case detection rate, directly observed treatment short-course, treatment success rate, tuberculosis

Procedia PDF Downloads 344
3600 Scientific Recommender Systems Based on Neural Topic Model

Authors: Smail Boussaadi, Hassina Aliane

Abstract:

With the rapid growth of scientific literature, it is becoming increasingly challenging for researchers to keep up with the latest findings in their fields. Academic, professional networks play an essential role in connecting researchers and disseminating knowledge. To improve the user experience within these networks, we need effective article recommendation systems that provide personalized content.Current recommendation systems often rely on collaborative filtering or content-based techniques. However, these methods have limitations, such as the cold start problem and difficulty in capturing semantic relationships between articles. To overcome these challenges, we propose a new approach that combines BERTopic (Bidirectional Encoder Representations from Transformers), a state-of-the-art topic modeling technique, with community detection algorithms in a academic, professional network. Experiences confirm our performance expectations by showing good relevance and objectivity in the results.

Keywords: scientific articles, community detection, academic social network, recommender systems, neural topic model

Procedia PDF Downloads 97
3599 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring

Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti

Abstract:

Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by density-based time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., mean value, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one class classifier (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, a new anomaly detector strategy is proposed, namely one class classifier neural network two (OCCNN2), which exploit the classification capability of standard classifiers in an anomaly detection problem, finding the standard class (the boundary of the features space in normal operating conditions) through a two-step approach: coarse and fine boundary estimation. The coarse estimation uses classics OCC techniques, while the fine estimation is performed through a feedforward neural network (NN) trained that exploits the boundaries estimated in the coarse step. The detection algorithms vare then compared with known methods based on principal component analysis (PCA), kernel principal component analysis (KPCA), and auto-associative neural network (ANN). In many cases, the proposed solution increases the performance with respect to the standard OCC algorithms in terms of F1 score and accuracy. In particular, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 96% with the proposed method.

Keywords: anomaly detection, frequencies selection, modal analysis, neural network, sensor network, structural health monitoring, vibration measurement

Procedia PDF Downloads 123
3598 Exploring the Role of Building Information Modeling for Delivering Successful Construction Projects

Authors: Muhammad Abu Bakar Tariq

Abstract:

Construction industry plays a crucial role in the progress of societies and economies. Furthermore, construction projects have social as well as economic implications, thus, their success/failure have wider impacts. However, the industry is lagging behind in terms of efficiency and productivity. Building Information Modeling (BIM) is recognized as a revolutionary development in Architecture, Engineering and Construction (AEC) industry. There are numerous interest groups around the world providing definitions of BIM, proponents describing its advantages and opponents identifying challenges/barriers regarding adoption of BIM. This research is aimed at to determine what actually BIM is, along with its potential role in delivering successful construction projects. The methodology is critical analysis of secondary data sources i.e. information present in public domain, which include peer reviewed journal articles, industry and government reports, conference papers, books, case studies etc. It is discovered that clash detection and visualization are two major advantages of BIM. Clash detection option identifies clashes among structural, architectural and MEP designs before construction actually commences, which subsequently saves time as well as cost and ensures quality during execution phase of a project. Visualization is a powerful tool that facilitates in rapid decision-making in addition to communication and coordination among stakeholders throughout project’s life cycle. By eliminating inconsistencies that consume time besides cost during actual construction, improving collaboration among stakeholders throughout project’s life cycle, BIM can play a positive role to achieve efficiency and productivity that consequently deliver successful construction projects.

Keywords: building information modeling, clash detection, construction project success, visualization

Procedia PDF Downloads 260
3597 Concept Drifts Detection and Localisation in Process Mining

Authors: M. V. Manoj Kumar, Likewin Thomas, Annappa

Abstract:

Process mining provides methods and techniques for analyzing event logs recorded in modern information systems that support real-world operations. While analyzing an event-log, state-of-the-art techniques available in process mining believe that the operational process as a static entity (stationary). This is not often the case due to the possibility of occurrence of a phenomenon called concept drift. During the period of execution, the process can experience concept drift and can evolve with respect to any of its associated perspectives exhibiting various patterns-of-change with a different pace. Work presented in this paper discusses the main aspects to consider while addressing concept drift phenomenon and proposes a method for detecting and localizing the sudden concept drifts in control-flow perspective of the process by using features extracted by processing the traces in the process log. Our experimental results are promising in the direction of efficiently detecting and localizing concept drift in the context of process mining research discipline.

Keywords: abrupt drift, concept drift, sudden drift, control-flow perspective, detection and localization, process mining

Procedia PDF Downloads 345
3596 Improving the Health of Communities: Students as Leaders in a Community Clinical Health Promotion and Disease Prevention Immersion

Authors: Samawi Zepure, Beck Christine, Gallagher Peg

Abstract:

This community immersion employs the NLN Excellence Model which challenges nursing programs to create student-centered, interactive, and innovative experiences to prepare students for roles in providing high quality care, effective teaching, and leadership in the delivery of nursing services to individuals, families, and communities (NLN, 2006). Senior nursing students collaborate with ethnically and linguistically diverse participants at community-based sites and develop leadership roles of coordination of care linkage within the larger healthcare system, adherence, and self-care management. The immersion encourages students to develop competencies of the NLN Nursing Education Competencies Model (NLN, 2012), proposed to address fast changes in health care delivery, which include values of caring, diversity, and holism; and integrating concepts of context and environment, relationship, and teamwork. Students engage in critical thinking and leadership as they: 1) assess health/illness beliefs, values, attitudes, and practices, explore community resources, interview key informants, and collaborate with community participants to identify learning goals, 2) develop and implement appropriate holistic health promotion and disease prevention teaching interventions promoting continuity, sustainability, and innovation, 3) evaluate interventions through participant feedback and focus groups and, 4) reflect on the immersion experience and future professional role as advocate and citizen.

Keywords: quality of care, health of communities, students as leaders, health promotion

Procedia PDF Downloads 157
3595 'It Is a Sin to Be in Love with a Disabled Woman': Stigma, Rejection and Intersections of Womanhood and Violence among Physically Disabled Women Living in South Africa

Authors: Ingrid Van Der Heijden, Naeemah Abrahams, Jane Harries

Abstract:

Background: Commonly, womanhood is defined as the qualities considered to be natural to or characteristic of a woman. However, womanhood is not a static concept; it is contextual and negotiable. For women with disabilities, gender roles or ‘qualities’ of womanhood are often overstated or contradicted because of assumptions of weakness, passivity, asexuality and infertility. Currently, little is known about how disability stigma intersects with notions of womanhood to make women with disabilities vulnerable to violence, or how women navigate this intersection to prevent or protect themselves from violence. Objective: To describe how the stigmatized constructions of womanhood and disability promote women with physical disabilities’ exposure to or protection from violence. Methods: Qualitative data for this paper comes from a doctoral study involving women with disabilities living in Cape Town, South Africa. It presents data from repeat in-depth interviews with 30 women with a range of physical impairments. Women attending protective workshops, rehabilitative centers and residential care facilities for people living with disabilities were invited to participate. Consent procedures and interviews were conducted by the first author (who is herself a woman living with a physical disability), and a female research assistant/translator who is a qualified occupational therapist. Reasonable accommodation is central to the methodology and the study as a whole. Findings: Descriptive and thematic analyses reveal how stigma and local constructions around womanhood, as well as women’s self-image and physical limitations, promotes women’s exposure to psychological, physical and sexual violence. It reveals how disabled women feel they are presumed incapable of living up to expectations of a ‘proper’ woman. This plays out as psychological violence, with women reporting that they feel ‘devalued,' ‘rejected’ and deprived of lasting intimate relationships. Furthermore, forms of psychological violence perpetuate physical and sexual violence. Women also discuss using strategies to prevent violence; by refusing to date, avoiding certain places or avoiding isolation, creating awareness, hiding their physical impairments, and exaggerating their ‘femininity.' Implications: Service providers need to be made aware of women’s violence experiences, and provide a range of accessible psychological and mental health services to women living with disabilities, as well as raising awareness around disability, and violence prevention, among caregivers, men, and women. Violence awareness and prevention interventions need to involve disability experts, researchers and people with disabilities.

Keywords: disability, gender, stigma, violence awareness and prevention interventions

Procedia PDF Downloads 352
3594 Electrochemical Biosensor for Rutin Detection with Multiwall Carbon Nanotubes and Cerium Dioxide Nanoparticles

Authors: Stephen Rathinaraj Benjamin, Flavio Colmati Junior, Maria Izabel Florindo Guedes, Rosa Amalia Fireman Dutra

Abstract:

A new enzymatic electrochemical biosensor based on multiwall carbon nanotubes and cerium oxide nanoparticles for the detection of rutin has been developed. The cerium oxide nanoparticles /HRP/ multiwall carbon nanotubes/ carbon paste electrode (HRP/ CeO2/MWCNTs/CPE) was prepared by ensuing addition of MWCNTs and HRP on the CPE, followed by the mixing with cerium oxide nanoparticles. Surface physical characteristics of the modified electrode and the electrochemical properties of the composite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), cylic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). The HRP/ CeO2/MWCNTs/CPE showed good selectivity, stability and reproducibility, which was further applied to detect rutin tablet and capsule samples with satisfactory results.

Keywords: cerium dioxide nanoparticles, horseradish peroxidase, multiwall carbon nanotubes, rutin

Procedia PDF Downloads 393
3593 Graphen-Based Nanocomposites for Glucose and Ethanol Enzymatic Biosensor Fabrication

Authors: Tesfaye Alamirew, Delele Worku, Solomon W. Fanta, Nigus Gabbiye

Abstract:

Recently graphen based nanocomposites are become an emerging research areas for fabrication of enzymatic biosensors due to their property of large surface area, conductivity and biocompatibility. This review summarizes recent research reports of graphen based nanocomposites for the fabrication of glucose and ethanol enzymatic biosensors. The newly fabricated enzyme free microwave treated nitrogen doped graphen (MN-d-GR) had provided highest sensitivity towards glucose and GCE/rGO/AuNPs/ADH composite had provided far highest sensitivity towards ethanol compared to other reported graphen based nanocomposites. The MWCNT/GO/GOx and GCE/ErGO/PTH/ADH nanocomposites had also enhanced wide linear range for glucose and ethanol detection respectively. Generally, graphen based nanocomposite enzymatic biosensors had fast direct electron transfer rate, highest sensitivity and wide linear detection ranges during glucose and ethanol sensing.

Keywords: glucose, ethanol, enzymatic biosensor, graphen, nanocomposite

Procedia PDF Downloads 126
3592 Automatic Censoring in K-Distribution for Multiple Targets Situations

Authors: Naime Boudemagh, Zoheir Hammoudi

Abstract:

The parameters estimation of the K-distribution is an essential part in radar detection. In fact, presence of interfering targets in reference cells causes a decrease in detection performances. In such situation, the estimate of the shape and the scale parameters are far from the actual values. In the order to avoid interfering targets, we propose an Automatic Censoring (AC) algorithm of radar interfering targets in K-distribution. The censoring technique used in this work offers a good discrimination between homogeneous and non-homogeneous environments. The homogeneous population is then used to estimate the unknown parameters by the classical Method of Moment (MOM). The AC algorithm does not need any prior information about the clutter parameters nor does it require both the number and the position of interfering targets. The accuracy of the estimation parameters obtained by this algorithm are validated and compared to various actual values of the shape parameter, using Monte Carlo simulations, this latter show that the probability of censing in multiple target situations are in good agreement.

Keywords: parameters estimation, method of moments, automatic censoring, K distribution

Procedia PDF Downloads 373
3591 Detecting Heartbeat Architectural Tactic in Source Code Using Program Analysis

Authors: Ananta Kumar Das, Sujit Kumar Chakrabarti

Abstract:

Architectural tactics such as heartbeat, ping-echo, encapsulate, encrypt data are techniques that are used to achieve quality attributes of a system. Detecting architectural tactics has several benefits: it can aid system comprehension (e.g., legacy systems) and in the estimation of quality attributes such as safety, security, maintainability, etc. Architectural tactics are typically spread over the source code and are implicit. For large codebases, manual detection is often not feasible. Therefore, there is a need for automated methods of detection of architectural tactics. This paper presents a formalization of the heartbeat architectural tactic and a program analytic approach to detect this tactic in source code. The experiment of the proposed method is done on a set of Java applications. The outcome of the experiment strongly suggests that the method compares well with a manual approach in terms of its sensitivity and specificity, and far supersedes a manual exercise in terms of its scalability.

Keywords: software architecture, architectural tactics, detecting architectural tactics, program analysis, AST, alias analysis

Procedia PDF Downloads 160