Search results for: artificial cell
4365 Targeting Basic Leucine Zipper Transcription Factor ATF-Like Mediated Immune Cells Regulation to Reduce Crohn’s Disease Fistula Incidence
Authors: Mohammadjavad Sotoudeheian, Soroush Nematollahi
Abstract:
Crohn’s disease (CD) is a chronic gastrointestinal segment inflammation encompassing immune dysregulation in a genetically susceptible individual in response to the environmental triggers and interaction between the microbiome and immune system. Uncontrolled inflammation leads to long-term complications, including fibrotic strictures and enteric fistulae. Increased production of Th1 and Th17-cell cytokines and defects in T-regulatory cells have been associated with CD. Th17-cells are essential for protection against extracellular pathogens, but their atypical activity can cause autoimmunity. Intrinsic defects in the control of programmed cell death in the mucosal T-cell compartment are strongly implicated in the pathogenesis of CD. The apoptosis defect in mucosal T-cells in CD has been endorsed as an imbalance of the Bcl-2 and the Bax. The immune system encounters foreign antigens through microbial colonization of mucosal surfaces or infections. In addition, FOSL downregulated IL-26 expression, a cytokine that marks inflammatory Th17-populations in patients suffering from CD. Furthermore, the expression of IL-23 is associated with the transcription factor primary leucine zipper transcription factor ATF-like (Batf). Batf-deficiency demonstrated the crucial role of Batf in colitis development. Batf and IL-23 mediate their effects by inducing IL-6 production. Strong association of IL-23R, Stat3, and Stat4 with IBD susceptibility point to a critical involvement of T-cells. IL-23R levels in transfer fistula were dependent on the AP-1 transcription factor JunB that additionally controlled levels of RORγt by facilitating DNA binding of Batf. T lymphocytes lacking JunB failed to induce IL-23- and Th17-mediated experimental colitis highlighting the relevance of JunB for the IL-23/ Th17 pathway. The absence of T-bet causes unrestrained Th17-cell differentiation. T-cells are central parts of immune-mediated colon fistula. Especially Th17-cells were highly prevalent in inflamed IBD tissues, as RORγt is effective in preventing colitis. Intraepithelial lymphocytes (IEL) contain unique T-cell subsets, including cells expressing RORγt. Increased activated Th17 and decreased T-regulatory cells in inflamed intestinal tissues had been seen. T-cells differentiate in response to many cytokines, including IL-1β, IL-6, IL-23, and TGF-β, into Th17-cells, a process which is critically dependent on the Batf. IL-23 promotes Th17-cell in the colon. Batf manages the generation of IL-23 induced IL-23R+ Th17-cells. Batf is necessary for TGF-β/IL-6-induced Th17-polarization. Batf-expressing T-cells are the core of T-cell-mediated colitis. The human-specific parts of three AP-1 transcription factors, FOSL1, FOSL2, and BATF, are essential during the early stages of Th17 differentiation. BATF supports the Th17 lineage. FOSL1, FOSL2, and BATF make possession of regulatory loci of genes in the Th17 lineage cascade. The AP1 transcription factor Batf is identified to control intestinal inflammation and seems to regulate pathways within lymphocytes, which could theoretically control the expression of several genes. It shows central regulatory properties over Th17-cell development and is intensely upregulated within IBD-affected tissues. Here, we demonstrated that targeting Batf in IBD appears as a therapeutic approach that reduces colitogenic T-cell activities during fistula formation while aiming to affect inflammation in the gut epithelial cells.Keywords: immune system, Crohn’s Disease, BATF, T helper cells, Bcl, interleukin, FOSL
Procedia PDF Downloads 1454364 Identification of Bioactive Metabolites from Ficus carica and Their Neuroprotective Effects of Alzheimer's Disease
Authors: Hanan Khojah, RuAngelie Edrada-Ebel
Abstract:
Neurodegenerative disease including Alzheimer’s disease is a major cause of long-term disability. Oxidative stress is frequently implicated as one of the key contributing factors to neurodegenerative diseases. Protection against neuronal damage remains a great challenge for researchers. Ficus carica (commonly known as fig) is a species of great antioxidant nutritional value comprising a protective mechanism against innumerable health disorders related to oxidative stress as well as Alzheimer’s disease. The purpose of this work was to characterize the non-polar active metabolites in Ficus carica endocarp, mesocarp, and exocarp. Crude extracts were prepared using several extraction solvents, which included 1:1 water: ethylacetate, acetone and methanol. The dried extracts were then solvent partitioned between equivalent amounts of water and ethylacetate. Purification and fractionation were accomplished by high-throughput chromatography. The isolated metabolites were tested on their effect on human neuroblastoma cell line by cell viability test and cell cytotoxicity assay with acrolein. Molecular weights of the active metabolites were determined via LC–HRESIMS and GC-EIMS. Metabolomic profiling was performed to identify the active metabolites by using differential expression analysis software (Mzmine) and SIMCA for multivariate analysis. Structural elucidation and identification of the interested active metabolites were studied by 1-D and 2-D NMR. Significant differences in bioactivity against a concentration-dependent assay on acrolein radicals were observed between the three fruit parts. However, metabolites obtained from mesocarp and the endocarp demonstrated bioactivity to scavenge ROS radical. NMR profiling demonstrated that aliphatic compounds such as γ-sitosterol tend to induce neuronal bioactivity and exhibited bioactivity on the cell viability assay. γ-Sitosterol was found in higher concentrations in the mesocarp and was considered as one of the major phytosterol in Ficus carica.Keywords: alzheimer, Ficus carica, γ-Sitosterol, metabolomics
Procedia PDF Downloads 3454363 Microstructures Evolution of a Nano/Ultrafine Grained Low Carbon Steel Produced by Martensite Treatment Using Accumulative Roll Bonding
Authors: Mehdi Salari
Abstract:
This work introduces a new experimental method of martensite treatment contains accumulative roll-bonding used for producing the nano/ultrafine grained structure in low carbon steel. The ARB process up to 4 cycles was performed under unlubricated conditions, while the annealing process was carried out in the temperature range of 450–550°C for 30–100 min. The microstructures of the deformed and annealed specimens were investigated. The results showed that in the annealed specimen at 450°C for 30 or 60 min, recrystallization couldn’t be completed. Decrease in time and temperature intensified the volume fraction of the martensite cell blocks. Fully equiaxed nano/ultrafine grained ferrite was developed from the martensite cell blocks during the annealing at temperature around 500°C for 100 min.Keywords: martensite process, accumulative roll bonding, recrystallization, nanostructure, plain carbon steel
Procedia PDF Downloads 3804362 Thermalytix: An Advanced Artificial Intelligence Based Solution for Non-Contact Breast Screening
Authors: S. Sudhakar, Geetha Manjunath, Siva Teja Kakileti, Himanshu Madhu
Abstract:
Diagnosis of breast cancer at early stages has seen better clinical and survival outcomes. Survival rates in developing countries like India are very low due to accessibility and affordability issues of screening tests such as Mammography. In addition, Mammography is not much effective in younger women with dense breasts. This leaves a gap in current screening methods. Thermalytix is a new technique for detecting breast abnormality in a non-contact, non-invasive way. It is an AI-enabled computer-aided diagnosis solution that automates interpretation of high resolution thermal images and identifies potential malignant lesions. The solution is low cost, easy to use, portable and is effective in all age groups. This paper presents the results of a retrospective comparative analysis of Thermalytix over Mammography and Clinical Breast Examination for breast cancer screening. Thermalytix was found to have better sensitivity than both the tests, with good specificity as well. In addition, Thermalytix identified all malignant patients without palpable lumps.Keywords: breast cancer screening, radiology, thermalytix, artificial intelligence, thermography
Procedia PDF Downloads 2934361 The Role of ChatGPT in Enhancing ENT Surgical Training
Authors: Laura Brennan, Ram Balakumar
Abstract:
ChatGPT has been developed by Open AI (Nov 2022) as a powerful artificial intelligence (AI) language model which has been designed to produce human-like text from user written prompts. To gain the most from the system, user written prompts must give context specific information. This article aims to give guidance on how to optimise the ChatGPT system in the context of education for otolaryngology. Otolaryngology is a specialist field which sees little time dedicated to providing education to both medical students and doctors. Additionally, otolaryngology trainees have seen a reduction in learning opportunities since the COVID-19 pandemic. In this article we look at these various barriers to medical education in Otolaryngology training and suggest ways that ChatGPT can overcome them and assist in simulation-based training. Examples provide how this can be achieved using the Authors’ experience to further highlight the practicalities. What this article has found is that while ChatGPT cannot replace traditional mentorship and practical surgical experience, it can serve as an invaluable supplementary resource to simulation based medical education in Otolaryngology.Keywords: artificial intelligence, otolaryngology, surgical training, medical education
Procedia PDF Downloads 1604360 Assessment of Platelet and Lymphocyte Interaction in Autoimmune Hyperthyroidism
Authors: Małgorzata Tomczyńska, Joanna Saluk-Bijak
Abstract:
Background: Graves’ disease is a frequent organ-specific autoimmune thyroid disease, which characterized by the presence of different kind autoantibodies, that, in most cases, act as agonists of the thyrotropin receptor, leading to hyperthyroidism. Role of platelets and lymphocytes can be modulated in the pathophysiology of thyroid autoimmune diseases. Interference in the physiology of platelets can lead to enhanced activity of these cells. Activated platelets can bind to circulating lymphocytes and to affect lymphocyte adhesion. Platelets and lymphocytes can regulate mutual functions. Therefore, the activation of T lymphocytes, as well as blood platelets, is associated with the development of inflammation and oxidative stress within the target tissue. The present study was performed to investigate a platelet-lymphocyte relation by assessing the degree of their mutual aggregation in whole blood of patients with Graves’ disease. Also, the purpose of this study was to examine the impact of platelet interaction on lymphocyte migration capacity. Methods: 30 patients with Graves’ disease were recruited in the study. The matched 30 healthy subjects were served as the control group. Immunophenotyping of lymphocytes was carried out by flow cytometry method. A CytoSelect™ Cell Migration Assay Kit was used to evaluate lymphocyte migration and adhesion to blood platelets. Visual assessment of lymphocyte-platelet aggregate morphology was done using confocal microscope after magnetic cell isolation by Miltenyi Biotec. Results: The migration and functional responses of lymphocytes to blood platelets were greater in the group of Graves’ disease patients compared with healthy controls. The group of Graves’ disease patients exhibited a reduced T lymphocyte and a higher B cell count compared with controls. Based on microscopic analysis, more platelet-lymphocyte aggregates were found in patients than in control. Conclusions: Studies have shown that in Graves' disease, lymphocytes show increased platelet affinity, more strongly migrating toward them, and forming mutual cellular conglomerates. This may be due to the increased activation of blood platelets in this disease.Keywords: blood platelets, cell migration, Graves’ disease, lymphocytes, lymphocyte-platelet aggregates
Procedia PDF Downloads 2284359 Investigating the Effect of Artificial Intelligence on the Improvement of Green Supply Chain in Industry
Authors: Sepinoud Hamedi
Abstract:
Over the past few decades, companies have appeared developing concerns in connection to the natural affect of their fabricating exercises. Green supply chain administration has been considered by the producers as a attainable choice to decrease the natural affect of operations whereas at the same time moving forward their operational execution. Contemporaneously the coming of digitalization and globalization within the supply chain space has driven to a developing acknowledgment of the importance of data preparing methodologies, such as enormous information analytics and fake insights innovations, in improving and optimizing supply chain execution. Also, supply chain collaboration in part intervenes the relationship between manufactured innovation and supply chain execution Ponders appear that the use of BDA-AI advances includes a significant impact on natural handle integration and green supply chain collaboration conjointly underlines that both natural handle integration and green supply chain collaboration have a critical affect on natural execution. Correspondingly savvy supply chain contributes to green execution through overseeing green connections and setting up green operations.Keywords: green supply chain, artificial intelligence, manufacturers, technology, environmental
Procedia PDF Downloads 744358 Zingiberaceous Plants as a Source of Anti-Bacterial Activity: Targeting Bacterial Cell Division Protein (FtsZ)
Authors: S. Reshma Reghu, Shiburaj Sugathan, T. G. Nandu, K. B. Ramesh Kumar, Mathew Dan
Abstract:
Bacterial diseases are considered to be one of the most prevalent health hazards in the developing world and many bacteria are becoming resistant to existing antibiotics making the treatment ineffective. Thus, it is necessary to find novel targets and develop new antibacterial drugs with a novel mechanism of action. The process of bacterial cell division is a novel and attractive target for new antibacterial drug discovery. FtsZ, a homolog of eukaryotic tubulin, is the major protein of the bacterial cell division machinery and is considered as an important antibacterial drug target. Zingiberaceae, the Ginger family consists of aromatic herbs with creeping rhizomes. Many of these plants have antimicrobial properties.This study aimed to determine the anti-bacterial activity of selected Zingiberaceous plants by targeting bacterial cell division protein, FtsZ. Essential oils and methanol extracts of Amomum ghaticum, Alpinia galanga, Kaempferia galanga, K. rotunda, and Zingiber officinale were tested to find its antibacterial efficiency using disc diffusion method against authentic bacterial strains obtained from MTCC (India). Essential oil isolated from A.galanga and Z.officinale were further assayed for FtsZ inhibition assay following non-radioactive malachite green-phosphomolybdate assay using E. coli FtsZ protein obtained from Cytoskelton Inc., USA. Z.officinale essential oil possess FtsZ inhibitory property. A molecular docking study was conducted with the known bioactive compounds of Z. officinale as ligands with the E. coli FtsZ protein homology model. Some of the major constituents of this plant like catechin, epicatechin, and gingerol possess agreeable docking scores. The results of this study revealed that several chemical constituents in Ginger plants can be utilised as potential source of antibacterial activity and it can warrant further investigation through drug discovery studies.Keywords: antibacterial, FtsZ, zingiberaceae, docking
Procedia PDF Downloads 4734357 Isolation, Characterization and Quantitation of Anticancer Constituent from Chloroform Extract of N. arbortristis L. Leaves
Authors: Parul Grover, K. A. Suri, Raj Kumar, Gulshan Bansal
Abstract:
Background: Nyctanthes arbortristis Linn is traditionally used as anticancer herb in Indian system of medicine, but its introduction into modern system of medicine is still awaited due to lack of systematic scientific studies. Objective: The objective of the present study was to isolate and characterize anticancer phytoconstituents from N. arbortristis L. leaves based on bioactivity guided fractionation. Method: Different extracts of the leaves of the plant were prepared by Soxhlet extractor. Each extract was evaluated for anticancer activity against HL-60 cell lines. Chloroform and HA extract showed potent anticancer activity and hence were selected for fractionation. Fraction C1 from chloroform extract was found to be most potent amongst all when tested against three cell lines (HL-60, A-549, and HCT-116) and thus was selected for further fractionation and a pure compound CP-01 was isolated. RP-HPLC method has been developed for quantification of isolated compound by using Kinetex C-18 column with gradient elution at 0.7 mL/min using mobile phase containing potassium dihydrogen phosphate (0.01 M, pH 3.0) with acetonitrile. The wavelength of maximum absorption (λₘₐₓ) selected was 210 nm. Results: The structure of potent anticancer CP-01 was determined on the basis spectroscopic methods like IR, 1H-NMR, ¹³C-NMR and Mass Spectrometry and it was characterized as 1,1,2-tris(2’,4’-di-tert-butylbenzene)-4,4-dimethyl-pent-1-ene. The content of CP-01 was found to be 0.88 %w/w of chloroform extract and 0.08 %w/w of N.arbortristis leaves. Conclusion: The study supports the traditional use of N. arbortristis as anticancer herb & the identified compound CP-01 can serve as an excellent lead to develop potent and safe anticancer drugs.Keywords: anticancer, HL-60 cell lines, Nyctanthes arbor-tristis, RP-HPLC
Procedia PDF Downloads 1494356 The Effects of Bisphosphonates on Osteonecrosis of Jaw Bone: A Stem Cell Perspective
Authors: Huseyin Apdik, Aysegul Dogan, Selami Demirci, Ezgi Avsar Apdik, Fikrettin Sahin
Abstract:
Mesenchymal stem cells (MSCs) are crucial cell types for bone maintenance and growth along with resident bone progenitor cells providing bone tissue integrity during osteogenesis and skeletal growth. Any deficiency in this regulation would result in vital bone diseases. Of those, osteoporosis, characterized by a reduction in bone mass and mineral density, is a critical skeletal disease for especially elderly people. The commonly used drugs for the osteoporosis treatment are bisphosphonates (BPs). The most prominent role of BPs is to prevent bone resorption arisen from high osteoclast activity. However, administrations of bisphosphonates may also cause bisphosphonate-induced osteonecrosis of the jaw (BIONJ). Up to the present, the researchers have proposed several circumstances for BIONJ. However, effects of long-term and/or high dose usage of BPs on stem cell’s proliferation, survival, differentiation or maintenance capacity have not been evaluated yet. The present study will be held to; figure out BPs’ effects on MSCs in vitro in the aspect of cell proliferation and toxicity, migration, angiogenic activity, lineage specific gene and protein expression levels, mesenchymal stem cell properties and potential signaling pathways affected by BP treatment. Firstly, mesenchymal stem cell characteristics of Dental Pulp Stem Cells (DPSCs) and Periodontal Ligament Stem Cells (PDLSCs) were proved using flow cytometry analysis. Cell viability analysis was completed to determine the cytotoxic effects of BPs (Zoledronate (Zol), Alendronate (Ale) and Risedronate (Ris)) on DPSCs and PDLSCs by the 3-(4,5-di-methyl-thiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium (MTS) assay. Non-toxic concentrations of BPs were determined at 24 h under growth condition, and at 21 days under osteogenic differentiation condition for both cells. The scratch assay was performed to evaluate their migration capacity under the usage of determined of BPs concentrations at 24 h. The results revealed that while the scratch closure is 70% in the control group for DPSCs, it was 57%, 66% and 66% in Zol, Ale and Ris groups, respectively. For PDLSs, while wound closure is 71% in control group, it was 65%, 66% and 66% in Zol, Ale and Ris groups, respectively. As future experiments, tube formation assay and aortic ring assay will be done to determinate angiogenesis abilities of DPSCs and PDLSCs treated with BPs. Expression levels of osteogenic differentiation marker genes involved in bone development will be determined using real time-polymerase change reaction (RT-PCR) assay and expression profiles of important proteins involved in osteogenesis will be evaluated using western blotting assay for osteogenically differentiated MSCs treated with or without BPs. In addition to these, von Kossa staining will be performed to measure calcium mineralization status of MSCs.Keywords: bisphosphonates, bisphosphonate-induced osteonecrosis of the jaw, mesenchymal stem cells, osteogenesis
Procedia PDF Downloads 2634355 Machine Learning Techniques in Bank Credit Analysis
Authors: Fernanda M. Assef, Maria Teresinha A. Steiner
Abstract:
The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.Keywords: artificial neural networks (ANNs), classifier algorithms, credit risk assessment, logistic regression, machine Learning, support vector machines
Procedia PDF Downloads 1044354 Risk of Mortality and Spectrum of Second Primary Malignancies in Mantle Cell Lymphoma before and after Ibrutinib Approval: A Population-Based Study
Authors: Karthik Chamari, Vasudha Rudraraju, Gaurav Chaudhari
Abstract:
Background: Mantle cell lymphoma (MCL) is one of the mature B cell non-Hodgkin lymphomas (NHL). The course of MCL is moderately aggressive and variable, and it has median overall survival of 8 to 10 years. Ibrutinib, a Bruton’s tyrosine kinase inhibitor, was approved by the United States (US) Food and Drug Administration in November of 2013 for the treatment of MCL patients who have received at least one prior therapy. In this study, we aimed to evaluate whether there has been a change in survival and patterns of second primary malignancies (SPMs) among the MCL population in the US after ibrutinib approval. Methods: Using the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER)-18, we conducted a retrospective study with patients diagnosed with MCL (ICD-0-3 code 9673/3) between 2007 and 2018. We divided patients into two six-year cohorts, pre-ibrutinib approval (2007-2012) and post-ibrutinib approval (2013-2018), and compared relative survival rates (RSRs) and standardized incidence ratios (SIRs) of SPMs between cohorts. Results: We included 9,257 patients diagnosed with MCL between 2007 and 2018 in the SEER-18 survival and SIR registries. Of these, 4,205 (45%) patients were included in the pre-ibrutinib cohort, and 5052 (55%) patients were included in the post-ibrutinib cohort. The median follow-up duration for the pre-ibrutinib cohort was 54 months (range 0 to 143 months), and the post-ibrutinib cohort was 20 months (range 0 to 71 months). There was a significant difference in the five-year RSRs between pre-ibrutinib and post-ibrutinib cohorts (57.5% vs. 62.6%, p < 0.005). Out of the 9,257 patients diagnosed with MCL, 920 developed SPMs. A higher proportion of SPMs occurred in the post-ibrutinib cohort (63%) when compared with the pre-ibrutinib cohort (37%). Non-hematological malignancies comprised most of all SPMs. A higher incidence of non-hematological malignancies occurred in the post-ibrutinib cohort (SIR 1.42, 95% CI 1.29 to 1.56) when compared with the pre-ibrutinib cohort (SIR 1.14, 95% CI 1 to 1.3). There was a statistically significant increase in the incidence of cancers of the respiratory tract (SIR 1.77, 95% CI 1.43 to 2.18), urinary tract (SIR 1.61, 95% CI 1.23 to 2.06) when compared with other non-hematological malignancies in post-ibrutinib cohort. Conclusions: Our study results suggest the relative survival rates have increased since the approval of ibrutinib for mantle cell lymphoma patients. Additionally, for some unclear reasons, the incidence of SPM’s (non-hematological malignancies), mainly cancers of the respiratory tract, urinary tract, have increased in the six years following the approval of ibrutinib. Further studies should be conducted to determine the cause of these findings.Keywords: mantle cell lymphoma, Ibrutinib, relative survival analysis, secondary primary cancers
Procedia PDF Downloads 1854353 A Framework for Automated Nuclear Waste Classification
Authors: Seonaid Hume, Gordon Dobie, Graeme West
Abstract:
Detecting and localizing radioactive sources is a necessity for safe and secure decommissioning of nuclear facilities. An important aspect for the management of the sort-and-segregation process is establishing the spatial distributions and quantities of the waste radionuclides, their type, corresponding activity, and ultimately classification for disposal. The data received from surveys directly informs decommissioning plans, on-site incident management strategies, the approach needed for a new cell, as well as protecting the workforce and the public. Manual classification of nuclear waste from a nuclear cell is time-consuming, expensive, and requires significant expertise to make the classification judgment call. Also, in-cell decommissioning is still in its relative infancy, and few techniques are well-developed. As with any repetitive and routine tasks, there is the opportunity to improve the task of classifying nuclear waste using autonomous systems. Hence, this paper proposes a new framework for the automatic classification of nuclear waste. This framework consists of five main stages; 3D spatial mapping and object detection, object classification, radiological mapping, source localisation based on gathered evidence and finally, waste classification. The first stage of the framework, 3D visual mapping, involves object detection from point cloud data. A review of related applications in other industries is provided, and recommendations for approaches for waste classification are made. Object detection focusses initially on cylindrical objects since pipework is significant in nuclear cells and indeed any industrial site. The approach can be extended to other commonly occurring primitives such as spheres and cubes. This is in preparation of stage two, characterizing the point cloud data and estimating the dimensions, material, degradation, and mass of the objects detected in order to feature match them to an inventory of possible items found in that nuclear cell. Many items in nuclear cells are one-offs, have limited or poor drawings available, or have been modified since installation, and have complex interiors, which often and inadvertently pose difficulties when accessing certain zones and identifying waste remotely. Hence, this may require expert input to feature match objects. The third stage, radiological mapping, is similar in order to facilitate the characterization of the nuclear cell in terms of radiation fields, including the type of radiation, activity, and location within the nuclear cell. The fourth stage of the framework takes the visual map for stage 1, the object characterization from stage 2, and radiation map from stage 3 and fuses them together, providing a more detailed scene of the nuclear cell by identifying the location of radioactive materials in three dimensions. The last stage involves combining the evidence from the fused data sets to reveal the classification of the waste in Bq/kg, thus enabling better decision making and monitoring for in-cell decommissioning. The presentation of the framework is supported by representative case study data drawn from an application in decommissioning from a UK nuclear facility. This framework utilises recent advancements of the detection and mapping capabilities of complex radiation fields in three dimensions to make the process of classifying nuclear waste faster, more reliable, cost-effective and safer.Keywords: nuclear decommissioning, radiation detection, object detection, waste classification
Procedia PDF Downloads 2014352 Dogmatic Analysis of Legal Risks of Using Artificial Intelligence: The European Union and Polish Perspective
Authors: Marianna Iaroslavska
Abstract:
ChatGPT is becoming commonplace. However, only a few people think about the legal risks of using Large Language Model in their daily work. The main dilemmas concern the following areas: who owns the copyright to what somebody creates through ChatGPT; what can OpenAI do with the prompt you enter; can you accidentally infringe on another creator's rights through ChatGPT; what about the protection of the data somebody enters into the chat. This paper will present these and other legal risks of using large language models at work using dogmatic methods and case studies. The paper will present a legal analysis of AI risks against the background of European Union law and Polish law. This analysis will answer questions about how to protect data, how to make sure you do not violate copyright, and what is at stake with the AI Act, which recently came into force in the EU. If your work is related to the EU area, and you use AI in your work, this paper will be a real goldmine for you. The copyright law in force in Poland does not protect your rights to a work that is created with the help of AI. So if you start selling such a work, you may face two main problems. First, someone may steal your work, and you will not be entitled to any protection because work created with AI does not have any legal protection. Second, the AI may have created the work by infringing on another person's copyright, so they will be able to claim damages from you. In addition, the EU's current AI Act imposes a number of additional obligations related to the use of large language models. The AI Act divides artificial intelligence into four risk levels and imposes different requirements depending on the level of risk. The EU regulation is aimed primarily at those developing and marketing artificial intelligence systems in the EU market. In addition to the above obstacles, personal data protection comes into play, which is very strictly regulated in the EU. If you violate personal data by entering information into ChatGPT, you will be liable for violations. When using AI within the EU or in cooperation with entities located in the EU, you have to take into account a lot of risks. This paper will highlight such risks and explain how they can be avoided.Keywords: EU, AI act, copyright, polish law, LLM
Procedia PDF Downloads 234351 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment
Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali
Abstract:
This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis
Procedia PDF Downloads 4284350 Calculation of Lattice Constants and Band Gaps for Generalized Quasicrystals of InGaN Alloy: A First Principle Study
Authors: Rohin Sharma, Sumantu Chaulagain
Abstract:
This paper presents calculations of total energy of InGaN alloy carried out in a disordered quasirandom structure for a triclinic super cell. This structure replicates the disorder and composition effect in the alloy. First principle calculations within the density functional theory with the local density approximation approach is employed to accurately determine total energy of the system. Lattice constants and band gaps associated with the ground states are then estimated for different concentration ratios of the alloy. We provide precise results of quasirandom structures of the alloy and their lattice constants with the total energy and band gap energy of the system for the range of seven different composition ratios and their respective lattice parameters.Keywords: DFT, ground state, LDA, quasicrystal, triclinic super cell
Procedia PDF Downloads 1904349 Oil Reservoir Asphalting Precipitation Estimating during CO2 Injection
Authors: I. Alhajri, G. Zahedi, R. Alazmi, A. Akbari
Abstract:
In this paper, an Artificial Neural Network (ANN) was developed to predict Asphaltene Precipitation (AP) during the injection of carbon dioxide into crude oil reservoirs. In this study, the experimental data from six different oil fields were collected. Seventy percent of the data was used to develop the ANN model, and different ANN architectures were examined. A network with the Trainlm training algorithm was found to be the best network to estimate the AP. To check the validity of the proposed model, the model was used to predict the AP for the thirty percent of the data that was unevaluated. The Mean Square Error (MSE) of the prediction was 0.0018, which confirms the excellent prediction capability of the proposed model. In the second part of this study, the ANN model predictions were compared with modified Hirschberg model predictions. The ANN was found to provide more accurate estimates compared to the modified Hirschberg model. Finally, the proposed model was employed to examine the effect of different operating parameters during gas injection on the AP. It was found that the AP is mostly sensitive to the reservoir temperature. Furthermore, the carbon dioxide concentration in liquid phase increases the AP.Keywords: artificial neural network, asphaltene, CO2 injection, Hirschberg model, oil reservoirs
Procedia PDF Downloads 3664348 Synthesis and Characterizations of Sulfonated Poly (Ether Ether Ketone) Speek Nanofiber Membrane
Authors: N. Hasbullah, K. A. Sekak
Abstract:
The sulfonated poly (ether ether ketone) SPEEK nanofiber membrane were successfully electrospun for Polymer Electrolyte Membrane (PEM) in Proton Exchange Membrane Fuel Cell (PEMFC) and their nanosized properties were investigated. The poly (ether ether ketone) PEEK victrex® grade 90p was sulfonated with concentrated sulfuric acid (95-98% w/w) at room temperature for 60 hours sulfonation times. The degree sulfonation of SPEEK are 70% was determined by H1 NMR and the functional groups of the SPEEK were characterize using FTIR. Then, the SPEEK nanofiber membrane were prepared via electrospinning method using DMAC as a solvent. The SPEEK sample were successfully electrospun using predetermine set up. FESEM show the electrospun fiber mat surface and confirmed the nanostructure membrane cell.Keywords: polymer electrolyte membrane (PEM), sulfonated poly (ether ether ketone) (SPEEK), degree sulfonation, Electrospinning, Nanofibers
Procedia PDF Downloads 3114347 Hyaluronic Acid - Alginate Hydrogel for the Transdifferentiation of Testis Cells into Erythrocyte and Hepatocyte-like Cells; A Practice Within an Effective Agent Choice
Authors: Leila Rashki Ghaleno, Mohamad Amin Hajari, Leila Montazeri, Abdolhossein Shahverdi, Mojtaba Rezazadeh Valojerdi
Abstract:
Background: Spermatogonia stem cells (SSCs) exhibit pluripotency, enabling them to undergo differentiation into many cell lineages, including neurons, glia, endothelial cells, and hepatocytes when cultured in vitro. Although the specific mechanisms are not yet fully understood, it has been observed that biopolymer agents, such as hyaluronic acid (HA) and alginate (Alg), have the potential to induce transdifferentiation of SSCs. The current work aimed to examine the process of in vitro spermatogenesis and the conversion of mouse testicular cells into hepatocytes and erythrocyte-like cells utilizing the HA-Alg hydrogel. Method: After being extracted from the testes of a 5-day postpartum mouse (5 DPP), the testicular cells were separated into two enzymatic stages and then put into a composite hydrogel containing 0.5% HA and 1% alginate. On days 14 and 28 of culture, the colonies' growth, the cells' viability, and their histology were assessed. Result: Despite observing significant cell proliferation on day 14 and the development of circular-shaped organoids on day 28, it was noted that the organoids generated in the HA-Alg medium tended to maintain their circular morphology on day 28. Notably, the testicular cells underwent transdifferentiation into cell types resembling erythrocytes and hepatocytes. The hepatocyte-like cells exhibited the presence of glycogen and lipid deposits, indicating their hepatocyte-like characteristics. Interestingly, immunostaining analysis revealed the secretion of albumin and the presence of VEGFR on day 14. However, on day 28, albumin expression was not detected, while the expression of Sox9 (a marker for hepatocytes), Vegf, CD34, and C-kit (markers for erythrocytes) showed increased levels in the gene expression evaluation. Conclusion: The present findings indicated that HA-Alg could be a potent and effective agent for the transdifferentiation of testis cells into erythrocyte and hepatocyte-like cells, as recent studies have confirmed the transformation of SSCs into hepatocyte cells during in vitro culture.Keywords: 3D culture, mouse testicular cell, hyaluronic acid, liver organoids
Procedia PDF Downloads 714346 Micromechanics Modeling of 3D Network Smart Orthotropic Structures
Authors: E. M. Hassan, A. L. Kalamkarov
Abstract:
Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unit-cell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.Keywords: asymptotic homogenization method, finite element analysis, effective piezothermoelastic coefficients, 3D smart network composite structures
Procedia PDF Downloads 4004345 The Effects of Root Zone Supply of Aluminium on Vegetative Growth of 15 Groundnut Cultivars Grown in Solution Culture
Authors: Mosima M. Mabitsela
Abstract:
Groundnut is preferably grown on light textured soils. Most of these light textured soils tend to be highly weathered and characterized by high soil acidity and low nutrient status. One major soil factor associated with infertility of acidic soils that can negatively depress groundnut yield is aluminium (Al) toxicity. In plants Al toxicity damages root cells, leading to inhibition of root growth as a result of the suppression of cell division, cell elongation and cell expansion in the apical meristem cells of the root. The end result is that roots become stunted and brittle, root hair development is poor, and the root apices become swollen. This study was conducted to determine the effects of aluminium (Al) toxicity on a range of groundnut varieties. Fifteen cultivars were tested in incremental aluminum (Al) supply in an ebb and flow solution culture laid out in a randomized complete block design. There were six aluminium (Al) treatments viz. 0 µM, 1 µM, 5.7 µM, 14.14 µM, 53.18 µM, and 200 µM. At 1 µM there was no inhibitory effect on the growth of groundnut. The inhibition of groundnut growth was noticeable from 5.7 µM to 200 µM, where the severe effect of aluminium (Al) stress was observed at 200 µM. The cultivars varied in their response to aluminium (Al) supply in solution culture. Groundnuts are one of the most important food crops in the world, and its supply is on a decline due to the light-textured soils that they thrive under as these soils are acidic and can easily solubilize aluminium (Al) to its toxic form. Consequently, there is a need to develop groundnut cultivars with high tolerance to soil acidity.Keywords: aluminium toxicity, cultivars, reduction, root growth
Procedia PDF Downloads 1524344 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning
Authors: Umamaheswari Shanmugam, Silvia Ronchi, Radu Vornicu
Abstract:
Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that are able to use the large amount and variety of data generated during healthcare services every day. As we read the news, over 500 machine learning or other artificial intelligence medical devices have now received FDA clearance or approval, the first ones even preceding the year 2000. One of the big advantages of these new technologies is the ability to get experience and knowledge from real-world use and to continuously improve their performance. Healthcare systems and institutions can have a great benefit because the use of advanced technologies improves the same time efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and also to protect patients’ safety. The evolution and the continuous improvement of software used in healthcare must take into consideration the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device approval, but they are necessary to ensure performance, quality, and safety, and at the same time, they can be a business opportunity if the manufacturer is able to define in advance the appropriate regulatory strategy. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems.
Procedia PDF Downloads 924343 Single Cell Analysis of Circulating Monocytes in Prostate Cancer Patients
Authors: Leander Van Neste, Kirk Wojno
Abstract:
The innate immune system reacts to foreign insult in several unique ways, one of which is phagocytosis of perceived threats such as cancer, bacteria, and viruses. The goal of this study was to look for evidence of phagocytosed RNA from tumor cells in circulating monocytes. While all monocytes possess phagocytic capabilities, the non-classical CD14+/FCGR3A+ monocytes and the intermediate CD14++/FCGR3A+ monocytes most actively remove threatening ‘external’ cellular materials. Purified CD14-positive monocyte samples from fourteen patients recently diagnosed with clinically localized prostate cancer (PCa) were investigated by single-cell RNA sequencing using the 10X Genomics protocol followed by paired-end sequencing on Illumina’s NovaSeq. Similarly, samples were processed and used as controls, i.e., one patient underwent biopsy but was found not to harbor prostate cancer (benign), three young, healthy men, and three men previously diagnosed with prostate cancer that recently underwent (curative) radical prostatectomy (post-RP). Sequencing data were mapped using 10X Genomics’ CellRanger software and viable cells were subsequently identified using CellBender, removing technical artifacts such as doublets and non-cellular RNA. Next, data analysis was performed in R, using the Seurat package. Because the main goal was to identify differences between PCa patients and ‘control’ patients, rather than exploring differences between individual subjects, the individual Seurat objects of all 21 patients were merged into one Seurat object per Seurat’s recommendation. Finally, the single-cell dataset was normalized as a whole prior to further analysis. Cell identity was assessed using the SingleR and cell dex packages. The Monaco Immune Data was selected as the reference dataset, consisting of bulk RNA-seq data of sorted human immune cells. The Monaco classification was supplemented with normalized PCa data obtained from The Cancer Genome Atlas (TCGA), which consists of bulk RNA sequencing data from 499 prostate tumor tissues (including 1 metastatic) and 52 (adjacent) normal prostate tissues. SingleR was subsequently run on the combined immune cell and PCa datasets. As expected, the vast majority of cells were labeled as having a monocytic origin (~90%), with the most noticeable difference being the larger number of intermediate monocytes in the PCa patients (13.6% versus 7.1%; p<.001). In men harboring PCa, 0.60% of all purified monocytes were classified as harboring PCa signals when the TCGA data were included. This was 3-fold, 7.5-fold, and 4-fold higher compared to post-RP, benign, and young men, respectively (all p<.001). In addition, with 7.91%, the number of unclassified cells, i.e., cells with pruned labels due to high uncertainty of the assigned label, was also highest in men with PCa, compared to 3.51%, 2.67%, and 5.51% of cells in post-RP, benign, and young men, respectively (all p<.001). It can be postulated that actively phagocytosing cells are hardest to classify due to their dual immune cell and foreign cell nature. Hence, the higher number of unclassified cells and intermediate monocytes in PCa patients might reflect higher phagocytic activity due to tumor burden. This also illustrates that small numbers (~1%) of circulating peripheral blood monocytes that have interacted with tumor cells might still possess detectable phagocytosed tumor RNA.Keywords: circulating monocytes, phagocytic cells, prostate cancer, tumor immune response
Procedia PDF Downloads 1624342 Application of Neural Network in Portfolio Product Companies: Integration of Boston Consulting Group Matrix and Ansoff Matrix
Authors: M. Khajezadeh, M. Saied Fallah Niasar, S. Ali Asli, D. Davani Davari, M. Godarzi, Y. Asgari
Abstract:
This study aims to explore the joint application of both Boston and Ansoff matrices in the operational development of the product. We conduct deep analysis, by utilizing the Artificial Neural Network, to predict the position of the product in the market while the company is interested in increasing its share. The data are gathered from two industries, called hygiene and detergent. In doing so, the effort is being made by investigating the behavior of top player companies and, recommend strategic orientations. In conclusion, this combination analysis is appropriate for operational development; as well, it plays an important role in providing the position of the product in the market for both hygiene and detergent industries. More importantly, it will elaborate on the company’s strategies to increase its market share related to a combination of the Boston Consulting Group (BCG) Matrix and Ansoff Matrix.Keywords: artificial neural network, portfolio analysis, BCG matrix, Ansoff matrix
Procedia PDF Downloads 1434341 A Philosophical Investigation into African Conceptions of Personhood in the Fourth Industrial Revolution
Authors: Sanelisiwe Ndlovu
Abstract:
Cities have become testbeds for automation and experimenting with artificial intelligence (AI) in managing urban services and public spaces. Smart Cities and AI systems are changing most human experiences from health and education to personal relations. For instance, in healthcare, social robots are being implemented as tools to assist patients. Similarly, in education, social robots are being used as tutors or co-learners to promote cognitive and affective outcomes. With that general picture in mind, one can now ask a further question about Smart Cities and artificial agents and their moral standing in the African context of personhood. There has been a wealth of literature on the topic of personhood; however, there is an absence of literature on African personhood in highly automated environments. Personhood in African philosophy is defined by the role one can and should play in the community. However, in today’s technologically advanced world, a risk is that machines become more capable of accomplishing tasks that humans would otherwise do. Further, on many African communitarian accounts, personhood and moral standing are associated with active relationality with the community. However, in the Smart City, human closeness is gradually diminishing. For instance, humans already do engage and identify with robotic entities, sometimes even romantically. The primary aim of this study is to investigate how African conceptions of personhood and community interact in a highly automated environment such as Smart Cities. Accordingly, this study lies in presenting a rarely discussed African perspective that emphasizes the necessity and the importance of relationality in handling Smart Cities and AI ethically. Thus, the proposed approach can be seen as the sub-Saharan African contribution to personhood and the growing AI debates, which takes the reality of the interconnectedness of society seriously. And it will also open up new opportunities to tackle old problems and use existing resources to confront new problems in the Fourth Industrial Revolution.Keywords: smart city, artificial intelligence, personhood, community
Procedia PDF Downloads 2034340 Self-Assembled Laser-Activated Plasmonic Substrates for High-Throughput, High-Efficiency Intracellular Delivery
Authors: Marinna Madrid, Nabiha Saklayen, Marinus Huber, Nicolas Vogel, Christos Boutopoulos, Michel Meunier, Eric Mazur
Abstract:
Delivering material into cells is important for a diverse range of biological applications, including gene therapy, cellular engineering and imaging. We present a plasmonic substrate for delivering membrane-impermeable material into cells at high throughput and high efficiency while maintaining cell viability. The substrate fabrication is based on an affordable and fast colloidal self-assembly process. When illuminated with a femtosecond laser, the light interacts with the electrons at the surface of the metal substrate, creating localized surface plasmons that form bubbles via energy dissipation in the surrounding medium. These bubbles come into close contact with the cell membrane to form transient pores and enable entry of membrane-impermeable material via diffusion. We use fluorescence microscopy and flow cytometry to verify delivery of membrane-impermeable material into HeLa CCL-2 cells. We show delivery efficiency and cell viability data for a range of membrane-impermeable cargo, including dyes and biologically relevant material such as siRNA. We estimate the effective pore size by determining delivery efficiency for hard fluorescent spheres with diameters ranging from 20 nm to 2 um. To provide insight to the cell poration mechanism, we relate the poration data to pump-probe measurements of micro- and nano-bubble formation on the plasmonic substrate. Finally, we investigate substrate stability and reusability by using scanning electron microscopy (SEM) to inspect for damage on the substrate after laser treatment. SEM images show no visible damage. Our findings indicate that self-assembled plasmonic substrates are an affordable tool for high-throughput, high-efficiency delivery of material into mammalian cells.Keywords: femtosecond laser, intracellular delivery, plasmonic, self-assembly
Procedia PDF Downloads 5314339 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection
Authors: Ashkan Zakaryazad, Ekrem Duman
Abstract:
A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent
Procedia PDF Downloads 4754338 Thermal Barrier Coated Diesel Engine With Neural Networks Mathematical Modelling
Authors: Hanbey Hazar, Hakan Gul
Abstract:
In this study; piston, exhaust, and suction valves of a diesel engine were coated in 300 mm thickness with Tungsten Carbide (WC) by using the HVOF coating method. Mathematical modeling of a coated and uncoated (standardized) engine was performed by using ANN (Artificial Neural Networks). The purpose was to decrease the number of repetitions of tests and reduce the test cost through mathematical modeling of engines by using ANN. The results obtained from the tests were entered in ANN and therefore engines' values at all speeds were estimated. Results obtained from the tests were compared with those obtained from ANN and they were observed to be compatible. It was also observed that, with thermal barrier coating, hydrocarbon (HC), carbon monoxide (CO), and smoke density values of the diesel engine decreased; but nitrogen oxides (NOx) increased. Furthermore, it was determined that results obtained through mathematical modeling by means of ANN reduced the number of test repetitions. Therefore, it was understood that time, fuel and labor could be saved in this way.Keywords: Artificial Neural Network, Diesel Engine, Mathematical Modelling, Thermal Barrier Coating
Procedia PDF Downloads 5294337 Microfluidic Device for Real-Time Electrical Impedance Measurements of Biological Cells
Authors: Anil Koklu, Amin Mansoorifar, Ali Beskok
Abstract:
Dielectric spectroscopy (DS) is a noninvasive, label free technique for a long term real-time measurements of the impedance spectra of biological cells. DS enables characterization of cellular dielectric properties such as membrane capacitance and cytoplasmic conductivity. We have developed a lab-on-a-chip device that uses an electro-activated microwells array for loading, DS measurements, and unloading of biological cells. We utilized from dielectrophoresis (DEP) to capture target cells inside the wells and release them after DS measurement. DEP is a label-free technique that exploits differences among dielectric properties of the particles. In detail, DEP is the motion of polarizable particles suspended in an ionic solution and subjected to a spatially non-uniform external electric field. To the best of our knowledge, this is the first microfluidic chip that combines DEP and DS to analyze biological cells using electro-activated wells. Device performance is tested using two different cell lines of prostate cancer cells (RV122, PC-3). Impedance measurements were conducted at 0.2 V in the 10 kHz to 40 MHz range with 6 s time resolution. An equivalent circuit model was developed to extract the cell membrane capacitance and cell cytoplasmic conductivity from the impedance spectra. We report the time course of the variations in dielectric properties of PC-3 and RV122 cells suspended in low conductivity medium (LCB), which enhances dielectrophoretic and impedance responses, and their response to sudden pH change from a pH of 7.3 to a pH of 5.8. It is shown that microfluidic chip allowed online measurements of dielectric properties of prostate cancer cells and the assessment of the cellular level variations under external stimuli such as different buffer conductivity and pH. Based on these data, we intend to deploy the current device for single cell measurements by fabricating separately addressable N × N electrode platforms. Such a device will allow time-dependent dielectric response measurements for individual cells with the ability of selectively releasing them using negative-DEP and pressure driven flow.Keywords: microfluidic, microfabrication, lab on a chip, AC electrokinetics, dielectric spectroscopy
Procedia PDF Downloads 1514336 Modeling of Digital and Settlement Consolidation of Soil under Oedomete
Authors: Yu-Lin Shen, Ming-Kuen Chang
Abstract:
In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electromagnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.Keywords: EMAT, artificial defect, NDT, ultrasonic testing
Procedia PDF Downloads 333