Search results for: zinc metal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2924

Search results for: zinc metal

1574 Potential of Castor Bean (Ricinus Communis L.) for Phytoremediation of Soils Contaminated with Heavy Metals

Authors: Violina Angelova, Mariana Perifanova-Nemska, Krasimir Ivanov

Abstract:

The aim of this research was to investigate the potential for the use of Ricinus communis L. (castor oil plant) to remediate metal-polluted sites. This study was performed in industrially polluted soils containing high concentrations of Zn, Pb and Cd, situated at different distances (0.3, 2.0 and 15.0 km) from the source of pollution - the Non-Ferrous Metal Works near Plovdiv, Bulgaria. On reaching commercial ripeness, the castor oil plants were gathered and the contents of heavy metals in their different parts – roots, stems, leaves and seeds, were determined after dry ashing. Physico-chemical characterization, total, DTPA extractable and water-soluble metals in rhizospheric soil samples were carried. Translocation factors (TFs) were also determined. The quantitative measurements were carried out with ICP. A soxhlet extraction was used for the extraction of the oil, using hexane as solvent. The oil was recovered by simple distillation of the solvent. The residual oil obtained was investigated for physicochemical parameters and fatty acid composition. Bioaccumulation factor and translocation factor values (BAF and TF > 1) were greater than one suggesting efficient accumulation in the shoot. The castor oil plant may be preferred as a good candidate for phytoremediation (phytoextraction). These results indicate that R. communis has good potential for removing Pb from contaminated soils attributed to its fast growth, high biomass, strong absorption and accumulation for Pb. The concentrations of heavy metals in the oil were low as seed coats accumulated the highest concentrations of Cd and Pb. In addition, the result of the fatty acid composition analysis confirms the oil to be of good quality and can be used for industrial purposes such as cosmetics, soaps and paint.

Keywords: castor bean, heavy metals, phytoremediation, polluted soils

Procedia PDF Downloads 241
1573 Study of Lanthanoide Organic Frameworks Properties and Synthesis: Multicomponent Ligands

Authors: Ayla Roberta Galaco, Juliana Fonseca De Lima, Osvaldo Antonio Serra

Abstract:

Coordination polymers, also known as metal-organic frameworks (MOFs) or lanthanoide organic frameworks (LOFs) have been reported due of their promising applications in gas storage, separation, catalysis, luminescence, magnetism, drug delivery, and so on. As a type of organic–inorganic hybrid materials, the properties of coordination polymers could be chosen by deliberately selecting the organic and inorganic components. LOFs have received considerable attention because of their properties such as porosity, luminescence, and magnetism. Methods such as solvothermal synthesis are important as a strategy to control the structural and morphological properties as well as the composition of the target compounds. In this work the first solvothermal synthesis was employed to obtain the compound [Y0.4,Yb0.4,Er0.2(dmf)(for)(H2O)(tft)], by using terephthalic acid (tft) and oxalic acid, decomposed in formate (for), as ligands; Yttrium, Ytterbium and, Erbium as metal centers, in DMF and water for 4 days under 160 °C. The semi-rigid terephthalic acid (dicarboxylic) coordinates with Ln3+ ions and also is possible to form a polyfunctional bridge. On the other hand, oxalate anion has no high-energy vibrational groups, which benefits the excitation of Yb3+ in upconversion process. It was observed that the compounds with water molecules in the coordination sphere of the lanthanoide ions cause lower crystalline properties and change the structure of the LOF (1D, 2D, 3D). In the FTIR, the bands at 1589 and 1500 cm-1 correspond to the asymmetric stretching vibration of –COO. The band at 1383 cm-1 is assigned to the symmetric stretching vibration of –COO. Single crystal X-ray diffraction study reveals an infinite 3D coordination framework that crystalizes in space group P21/c. The other three products, [TR(chel)(ofd)0,5(H2O)2], where TR= Eu3+, Y3, and Yb3+/Er3+ were obtained by using 1, 2-phenylenedioxydiacetic acid (ofd) and chelidonic acid (chel) as organic ligands. Thermal analysis shows that the lanthanoide organic frameworks do not collapse at temperatures below 250 °C. By the polycrystalline X-ray diffraction patterns (PXRD) it was observed that the compounds with Eu3+, Y3+, and Yb3+/Er3+ ions are isostructural. From PXRD patterns, high crystallinity can be noticed for the complexes. The final products were characterized by single X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS) and thermogravimetric analysis (TGA). The X-ray diffraction (XRD) is an effective method to investigate crystalline properties of synthesized materials. The solid crystal obtained in the synthesis show peaks at 2θ < 10°, indicating the MOF formation. The chemical composition of LOFs was also confirmed by EDS.

Keywords: isostructural, lanthanoids, lanthanoids organic frameworks (LOFs), metal organic frameworks (MOFs), thermogravimetry, X-Ray diffraction

Procedia PDF Downloads 260
1572 Investigations into the Efficiencies of Steam Conversion in Three Reactor Chemical Looping

Authors: Ratnakumar V. Kappagantula, Gordon D. Ingram, Hari B. Vuthaluru

Abstract:

This paper analyzes a three reactor chemical looping process for hydrogen production from natural gas, allowing for carbon dioxide capture through chemical looping technology. An oxygen carrier is circulated to separate carbon dioxide, to reduce steam for hydrogen production and to supply oxygen for combustion. In this study, the emphasis is placed on the steam conversion in the steam reactor by investigating the hydrogen efficiencies of the complete system at steam conversions of 15.8% and 50%. An Aspen Plus model was developed for a Three Reactor Chemical Looping process to study the effects of operational parameters on hydrogen production is investigated. Maximum hydrogen production was observed under stoichiometric conditions. Different conversions in the steam reactor, which was modelled as a Gibbs reactor, were found when Gibbs-identified products and user identified products were chosen. Simulations were performed for different oxygen carriers, which consist of an active metal oxide on an inert support material. For the same metal oxide mass flowrate, the fuel reactor temperature decreased for different support materials in the order: aluminum oxide (Al2O3) > magnesium aluminate (MgAl2O4) > zirconia (ZrO2). To achieve the same fuel reactor temperature for the same oxide mass flow rate, the inert mass fraction was found to be 0.825 for ZrO2, 0.7 for MgAl2O4 and 0.6 for Al2O3. The effect of poisoning of the oxygen carrier was also analyzed. With 3000 ppm sulfur-based impurities in the feed gas, the hydrogen product energy rate of the process were found to decrease by 0.4%.

Keywords: aspen plus, chemical looping combustion, inert support balls, oxygen carrier

Procedia PDF Downloads 328
1571 Gas-Phase Noncovalent Functionalization of Pristine Single-Walled Carbon Nanotubes with 3D Metal(II) Phthalocyanines

Authors: Vladimir A. Basiuk, Laura J. Flores-Sanchez, Victor Meza-Laguna, Jose O. Flores-Flores, Lauro Bucio-Galindo, Elena V. Basiuk

Abstract:

Noncovalent nanohybrid materials combining carbon nanotubes (CNTs) with phthalocyanines (Pcs) is a subject of increasing research effort, with a particular emphasis on the design of new heterogeneous catalysts, efficient organic photovoltaic cells, lithium batteries, gas sensors, field effect transistors, among other possible applications. The possibility of using unsubstituted Pcs for CNT functionalization is very attractive due to their very moderate cost and easy commercial availability. However, unfortunately, the deposition of unsubstituted Pcs onto nanotube sidewalls through the traditional liquid-phase protocols turns to be very problematic due to extremely poor solubility of Pcs. On the other hand, unsubstituted free-base H₂Pc phthalocyanine ligand, as well as many of its transition metal complexes, exhibit very high thermal stability and considerable volatility under reduced pressure, which opens the possibility for their physical vapor deposition onto solid surfaces, including nanotube sidewalls. In the present work, we show the possibility of simple, fast and efficient noncovalent functionalization of single-walled carbon nanotubes (SWNTs) with a series of 3d metal(II) phthalocyanines Me(II)Pc, where Me= Co, Ni, Cu, and Zn. The functionalization can be performed in a temperature range of 400-500 °C under moderate vacuum and requires about 2-3 h only. The functionalized materials obtained were characterized by means of Fourier-transform infrared (FTIR), Raman, UV-visible and energy-dispersive X-ray spectroscopy (EDS), scanning and transmission electron microscopy (SEM and TEM, respectively) and thermogravimetric analysis (TGA). TGA suggested that Me(II)Pc weight content is 30%, 17% and 35% for NiPc, CuPc, and ZnPc, respectively (CoPc exhibited anomalous thermal decomposition behavior). The above values are consistent with those estimated from EDS spectra, namely, of 24-39%, 27-36% and 27-44% for CoPc, CuPc, and ZnPc, respectively. A strong increase in intensity of D band in the Raman spectra of SWNT‒Me(II)Pc hybrids, as compared to that of pristine nanotubes, implies very strong interactions between Pc molecules and SWNT sidewalls. Very high absolute values of binding energies of 32.46-37.12 kcal/mol and the highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO, respectively) distribution patterns, calculated with density functional theory by using Perdew-Burke-Ernzerhof general gradient approximation correlation functional in combination with the Grimme’s empirical dispersion correction (PBE-D) and the double numerical basis set (DNP), also suggested that the interactions between Me(II) phthalocyanines and nanotube sidewalls are very strong. The authors thank the National Autonomous University of Mexico (grant DGAPA-IN200516) and the National Council of Science and Technology of Mexico (CONACYT, grant 250655) for financial support. The authors are also grateful to Dr. Natalia Alzate-Carvajal (CCADET of UNAM), Eréndira Martínez (IF of UNAM) and Iván Puente-Lee (Faculty of Chemistry of UNAM) for technical assistance with FTIR, TGA measurements, and TEM imaging, respectively.

Keywords: carbon nanotubes, functionalization, gas-phase, metal(II) phthalocyanines

Procedia PDF Downloads 130
1570 Methylene Blue Removal Using NiO nanoparticles-Sand Adsorption Packed Bed

Authors: Nedal N. Marei, Nashaat Nassar

Abstract:

Many treatment techniques have been used to remove the soluble pollutants from wastewater as; dyes and metal ions which could be found in rich amount in the used water of the textile and tanneries industry. The effluents from these industries are complex, containing a wide variety of dyes and other contaminants, such as dispersants, acids, bases, salts, detergents, humectants, oxidants, and others. These techniques can be divided into physical, chemical, and biological methods. Adsorption has been developed as an efficient method for the removal of heavy metals from contaminated water and soil. It is now recognized as an effective method for the removal of both organic and inorganic pollutants from wastewaters. Nanosize materials are new functional materials, which offer high surface area and have come up as effective adsorbents. Nano alumina is one of the most important ceramic materials widely used as an electrical insulator, presenting exceptionally high resistance to chemical agents, as well as giving excellent performance as a catalyst for many chemical reactions, in microelectronic, membrane applications, and water and wastewater treatment. In this study, methylene blue (MB) dye has been used as model dye of textile wastewater in order to synthesize a synthetic MB wastewater. NiO nanoparticles were added in small percentage in the sand packed bed adsorption columns to remove the MB from the synthetic textile wastewater. Moreover, different parameters have been evaluated; flow of the synthetic wastewater, pH, height of the bed, percentage of the NiO to the sand in the packed material. Different mathematical models where employed to find the proper model which describe the experimental data and help to analyze the mechanism of the MB adsorption. This study will provide good understanding of the dyes adsorption using metal oxide nanoparticles in the classical sand bed.

Keywords: adsorption, column, nanoparticles, methylene

Procedia PDF Downloads 269
1569 Evaluation the Concentration of Pb, Cd, Cu, Ni, Zn, Cr in Rainbow Trout and Water of Haraz River

Authors: Meysam Tehranisharif, Hadi Nakhaee, Seyed Aaghaali Seyed Moosavi, Solmaz Ahadi

Abstract:

Being the second largest river in the southern Caspian Sea basin, the Haraz River flows northwards through the Alborz mountains in the central region of Mazandaran province.The Haraz basin has specific geological characteristics affecting the river water quality.This area has been a rich source of minerals from times immemorial. About 45 mines (coal, limestone, sand and gravel, etc.) have been operational for the last eight decades. In the other hand this region is one of the most famous fish culturing area around Tehran & many farms are located beside this river .The aim of this study was to determine the concentration of Zn, Cd, Cr, pb , Cu, Ni in fish muscles & water in Haraz river. In order to determine the heavy metals concentration in all parts of the river , 4 station (Haraz , Razan , chelrood & Amol)were selected . Totally 32 samples were colleted from 8 farms (4 sample from each farm and 2 farms from each station). 4 water samples were collected. Biometeric were performed , then 10 grams of fish muscle were dissected and samples were prepared according to standard method. Heavy metal concentration were determined by atomic absorption method. The mean concentration of Zn in fish muscles & water in Haraz , Razan , Chelrood and Amool were 0.72 , 0.32,0.522,0.5 & 1.72,1.81,1.77,1.7 ppm respectively. Ni didn't detect in fish samples but the mean concentration in water samples in Haraz , Razan , Chelrood and Amool were 1.1 ,0.9,1.1,1.1 ppm respectively. The mean concentration of Cr in fish muscles & water in Haraz , Razan , Chelrood and Amool were 0.586,0.492,0.5,0.552 & 2.2 , 2.2,2.1,2.22 ppm respectively . Cd didn't detect in any sample. Pb concentration in fish samples & water in Haraz , Razan , Chelrood & Amool were 0.44,0.34, o.37,0.48 & 0.11,0.11,0.11,0.14 ppm repectively .The mean concentration of Cu in fish muscles & water in Haraz , Razan , Chelrood and Amool were 0.754,0.372,0.539,2.3 &0.11,0.21,0.17,0.37 ppm respectively. Cu concentration in The fish muscles and water was increased significantly in Amol station .The results of this study showed that heavy metal concentration in fish muscles and water are lower than standards.

Keywords: heavy metals, fish, water, Haraz , Iran

Procedia PDF Downloads 342
1568 Recovery of Au and Other Metals from Old Electronic Components by Leaching and Liquid Extraction Process

Authors: Tomasz Smolinski, Irena Herdzik-Koniecko, Marta Pyszynska, M. Rogowski

Abstract:

Old electronic components can be easily found nowadays. Significant quantities of valuable metals such as gold, silver or copper are used for the production of advanced electronic devices. Old useless electronic device slowly became a new source of precious metals, very often more efficient than natural. For example, it is possible to recover more gold from 1-ton personal computers than seventeen tons of gold ore. It makes urban mining industry very profitable and necessary for sustainable development. For the recovery of metals from waste of electronic equipment, various treatment options based on conventional physical, hydrometallurgical and pyrometallurgical processes are available. In this group hydrometallurgy processes with their relatively low capital cost, low environmental impact, potential for high metal recoveries and suitability for small scale applications, are very promising options. Institute of Nuclear Chemistry and Technology has great experience in hydrometallurgy processes especially focused on recovery metals from industrial and agricultural wastes. At the moment, urban mining project is carried out. The method of effective recovery of valuable metals from central processing units (CPU) components has been developed. The principal processes such as acidic leaching and solvent extraction were used for precious metals recovery from old processors and graphic cards. Electronic components were treated by acidic solution at various conditions. Optimal acid concentration, time of the process and temperature were selected. Precious metals have been extracted to the aqueous phase. At the next step, metals were selectively extracted by organic solvents such as oximes or tributyl phosphate (TBP) etc. Multistage mixer-settler equipment was used. The process was optimized.

Keywords: electronic waste, leaching, hydrometallurgy, metal recovery, solvent extraction

Procedia PDF Downloads 137
1567 User-Controlled Color-Changing Textiles: From Prototype to Mass Production

Authors: Joshua Kaufman, Felix Tan, Morgan Monroe, Ayman Abouraddy

Abstract:

Textiles and clothing have been a staple of human existence for millennia, yet the basic structure and functionality of textile fibers and yarns has remained unchanged. While color and appearance are essential characteristics of a textile, an advancement in the fabrication of yarns that allows for user-controlled dynamic changes to the color or appearance of a garment has been lacking. Touch-activated and photosensitive pigments have been used in textiles, but these technologies are passive and cannot be controlled by the user. The technology described here allows the owner to control both when and in what pattern the fabric color-change takes place. In addition, the manufacturing process is compatible with mass-producing the user-controlled, color-changing yarns. The yarn fabrication utilizes a fiber spinning system that can produce either monofilament or multifilament yarns. For products requiring a more robust fabric (backpacks, purses, upholstery, etc.), larger-diameter monofilament yarns with a coarser weave are suitable. Such yarns are produced using a thread-coater attachment to encapsulate a 38-40 AWG metal wire inside a polymer sheath impregnated with thermochromic pigment. Conversely, products such as shirts and pants requiring yarns that are more flexible and soft against the skin comprise multifilament yarns of much smaller-diameter individual fibers. Embedding a metal wire in a multifilament fiber spinning process has not been realized to date. This research has required collaboration with Hills, Inc., to design a liquid metal-injection system to be combined with fiber spinning. The new system injects molten tin into each of 19 filaments being spun simultaneously into a single yarn. The resulting yarn contains 19 filaments, each with a tin core surrounded by a polymer sheath impregnated with thermochromic pigment. The color change we demonstrate is distinct from garments containing LEDs that emit light in various colors. The pigment itself changes its optical absorption spectrum to appear a different color. The thermochromic color-change is induced by a temperature change in the inner metal wire within each filament when current is applied from a small battery pack. The temperature necessary to induce the color change is near body temperature and not noticeable by touch. The prototypes already developed either use a simple push button to activate the battery pack or are wirelessly activated via a smart-phone app over Wi-Fi. The app allows the user to choose from different activation patterns of stripes that appear in the fabric continuously. The power requirements are mitigated by a large hysteresis in the activation temperature of the pigment and the temperature at which there is full color return. This was made possible by a collaboration with Chameleon International to develop a new, customized pigment. This technology enables a never-before seen capability: user-controlled, dynamic color and pattern change in large-area woven and sewn textiles and fabrics with wide-ranging applications from clothing and accessories to furniture and fixed-installation housing and business décor. The ability to activate through Wi-Fi opens up possibilities for the textiles to be part of the ‘Internet of Things.’ Furthermore, this technology is scalable to mass-production levels for wide-scale market adoption.

Keywords: activation, appearance, color, manufacturing

Procedia PDF Downloads 278
1566 The Financial and Metallurgical Benefits of Niobium Grain Refined As-Rolled 460 MPa H-Beam to the Construction Industry in SE Asia

Authors: Michael Wright, Tiago Costa

Abstract:

The construction industry in SE Asia has been relying on S355 MPa “as rolled” H-beams for many years now. It is an easily sourced, metallurgically simple, reliable product that all designers, fabricators and constructors are familiar with. However, as the Global demand to better use our finite resources gets stronger, the need for an as-rolled S460 MPa H-Beam is becoming more apparent. The Financial benefits of an “as-rolled” S460 MPa H-beam are obvious. The S460 MPa beam which is currently available and used is fabricated from rolled strip. However, making H-beam from 3 x 460 MPa strips requires costly equipment, valuable welding skills & production time, all of which can be in short supply or better used for other purposes. The Metallurgical benefits of an “as-rolled” S460 MPa H-beam are consistency in the product. Fabricated H-beams have inhomogeneous areas where the strips have been welded together - parent metal, heat affected zone and weld metal all in the one body. They also rely heavily on the skill of the welder to guarantee a perfect, defect free weld. If this does not occur, the beam is intrinsically flawed and could lead to failure in service. An as-rolled beam is a relatively homogenous product, with the optimum strength and ductility produced by delivering steel with as fine as possible uniform cross sectional grain size. This is done by cost effective alloy design coupled with proper metallurgical process control implemented into an existing mill’s equipment capability and layout. This paper is designed to highlight the benefits of bring an “as-rolled” S460 MPa H-beam to the construction market place in SE Asia, and hopefully encourage the current “as-rolled” H-beam producers to rise to the challenge and produce an innovative high quality product for the local market.

Keywords: fine grained, As-rolled, long products, process control, metallurgy

Procedia PDF Downloads 300
1565 Thermally Stable Crystalline Triazine-Based Organic Polymeric Nanodendrites for Mercury(2+) Ion Sensing

Authors: Dimitra Das, Anuradha Mitra, Kalyan Kumar Chattopadhyay

Abstract:

Organic polymers, constructed from light elements like carbon, hydrogen, nitrogen, oxygen, sulphur, and boron atoms, are the emergent class of non-toxic, metal-free, environmental benign advanced materials. Covalent triazine-based polymers with a functional triazine group are significant class of organic materials due to their remarkable stability arising out of strong covalent bonds. They can conventionally form hydrogen bonds, favour π–π contacts, and they were recently revealed to be involved in interesting anion–π interactions. The present work mainly focuses upon the development of a single-crystalline, highly cross-linked triazine-based nitrogen-rich organic polymer with nanodendritic morphology and significant thermal stability. The polymer has been synthesized through hydrothermal treatment of melamine and ethylene glycol resulting in cross-polymerization via condensation-polymerization reaction. The crystal structure of the polymer has been evaluated by employing Rietveld whole profile fitting method. The polymer has been found to be composed of monoclinic melamine having space group P21/a. A detailed insight into the chemical structure of the as synthesized polymer has been elucidated by Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopic analysis. X-Ray Photoelectron Spectroscopic (XPS) analysis has also been carried out for further understanding of the different types of linkages required to create the backbone of the polymer. The unique rod-like morphology of the triazine based polymer has been revealed from the images obtained from Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM). Interestingly, this polymer has been found to selectively detect mercury (Hg²⁺) ions at an extremely low concentration through fluorescent quenching with detection limit as low as 0.03 ppb. The high toxicity of mercury ions (Hg²⁺) arise from its strong affinity towards the sulphur atoms of biological building blocks. Even a trace quantity of this metal is dangerous for human health. Furthermore, owing to its small ionic radius and high solvation energy, Hg²⁺ ions remain encapsulated by water molecules making its detection a challenging task. There are some existing reports on fluorescent-based heavy metal ion sensors using covalent organic frameworks (COFs) but reports on mercury sensing using triazine based polymers are rather undeveloped. Thus, the importance of ultra-trace detection of Hg²⁺ ions with high level of selectivity and sensitivity has contemporary significance. A plausible sensing phenomenon by the polymer has been proposed to understand the applicability of the material as a potential sensor. The impressive sensitivity of the polymer sample towards Hg²⁺ is the very first report in the field of highly crystalline triazine based polymers (without the introduction of any sulphur groups or functionalization) towards mercury ion detection through photoluminescence quenching technique. This crystalline metal-free organic polymer being cheap, non-toxic and scalable has current relevance and could be a promising candidate for Hg²⁺ ion sensing at commercial level.

Keywords: fluorescence quenching , mercury ion sensing, single-crystalline, triazine-based polymer

Procedia PDF Downloads 136
1564 Fabrication of High-Aspect Ratio Vertical Silicon Nanowire Electrode Arrays for Brain-Machine Interfaces

Authors: Su Yin Chiam, Zhipeng Ding, Guang Yang, Danny Jian Hang Tng, Peiyi Song, Geok Ing Ng, Ken-Tye Yong, Qing Xin Zhang

Abstract:

Brain-machine interfaces (BMI) is a ground rich of exploration opportunities where manipulation of neural activity are used for interconnect with myriad form of external devices. These research and intensive development were evolved into various areas from medical field, gaming and entertainment industry till safety and security field. The technology were extended for neurological disorders therapy such as obsessive compulsive disorder and Parkinson’s disease by introducing current pulses to specific region of the brain. Nonetheless, the work to develop a real-time observing, recording and altering of neural signal brain-machine interfaces system will require a significant amount of effort to overcome the obstacles in improving this system without delay in response. To date, feature size of interface devices and the density of the electrode population remain as a limitation in achieving seamless performance on BMI. Currently, the size of the BMI devices is ranging from 10 to 100 microns in terms of electrodes’ diameters. Henceforth, to accommodate the single cell level precise monitoring, smaller and denser Nano-scaled nanowire electrode arrays are vital in fabrication. In this paper, we would like to showcase the fabrication of high aspect ratio of vertical silicon nanowire electrodes arrays using microelectromechanical system (MEMS) method. Nanofabrication of the nanowire electrodes involves in deep reactive ion etching, thermal oxide thinning, electron-beam lithography patterning, sputtering of metal targets and bottom anti-reflection coating (BARC) etch. Metallization on the nanowire electrode tip is a prominent process to optimize the nanowire electrical conductivity and this step remains a challenge during fabrication. Metal electrodes were lithographically defined and yet these metal contacts outline a size scale that is larger than nanometer-scale building blocks hence further limiting potential advantages. Therefore, we present an integrated contact solution that overcomes this size constraint through self-aligned Nickel silicidation process on the tip of vertical silicon nanowire electrodes. A 4 x 4 array of vertical silicon nanowires electrodes with the diameter of 290nm and height of 3µm has been successfully fabricated.

Keywords: brain-machine interfaces, microelectromechanical systems (MEMS), nanowire, nickel silicide

Procedia PDF Downloads 435
1563 Nitrogen-Fixing Rhizobacteria (Rhizobium mililoti 2011) Enhances the Tolerance and the Accumulation of Cadmium in Medicago sativa

Authors: Tahar Ghnaya, Majda Mnasri, Hanen Zaier, Rim Ghabriche, Chedly Abdelly

Abstract:

It is known that the symbiotic association between plant and microorganisms are beneficial for plant growth and resistance to metal stress. Hence, it was demonstrated that Arbuscular mycorrhizal fungi have a positive effect on host plants growing in metal polluted soils. Legume plants are those which normally associate to rhizobacteria in order to fix atmospheric nitrogen. The aim of this work was to evaluate the effect this type of symbiosis on the tolerance and the accumulation of Cd. We chose Medicago sativa, as a modal for host legume plants and Rhizobium mililoti 2011 as rhizobial strain. Inoculated and non-inoculated plants of M. sativa were submitted during three month to 0, 50, and 100 mgCd/kg dry soil. Results showed that the presence of Cd in the medium induced, in both inoculated and non-inoculated plants, a chlorosis and necrosis. However, these symptoms were more pronounced in non-inoculated plants. The beneficial effect of inoculation of M. sativa with R. meliloti, on plant growth was confirmed by the measurement of biomass production which showed that the symbiotic association between host plant and rhizobacteria alleviates significantly Cd effect on biomass production, so inoculated plants produced more dry weight as compared to non-inoculated ones in the presence of all Cd tretments. On the other hand, under symbiosis conditions, Cd was more accumulated in different plant organs. Hence, in these plants, shoot Cd concentration reached 425 and it was 280 µg/gDW in non-inoculated ones in the presence of 100 ppm Cd. This result suggests that symbiosis enhances the absorption and translocation of Cd in this plant. In nodules and roots, we detected the highest Cd concentrations, demonstrating that these organs are able to concentrate Cd in their tissues. These data confirm that M. sataiva, cultivated in symbiosis with Rhizobium mililoti could be used in phytoextraction of Cd from contaminated soils.

Keywords: Cd, phytoremediation, Medicago sativa, Arbuscular mycorrhizal

Procedia PDF Downloads 277
1562 Preparation Static Dissipative Nanocomposites of Alkaline Earth Metal Doped Aluminium Oxide and Methyl Vinyl Silicone Polymer

Authors: Aparna M. Joshi

Abstract:

Methyl vinyl silicone polymer (VMQ) - alkaline earth metal doped aluminium oxide composites are prepared by conventional two rolls open mill mixing method. Doped aluminium oxides (DAO) using silvery white coloured alkaline earth metals such as Mg and Ca as dopants in the concentration of 0.4 % are synthesized by microwave combustion method and referred as MA ( Mg doped aluminium oxide) and CA ( Ca doped aluminium oxide). The as-synthesized materials are characterized for the electrical resistance, X–ray diffraction, FE-SEM, TEM and FTIR. The electrical resistances of the DAOs are observed to be ~ 8-20 MΩ. This means that the resistance of aluminium oxide (Corundum) α-Al2O3 which is ~ 1010Ω is reduced by the order of ~ 103 to 104 Ω after doping. XRD studies reveal the doping of Mg and Ca in aluminium oxide. The microstructural study using FE-SEM shows the flaky clusterous structures with the thickness of the flakes between 10 and 20 nm. TEM images depict the rod-shaped morphological geometry of the particles with the diameter of ~50-70 nm. The nanocomposites are synthesized by incorporating the DAOs in the concentration of 75 phr (parts per hundred parts of rubber) into VMQ polymer. The electrical resistance of VMQ polymer, which is ~ 1015Ω, drops by the order of 108Ω. There is a retention of the electrical resistance of ~ 30-50 MΩ for the nanocomposites which is a static dissipative range of electricity. In this work white coloured electrically conductive VMQ polymer-DAO nanocomposites (MAVMQ for Mg doping and CAVMQ for Ca doping) have been synthesized. The physical and mechanical properties of the composites such as specific gravity, hardness, tensile strength and rebound resilience are measured. Hardness and tensile strength are found to increase, with the negligible alteration in the other properties.

Keywords: doped aluminium oxide, methyl vinyl silicone polymer, microwave synthesis, static dissipation

Procedia PDF Downloads 557
1561 An Investigation on MgAl₂O₄ Based Mould System in Investment Casting Titanium Alloy

Authors: Chen Yuan, Nick Green, Stuart Blackburn

Abstract:

The investment casting process offers a great freedom of design combined with the economic advantage of near net shape manufacturing. It is widely used for the production of high value precision cast parts in particularly in the aerospace sector. Various combinations of materials have been used to produce the ceramic moulds, but most investment foundries use a silica based binder system in conjunction with fused silica, zircon, and alumino-silicate refractories as both filler and coarse stucco materials. However, in the context of advancing alloy technologies, silica based systems are struggling to keep pace, especially when net-shape casting titanium alloys. Study has shown that the casting of titanium based alloys presents considerable problems, including the extensive interactions between the metal and refractory, and the majority of metal-mould interaction is due to reduction of silica, present as binder and filler phases, by titanium in the molten state. Cleaner, more refractory systems are being devised to accommodate these changes. Although yttria has excellent chemical inertness to titanium alloy, it is not very practical in a production environment combining high material cost, short slurry life, and poor sintering properties. There needs to be a cost effective solution to these issues. With limited options for using pure oxides, in this work, a silica-free magnesia spinel MgAl₂O₄ was used as a primary coat filler and alumina as a binder material to produce facecoat in the investment casting mould. A comparison system was also studied with a fraction of the rare earth oxide Y₂O₃ adding into the filler to increase the inertness. The stability of the MgAl₂O₄/Al₂O₃ and MgAl₂O₄/Y₂O₃/Al₂O₃ slurries was assessed by tests, including pH, viscosity, zeta-potential and plate weight measurement, and mould properties such as friability were also measured. The interaction between the face coat and titanium alloy was studied by both a flash re-melting technique and a centrifugal investment casting method. The interaction products between metal and mould were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). The depth of the oxygen hardened layer was evaluated by micro hardness measurement. Results reveal that introducing a fraction of Y₂O₃ into magnesia spinel can significantly increase the slurry life and reduce the thickness of hardened layer during centrifugal casting.

Keywords: titanium alloy, mould, MgAl₂O₄, Y₂O₃, interaction, investment casting

Procedia PDF Downloads 113
1560 Effect of Flux Salts on the Recovery Extent and Quality of Metal Values from Spent Rechargeable Lead Batteries

Authors: Mahmoud A Rabah, Sabah M. Abelbasir

Abstract:

Lead-calcium alloy containing up to 0.10% calcium was recovered from spent rechargeable sealed acid lead batteries. Two techniques were investigated to explore the effect of flux salts on the extent and quality of the recovered alloy, pyro-metallurgical and electrochemical methods. About 10 kg of the spent batteries were collected for testing. The sample was washed with hot water and dried. The plastic cases of the batteries were mechanically cut, and the contents were dismantled manually, the plastic containers were shredded for recycling. The electrode plates were freed from the loose powder and placed in SiC crucible and covered with alkali chloride salts. The loaded crucible was heated in an electronically controlled chamber furnace type Nabertherm C3 at temperatures up to 800 °C. The obtained metals were analyzed. The effect of temperature, rate of heating, atmospheric conditions, composition of the flux salts on the extent and quality of the recovered products were studied. Results revealed that the spent rechargeable batteries contain 6 blocks of 6 plates of Pb-Ca alloy each. Direct heating of these plates in a silicon carbide crucible under ambient conditions produces lead metal poor in calcium content ( < 0.07%) due to partial oxidation of the alloying calcium element. Rate of temperature increase has a considerable effect on the yield of the lead alloy extraction. Flux salts composition benefits the recovery process. Sodium salts are more powerful as compared to potassium salts. Lead calcium alloy meeting the standard specification was successfully recovered from the spent rechargeable acid lead batteries with a very competitive cost to the same alloy prepared from primary resources.

Keywords: rechargeable lead batteries, lead-calcium alloy, waste recovery, flux salts, thermal recovery

Procedia PDF Downloads 373
1559 Nickel Oxide-Nitrogen-Doped Carbon (Ni/NiOx/NC) Derived from Pyrolysis of 2-Aminoterephthalic Acid for Electrocatalytic Oxidation of Ammonia

Authors: Yu-Jen Shih, Juan-Zhang Lou

Abstract:

Nitrogenous compounds, such as NH4+/NH3 and NO3-, have become important contaminants in water resources. Excessive concentration of NH3 leads to eutrophication, which poses a threat to aquatic organisms in the environment. Electrochemical oxidation emerged as a promising water treatment technology, offering advantages such as simplicity, small-scale operation, and minimal reliance on additional chemicals. In this study, a nickel-based metal-organic framework (Ni-MOF) was synthesized using 2-amino terephthalic acid (BDC-NH2) and nickel nitrate. The Ni-MOF was further carbonized as derived nickel oxide and nitrogen-carbon composite, Ni/NiOx/NC. The nickel oxide within the 2D porous carbon texture served as active sites for ammonia oxidation. Results of characterization showed that the Ni-MOF was a hexagonal and flaky nanoparticle. With increasing carbonization temperature, the nickel ions in the organic framework re-crystallized as NiO clusters on the surfaces of the 2D carbon. The electrochemical surface area of Ni/NiOx/NC significantly increased as to improve the efficiency of ammonia oxidation. The phase transition of Ni(OH)2⇌NiOOH at around +0.8 V was the primary mediator of electron transfer. Batch electrolysis was conducted under constant current and constant potential modes. The electrolysis parameters included pyrolysis temperatures, pH, current density, initial feed concentration, and electrode potential. The constant current batch experiments indicated that via carbonization at 800 °C, Ni/NiOx/NC(800) was able to decrease the ammonium nitrogen of 50 mg-N/L to below 1 ppm within 4 hours at a current density of 3 mA/cm2 and pH 11 with negligible oxygenated nitrogen formation. The constant potential experiments confirmed that N2 nitrogen selectivity was enhanced up to 90% at +0.8 V.

Keywords: electrochemical oxidation, nickel oxyhydroxide, metal-organic framework, ammonium, nitrate

Procedia PDF Downloads 65
1558 Dietary Risk Assessment of Green Leafy Vegetables (GLV) Due to Heavy Metals from Selected Mining Areas

Authors: Simon Mensah Ofosu

Abstract:

Illicit surface mining activities pollutes agricultural lands and water bodies and results in accumulation of heavy metals in vegetables cultivated in such areas. Heavy metal (HM) accumulation in vegetables is a serious food safety issues due to the adverse effects of metal toxicities, hence the need to investigate the levels of these metals in cultivated vegetables in the eastern region. Cocoyam leaves, cabbage and cucumber were sampled from selected farms in mining areas (Atiwa District) and non -mining areas (Yilo Krobo and East Akim District) of the region for the study. Levels of Cadmium, Lead, Mercury and Arsenic were investigated in the vegetables with Atomic Absorption Spectrometer, and the results statistically analyzed with Microsoft Office Excel (2013) Spread Sheet and ANOVA. Cadmium (Cd) and arsenic (As) were the highest and least concentrated HM in the vegetables sampled, respectively. The mean concentrations of Cd and Pb in cabbage (0.564 mg/kg, 0.470 mg/kg), cucumber (0.389 mg/kg, 0.190 mg/kg), cocoyam leaves (0.410 mg/kg, 0.256 mg/kg) respectively from the mining areas exceeded the permissible limits set by Joint FAO/WHO. The mean concentrations of the metals in vegetables from the mining and non-mining areas varied significantly (P<0.05). The Target Hazard Quotient (THQ) was used to assess the health risk posed to the human population via vegetable consumption. The THQ values of cadmium, mercury, and lead in adults and children through vegetable consumption in the mining areas were greater than 1 (THQ >1). This indicates the potential health risk that the children and adults may be facing. The THQ values of adults and children in the non-mining areas were less than the safe limit of 1 (THQ<1), hence no significant health risk posed to the population from such areas.

Keywords: food safety, risk assessment, illicit mining, public health, contaminated vegetables

Procedia PDF Downloads 91
1557 N-Heterocyclic Carbene Based Dearomatized Iridium Complex as an Efficient Catalyst towards Carbon-Carbon Bond Formation via Hydrogen Borrowing Strategy

Authors: Mandeep Kaur, Jitendra K. Bera

Abstract:

The search for atom-economical and green synthetic methods for the synthesis of functionalized molecules has attracted much attention. Metal ligand cooperation (MLC) plays a pivotal role in organometallic catalysis to activate C−H, H−H, O−H, N−H and B−H bonds through reversible bond breaking and bond making process. Towards this goal, a bifunctional N─heterocyclic carbene (NHC) based pyridyl-functionalized amide ligand precursor, and corresponding dearomatized iridium complex was synthesized. The NMR and UV/Vis acid titration study have been done to prove the proton response nature of the iridium complex. Further, the dearomatized iridium complex explored as a catalyst on the platform of MLC via dearomatzation/aromatization mode of action towards atom economical α and β─alkylation of ketones and secondary alcohols by using primary alcohols through hydrogen borrowing methodology. The key features of the catalysis are high turnover frequency (TOF) values, low catalyst loading, low base loading and no waste product. The greener syntheses of quinoline, lactone derivatives and selective alkylation of drug molecules like pregnenolone and testosterone were also achieved successfully. Another structurally similar iridium complex was also synthesized with modified ligand precursor where a pendant amide unit was absent. The inactivity of this analogue iridium complex towards catalysis authenticated the participation of proton responsive imido sidearm of the ligand to accelerate the catalytic reaction. The mechanistic investigation through control experiments, NMR and deuterated labeling study, authenticate the borrowing hydrogen strategy.

Keywords: C-C bond formation, hydrogen borrowing, metal ligand cooperation (MLC), n-heterocyclic carbene

Procedia PDF Downloads 180
1556 Layer-by-Layer Modified Ceramic Membranes for Micropollutant Removal

Authors: Jenny Radeva, Anke-Gundula Roth, Christian Goebbert, Robert Niestroj-Pahl, Lars Daehne, Axel Wolfram, Juergen Wiese

Abstract:

Ceramic membranes for water purification combine excellent stability with long-life characteristics and high chemical resistance. Layer-by-Layer coating is a well-known technique for customization and optimization of filtration properties of membranes but is mostly used on polymeric membranes. Ceramic membranes comprising a metal oxide filtration layer of Al2O3 or TiO2 are charged and therefore highly suitable for polyelectrolyte adsorption. The high stability of the membrane support allows efficient backwash and chemical cleaning of the membrane. The presented study reports metal oxide/organic composite membrane with an increased rejection of bivalent salts like MgSO4 and the organic micropollutant Diclofenac. A self-build apparatus was used for applying the polyelectrolyte multilayers on the ceramic membrane. The device controls the flow and timing of the polyelectrolytes and washing solutions. As support for the Layer-by-Layer coat, ceramic mono-channel membranes were used with an inner capillary of 8 mm diameter, which is connected to the coating device. The inner wall of the capillary is coated subsequently with polycat- and anions. The filtration experiments were performed with a feed solution of MgSO4 and Diclofenac. The salt content of the permeate was detected conductometrically and Diclofenac was measured with UV-Adsorption. The concluded results show retention values of magnesium sulfate of 70% and diclofenac retention of 60%. Further experimental research studied various parameters of the composite membrane-like Molecular Weight Cut Off and pore size, Zeta potential and its mechanical and chemical robustness.

Keywords: water purification, polyelectrolytes, membrane modification, layer-by-layer coating, ceramic membranes

Procedia PDF Downloads 245
1555 Multifunctional β-Cyclodextrin-EDTA-Chitosan Polymer Adsorbent Synthesis for Simultaneous Removal of Heavy Metals and Organic Dyes from Wastewater

Authors: Monu Verma, Hyunook Kim

Abstract:

Heavy metals and organic dyes are the major sources of water pollution. Herein, a trifunctional β−cyclodextrin−ethylenediaminetetraacetic acid−chitosan (β−CD−EDTA−CS) polymer was synthesized using an easy and simple chemical route by the reaction of activated β−CD with CS through EDTA as a cross-linker (amidation reaction) for the removal of inorganic and organic pollutants from aqueous solution under different parameters such as pH, time effect, initial concentration, reusability, etc. The synthesized adsorbent was characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, field scanning electron microscopy, energy dispersive spectroscopy, Brunauer-Emmett-Teller (BET), thermogravimetric analyzer techniques to investigate their structural, functional, morphological, elemental compositions, surface area, and thermal properties, respectively. Two types of heavy metals, i.e., mercury (Hg²⁺) and cadmium (Cd²⁺), and three organic dyes, i.e., methylene blue (MB), crystal violet (CV), and safranin O (SO), were chosen as inorganic and organic pollutants, respectively, to study the adsorption capacity of β-CD-EDTA-CS in aqueous solution. The β-CD-EDTA-CS shows a monolayer adsorption capacity of 346.30 ± 14.0 and 202.90 ± 13.90 mg g−¹ for Hg²⁺ and Cd²⁺, respectively, and a heterogeneous adsorption capacity of 107.20 ± 5.70, 77.40 ± 5.30 and 55.30 ± 3.60 mg g−¹ for MB, CV and SO, respectively. Kinetics results followed pseudo-second order (PSO) kinetics behavior for both metal ions and dyes, and higher rate constants values (0.00161–0.00368 g mg−¹ min−¹) for dyes confirmed the cavitation of organic dyes (physisorption). In addition, we have also demonstrated the performance of β-CD-EDTA-CS for the four heavy metals, Hg²⁺, Cd²⁺, Ni²⁺, and Cu²⁺, and three dyes MB, CV, and SO in secondary treated wastewater. The findings of this study indicate that β-CD-EDTA-CS is simple and easy to synthesize and can be used in wastewater treatment.

Keywords: adsorption isotherms, adsorption mechanism, amino-β-cyclodextrin, heavy metal ions, organic dyes

Procedia PDF Downloads 107
1554 Adsorption of Pb(II) with MOF [Co2(Btec)(Bipy)(DMF)2]N in Aqueous Solution

Authors: E. Gil, A. Zepeda, J. Rivera, C. Ben-Youssef, S. Rincón

Abstract:

Water pollution has become one of the most serious environmental problems. Multiple methods have been proposed for the removal of Pb(II) from contaminated water. Among these, adsorption processes have shown to be more efficient, cheaper and easier to handle with respect to other treatment methods. However, research for adsorbents with high adsorption capacities is still necessary. For this purpose, we proposed in this work the study of metal-organic Framework [Co2(btec)(bipy)(DMF)2]n (MOF-Co) as adsorbent material of Pb (II) in aqueous media. MOF-Co was synthesized by a simple method. Firstly 4, 4’ dipyridyl, 1,2,4,5 benzenetetracarboxylic acid, cobalt (II) and nitrate hexahydrate were first mixed each one in N,N dimethylformamide (DMF) and then, mixed in a reactor altogether. The obtained solution was heated at 363 K in a muffle during 68 h to complete the synthesis. It was washed and dried, obtaining MOF-Co as the final product. MOF-Co was characterized before and after the adsorption process by Fourier transforms infrared spectra (FTIR) and X-ray photoelectron spectroscopy (XPS). The Pb(II) in aqueous media was detected by Absorption Atomic Spectroscopy (AA). In order to evaluate the adsorption process in the presence of Pb(II) in aqueous media, the experiments were realized in flask of 100 ml the work volume at 200 rpm, with different MOF-Co quantities (0.0125 and 0.025 g), pH (2-6), contact time (0.5-6 h) and temperature (298,308 and 318 K). The kinetic adsorption was represented by pseudo-second order model, which suggests that the adsorption took place through chemisorption or chemical adsorption. The best adsorption results were obtained at pH 5. Langmuir, Freundlich and BET equilibrium isotherms models were used to study the adsorption of Pb(II) with 0.0125 g of MOF-Co, in the presence of different concentration of Pb(II) (20-200 mg/L, 100 mL, pH 5) with 4 h of reaction. The correlation coefficients (R2) of the different models show that the Langmuir model is better than Freundlich and BET model with R2=0.97 and a maximum adsorption capacity of 833 mg/g. Therefore, the Langmuir model can be used to best describe the Pb(II) adsorption in monolayer behavior on the MOF-Co. This value is the highest when compared to other materials such as the graphene/activated carbon composite (217 mg/g), biomass fly ashes (96.8 mg/g), PVA/PAA gel (194.99 mg/g) and MOF with Ag12 nanoparticles (120 mg/g).

Keywords: adsorption, heavy metals, metal-organic frameworks, Pb(II)

Procedia PDF Downloads 214
1553 Exploration of Industrial Symbiosis Opportunities with an Energy Perspective

Authors: Selman Cagman

Abstract:

A detailed analysis is made within an organized industrial zone (OIZ) that has 1165 production facilities such as manufacturing of furniture, fabricated metal products (machinery and equipment), food products, plastic and rubber products, machinery and equipment, non-metallic mineral products, electrical equipment, textile products, and manufacture of wood and cork products. In this OIZ, a field study is done by choosing some facilities that can represent the whole OIZ sectoral distribution. In this manner, there are 207 facilities included to the site visit, and there is a 17 questioned survey carried out with each of them to assess their inputs, outputs, and waste amounts during manufacturing processes. The survey result identify that MDF/Particleboard and chipboard particles, textile, food, foam rubber, sludge (treatment sludge, phosphate-paint sludge, etc.), plastic, paper and packaging, scrap metal (aluminum shavings, steel shavings, iron scrap, profile scrap, etc.), slag (coal slag), ceramic fracture, ash from the fluidized bed are the wastes come from these facilities. As a result, there are 5 industrial symbiosis projects established with this study. One of the projects is a 2.840 kW capacity Integrated Biomass Based Waste Incineration-Energy Production Facility running on 35.000 tons/year of MDF particles and chipboard waste. Another project is a biogas plant with 225 tons/year whey, 100 tons/year of sesame husk, 40 tons/year of burnt wafer dough, and 2.000 tons/year biscuit waste. These two plants investment costs and operational costs are given in detail. The payback time of the 2.840 kW plant is almost 4 years and the biogas plant is around 6 years.

Keywords: industrial symbiosis, energy, biogas, waste to incineration

Procedia PDF Downloads 107
1552 Laboratory Scale Purification of Water from Copper Waste

Authors: Mumtaz Khan, Adeel Shahid, Waqas Khan

Abstract:

Heavy metals presence in water streams is a big danger for aquatic life and ultimately effects human health. Removal of copper (Cu) by ispaghula husk, maize fibre, and maize oil cake from synthetic solution in batch conditions was studied. Different experimental parameters such as contact time, initial solution pH, agitation rate, initial Cu concentration, biosorbent concentration, and biosorbent particle size has been studied to quantify the Cu biosorption. The rate of adsorption of metal ions was very fast at the beginning and became slow after reaching the saturation point, followed by a slower active metabolic uptake of metal ions into the cells. Up to a certain point, (pH=4, concentration of Cu = ~ 640 mg/l, agitation rate = ~ 400 rpm, biosorbent concentration = ~ 0.5g, 3g, 3g for ispaghula husk, maize fiber and maize oil cake, respectively) increasing the pH, concentration of Cu, agitation rate, and biosorbent concentration, increased the biosorption rate; however the sorption capacity increased by decreasing the particle size. At optimized experimental parameters, the maximum Cu biosorption by ispaghula husk, maize fibre and maize oil cake were 86.7%, 59.6% and 71.3%, respectively. Moreover, the results of the kinetics studies demonstrated that the biosorption of copper on ispaghula husk, maize fibre, and maize oil cake followed pseudo-second order kinetics. The results of adsorption were fitted to both the Langmuir and Freundlich models. The Langmuir model represented the sorption process better than Freundlich, and R² value ~ 0.978. Optimizations of physical and environmental parameters revealed, ispaghula husk as more potent copper biosorbent than maize fibre, and maize oil cake. The sorbent is cheap and available easily, so this study can be applied to remove Cu impurities on pilot and industrial scale after certain modifications.

Keywords: biosorption, copper, ispaghula husk, maize fibre, maize oil cake, purification

Procedia PDF Downloads 410
1551 The MHz Frequency Range EM Induction Device Development and Experimental Study for Low Conductive Objects Detection

Authors: D. Kakulia, L. Shoshiashvili, G. Sapharishvili

Abstract:

The results of the study are related to the direction of plastic mine detection research using electromagnetic induction, the development of appropriate equipment, and the evaluation of expected results. Electromagnetic induction sensing is effectively used in the detection of metal objects in the soil and in the discrimination of unexploded ordnances. Metal objects interact well with a low-frequency alternating magnetic field. Their electromagnetic response can be detected at the low-frequency range even when they are placed in the ground. Detection of plastic things such as plastic mines by electromagnetic induction is associated with difficulties. The interaction of non-conducting bodies or low-conductive objects with a low-frequency alternating magnetic field is very weak. At the high-frequency range where already wave processes take place, the interaction increases. Interactions with other distant objects also increase. A complex interference picture is formed, and extraction of useful information also meets difficulties. Sensing by electromagnetic induction at the intermediate MHz frequency range is the subject of research. The concept of detecting plastic mines in this range can be based on the study of the electromagnetic response of non-conductive cavity in a low-conductivity environment or the detection of small metal components in plastic mines, taking into account constructive features. The detector node based on the amplitude and phase detector 'Analog Devices ad8302' has been developed for experimental studies. The node has two inputs. At one of the inputs, the node receives a sinusoidal signal from the generator, to which a transmitting coil is also connected. The receiver coil is attached to the second input of the node. The additional circuit provides an option to amplify the signal output from the receiver coil by 20 dB. The node has two outputs. The voltages obtained at the output reflect the ratio of the amplitudes and the phase difference of the input harmonic signals. Experimental measurements were performed in different positions of the transmitter and receiver coils at the frequency range 1-20 MHz. Arbitrary/Function Generator Tektronix AFG3052C and the eight-channel high-resolution oscilloscope PICOSCOPE 4824 were used in the experiments. Experimental measurements were also performed with a low-conductive test object. The results of the measurements and comparative analysis show the capabilities of the simple detector node and the prospects for its further development in this direction. The results of the experimental measurements are compared and analyzed with the results of appropriate computer modeling based on the method of auxiliary sources (MAS). The experimental measurements are driven using the MATLAB environment. Acknowledgment -This work was supported by Shota Rustaveli National Science Foundation (SRNSF) (Grant number: NFR 17_523).

Keywords: EM induction sensing, detector, plastic mines, remote sensing

Procedia PDF Downloads 149
1550 Optimization of Assembly and Welding of Complex 3D Structures on the Base of Modeling with Use of Finite Elements Method

Authors: M. N. Zelenin, V. S. Mikhailov, R. P. Zhivotovsky

Abstract:

It is known that residual welding deformations give negative effect to processability and operational quality of welded structures, complicating their assembly and reducing strength. Therefore, selection of optimal technology, ensuring minimum welding deformations, is one of the main goals in developing a technology for manufacturing of welded structures. Through years, JSC SSTC has been developing a theory for estimation of welding deformations and practical activities for reducing and compensating such deformations during welding process. During long time a methodology was used, based on analytic dependence. This methodology allowed defining volumetric changes of metal due to welding heating and subsequent cooling. However, dependences for definition of structures deformations, arising as a result of volumetric changes of metal in the weld area, allowed performing calculations only for simple structures, such as units, flat sections and sections with small curvature. In case of complex 3D structures, estimations on the base of analytic dependences gave significant errors. To eliminate this shortage, it was suggested to use finite elements method for resolving of deformation problem. Here, one shall first calculate volumes of longitudinal and transversal shortenings of welding joints using method of analytic dependences and further, with obtained shortenings, calculate forces, which action is equivalent to the action of active welding stresses. Further, a finite-elements model of the structure is developed and equivalent forces are added to this model. Having results of calculations, an optimal sequence of assembly and welding is selected and special measures to reduce and compensate welding deformations are developed and taken.

Keywords: residual welding deformations, longitudinal and transverse shortenings of welding joints, method of analytic dependences, finite elements method

Procedia PDF Downloads 409
1549 Garnet-based Bilayer Hybrid Solid Electrolyte for High-Voltage Cathode Material Modified with Composite Interface Enabler on Lithium-Metal Batteries

Authors: Kumlachew Zelalem Walle, Chun-Chen Yang

Abstract:

Solid-state lithium metal batteries (SSLMBs) are considered promising candidates for next-generation energy storage devices due to their superior energy density and excellent safety. However, recent findings have shown that the formation of lithium (Li) dendrites in SSLMBs still exhibits a terrible growth ability, which makes the development of SSLMBs have to face the challenges posed by the Li dendrite problem. In this work, an inorganic/organic mixture coating material (g-C3N4/ZIF-8/PVDF) was used to modify the surface of lithium metal anode (LMA). Then the modified LMA (denoted as g-C₃N₄@Li) was assembled with lithium nafion (LiNf) coated commercial NCM811 (LiNf@NCM811) using a bilayer hybrid solid electrolyte (Bi-HSE) that incorporated 20 wt.% (vs. polymer) LiNf coated Li6.05Ga0.25La3Zr2O11.8F0.2 ([email protected]) filler faced to the positive electrode and the other layer with 80 wt.% (vs. polymer) filler content faced to the g-C₃N₄@Li. The garnet-type Li6.05Ga0.25La3Zr2O11.8F0.2 (LG0.25LZOF) solid electrolyte was prepared via co-precipitation reaction process from Taylor flow reactor and modified using lithium nafion (LiNf), a Li-ion conducting polymer. The Bi-HSE exhibited high ionic conductivity of 6.8  10–4 S cm–1 at room temperature, and a wide electrochemical window (0–5.0 V vs. Li/Li+). The coin cell was charged between 2.8 to 4.5 V at 0.2C and delivered an initial specific discharge capacity of 194.3 mAh g–1 and after 100 cycles it maintained 81.8% of its initial capacity at room temperature. The presence of a nano-sheet g-C3N4/ZIF-8/PVDF as a composite coating material on the LMA surface suppress the dendrite growth and enhance the compatibility as well as the interfacial contact between anode/electrolyte membrane. The g-C3N4@Li symmetrical cells incorporating this hybrid electrolyte possessed excellent interfacial stability over 1000 h at 0.1 mA cm–2 and a high critical current density (1 mA cm–2). Moreover, the in-situ formation of Li3N on the solid electrolyte interface (SEI) layer as depicted from the XPS result also improves the ionic conductivity and interface contact during the charge/discharge process. Therefore, these novel multi-layered fabrication strategies of hybrid/composite solid electrolyte membranes and modification of the LMA surface using mixed coating materials have potential applications in the preparation of highly safe high-voltage cathodes for SSLMBs.

Keywords: high-voltage cathodes, hybrid solid electrolytes, garnet, graphitic-carbon nitride (g-C3N4), ZIF-8 MOF

Procedia PDF Downloads 67
1548 Effects of Enzymatic Liquefaction on the Physicochemical Properties and Antioxidant Activity of Zn-Amaranth (Amaranthus viridis) Puree

Authors: M. A. Siti Faridah, K. Muhammad, H. M. Ghazali, Y. A. Yusof

Abstract:

This study was conducted to investigate the effects of three variables namely types of cell wall degrading enzymes (Viscozyme L, Pectinex Ultra SP-L, Rapidase PAC, Rohament CL and Rohapect PTE) at varying concentrations (0.25-3% v/w) and times (30 min-24 h) on the zinc (Zn-) amaranth purees. Liquefaction treatment of the Zn-amaranth purees with Viscozyme (1% v/w at pH 5 and 45ºC for 3 h) was found to be the best procedure, which produced Zn-amaranth puree with low viscosity (8.60 mPas). Zn-amaranth purees were also found to have the highest metallo-chlorophyll derivative contents (0.16 mg/g), free radical 2, 2-diphenyl-1-picrylhydrazyl (DPPH) values (12.49 mM (TE)/g fresh weight) and ferric reducing antioxidant power (FRAP) values (4.57 mM (TE)/g fresh weight) within 3 h of liquefaction. Other physicochemical properties of the enzyme-liquefied Zn-amaranth purees indicated that lightness (L*) (12.54), greenness a*/b* (-0.30), reducing sugar (103.88 mg/mL) and soluble dietary fibre (5.94%) of the purees were higher compared to that of nonenzyme-liquefied amaranth purees.

Keywords: amaranth, antioxidant, chlorophyll derivative, enzymatic liquefaction

Procedia PDF Downloads 146
1547 Manganese Contamination Exacerbates Reproductive Stress in a Suicidally-Breeding Marsupial

Authors: Ami Fadhillah Amir Abdul Nasir, Amanda C. Niehaus, Skye F. Cameron, Frank A. Von Hippel, John Postlethwait​, Robbie S. Wilson

Abstract:

For suicidal breeders, the physiological stresses and energetic costs of breeding are fatal. Environmental stressors such as pollution should compound these costs, yet suicidal breeding is so rare among mammals that this is unknown. Here, we explored the consequences of metal contamination to the health, aging and performance of endangered, suicidally-breeding northern quolls (Dasyurus hallucatus) living near an active manganese mine on Groote Eylandt, Northern Territory, Australia. We found respirable manganese dust at levels exceeding international recommendations even 20km from mining sites and substantial accumulation of manganese within quolls’ hair, testes, and in two brain regions—the neocortex and cerebellum, responsible for sensory perception and motor function, respectively. Though quolls did not differ in sprint speeds, motor skill, or manoeuvrability, those with higher accumulation of manganese crashed at lower speeds during manoeuvrability tests, indicating a potential effect on sight or cognition. Immune function and telomere length declined over the breeding season, as expected with ageing, but manganese contamination exacerbated immune declines and suppressed cortisol. Unexpectedly, male quolls with higher levels of manganese had longer telomeres, supporting evidence of unusual telomere dynamics among Dasyurids—though whether this affects their lifespan is unknown. We posit that sublethal contamination via pollution, mining, or urbanisation imposes physiological costs on wildlife that may diminish reproductive success or survival.

Keywords: ecotoxicology, heavy metal, manganese, telomere length, cortisol, locomotor

Procedia PDF Downloads 317
1546 Quantum Conductance Based Mechanical Sensors Fabricated with Closely Spaced Metallic Nanoparticle Arrays

Authors: Min Han, Di Wu, Lin Yuan, Fei Liu

Abstract:

Mechanical sensors have undergone a continuous evolution and have become an important part of many industries, ranging from manufacturing to process, chemicals, machinery, health-care, environmental monitoring, automotive, avionics, and household appliances. Concurrently, the microelectronics and microfabrication technology have provided us with the means of producing mechanical microsensors characterized by high sensitivity, small size, integrated electronics, on board calibration, and low cost. Here we report a new kind of mechanical sensors based on the quantum transport process of electrons in the closely spaced nanoparticle films covering a flexible polymer sheet. The nanoparticle films were fabricated by gas phase depositing of preformed metal nanoparticles with a controlled coverage on the electrodes. To amplify the conductance of the nanoparticle array, we fabricated silver interdigital electrodes on polyethylene terephthalate(PET) by mask evaporation deposition. The gaps of the electrodes ranged from 3 to 30μm. Metal nanoparticles were generated from a magnetron plasma gas aggregation cluster source and deposited on the interdigital electrodes. Closely spaced nanoparticle arrays with different coverage could be gained through real-time monitoring the conductance. In the film coulomb blockade and quantum, tunneling/hopping dominate the electronic conduction mechanism. The basic principle of the mechanical sensors relies on the mechanical deformation of the fabricated devices which are translated into electrical signals. Several kinds of sensing devices have been explored. As a strain sensor, the device showed a high sensitivity as well as a very wide dynamic range. A gauge factor as large as 100 or more was demonstrated, which can be at least one order of magnitude higher than that of the conventional metal foil gauges or even better than that of the semiconductor-based gauges with a workable maximum applied strain beyond 3%. And the strain sensors have a workable maximum applied strain larger than 3%. They provide the potential to be a new generation of strain sensors with performance superior to that of the currently existing strain sensors including metallic strain gauges and semiconductor strain gauges. When integrated into a pressure gauge, the devices demonstrated the ability to measure tiny pressure change as small as 20Pa near the atmospheric pressure. Quantitative vibration measurements were realized on a free-standing cantilever structure fabricated with closely-spaced nanoparticle array sensing element. What is more, the mechanical sensor elements can be easily scaled down, which is feasible for MEMS and NEMS applications.

Keywords: gas phase deposition, mechanical sensors, metallic nanoparticle arrays, quantum conductance

Procedia PDF Downloads 274
1545 The Role of Psychosis Proneness in the Association of Metacognition with Psychological Distress in Non-Clinical Population

Authors: Usha Barahmand, Ruhollah Heydari Sheikh Ahmad

Abstract:

Distress refers to an unpleasant metal state or emotional suffering marked by negative affect such as depression (e.g., lost interest; sadness; hopelessness), anxiety (e.g., restlessness; feeling tense). These negative affect have been mostly suggested to be concomitant of metal disorders such as positive psychosis symptoms and also of proneness to psychotic features in non-clinical population. Psychotic features proneness including hallucination, delusion and schizotypal traits, have been found to be associated with metacognitive beliefs. Metacognition has been conceptualized as ‘thinking about thoughts, monitoring and controlling of cognitive processes’. The aim of the current study was to investigate the role of psychosis proneness in the association of metacognitions and distress. We predicted psychosis proneness would mediate the association of metacognitive beliefs and the distress. A sample of 420 university students was randomly recruited to endorse questionnaires of the study that consisted of DASS-21questionnaire for assessing levels of distress, Cartwright–Hatton & Wells, Meta-cognitions Questionnaire (MCQ-30) for assessing metacognitive beliefs, Launay-Slade Hallucination Scale-revised (LSHS-R), Peters et al. Delusions Inventory, Schizotypal Personality Questionnaire-Brief. Conducting a bootstrapping approach in order to investigate our hypothesis, the result showed that there was no a direct association between metacognitive dimensions and psychological distress and psychosis proneness significantly mediated the association. Finding suggested that individuals with dysfunctional metacognitive beliefs experience high levels of distress if they are prone to psychosis symptoms. In other words, psychosis proneness is a path through which individuals with dysfunctional metacognitions experience high levels of psychological distress.

Keywords: metacognition, non-clinical population, psychological distress, psychosis proneness

Procedia PDF Downloads 340