Search results for: textile damage
1566 Plastic Behavior of Steel Frames Using Different Concentric Bracing Configurations
Authors: Madan Chandra Maurya, A. R. Dar
Abstract:
Among the entire natural calamities earthquake is the one which is most devastating. If the losses due to all other calamities are added still it will be very less than the losses due to earthquakes. So it means we must be ready to face such a situation, which is only possible if we make our structures earthquake resistant. A review of structural damages to the braced frame systems after several major earthquakes—including recent earthquakes—has identified some anticipated and unanticipated damage. This damage has prompted many engineers and researchers around the world to consider new approaches to improve the behavior of braced frame systems. Extensive experimental studies over the last fourty years of conventional buckling brace components and several braced frame specimens have been briefly reviewed, highlighting that the number of studies on the full-scale concentric braced frames is still limited. So for this reason the study surrounds the words plastic behavior, steel structure, brace frame system. In this study, there are two different analytical approaches which have been used to predict the behavior and strength of an un-braced frame. The first is referred as incremental elasto-plastic analysis a plastic approach. This method gives a complete load-deflection history of the structure until collapse. It is based on the plastic hinge concept for fully plastic cross sections in a structure under increasing proportional loading. In this, the incremental elasto-plastic analysis- hinge by hinge method is used in this study because of its simplicity to know the complete load- deformation history of two storey un-braced scaled model. After that the experiments were conducted on two storey scaled building model with and without bracing system to know the true or experimental load deformation curve of scaled model. Only way, is to understand and analyze these techniques and adopt these techniques in our structures. The study named as Plastic Behavior of Steel Frames using Different Concentric Bracing Configurations deals with all this. This study aimed at improving the already practiced traditional systems and to check the behavior and its usefulness with respect to X-braced system as reference model i.e. is how plastically it is different from X-braced. Laboratory tests involved determination of plastic behavior of these models (with and without brace) in terms of load-deformation curve. Thus, the aim of this study is to improve the lateral displacement resistance capacity by using new configuration of brace member in concentric manner which is different from conventional concentric brace. Once the experimental and manual results (using plastic approach) compared, simultaneously the results from both approach were also compared with nonlinear static analysis (pushover analysis) approach using ETABS i.e how both the previous results closely depicts the behavior in pushover curve and upto what limit. Tests results shows that all the three approaches behaves somewhat in similar manner upto yield point and also the applicability of elasto-plastic analysis (hinge by hinge method) to know the plastic behavior. Finally the outcome from three approaches shows that the newer one configuration which is chosen for study behaves in-between the plane frame (without brace or reference frame) and the conventional X-brace frame.Keywords: elasto-plastic analysis, concentric steel braced frame, pushover analysis, ETABS
Procedia PDF Downloads 2291565 Thermodynamically Predicting the Impact of Temperature on the Performance of Drilling Bits as a Function of Time
Authors: Talal Al-Bazali
Abstract:
Air drilling has recently received increasing acceptance by the oil and gas industry due to its unique advantages. The main advantages of air drilling include the higher rate of penetration, less formation damage, lower risk of loss of circulation. However, these advantages cannot be fully realized if thermal effects in air drilling are not well understood and minimized. Due to its high frictional coefficient, low heat conductivity, and high compressibility, air can impact the temperature distribution of bit and thus affect its bit performances. Based on energy and mass balances, a transient thermal model that predicts bit temperature is presented along with numerical solutions in this paper. In addition, several important parameters that influence bit temperature distribution are analyzed. Simulation results show that the bit temperature increases with increasing weight on bit and rotary speed but decreases as the standpipe pressure and flow rate increase. These results can be used to optimize drilling operations and flow parameters for an improved bit performance as shown in this paper.Keywords: air drilling, rate of penetration, temperature, rotary speed
Procedia PDF Downloads 2851564 Altered Proteostasis Contributes to Skeletal Muscle Atrophy during Chronic Hypobaric Hypoxia: An Insight into Signaling Mechanisms
Authors: Akanksha Agrawal, Richa Rathor, Geetha Suryakumar
Abstract:
Muscle represents about ¾ of the body mass, and a healthy muscular system is required for human performance. A healthy muscular system is dynamically balanced via the catabolic and anabolic process. High altitude associated hypoxia altered this redox balance via producing reactive oxygen and nitrogen species that ultimately modulates protein structure and function, hence, disrupts proteostasis or protein homeostasis. The mechanism by which proteostasis is clinched includes regulated protein translation, protein folding, and protein degradation machinery. Perturbation in any of these mechanisms could increase proteome imbalance in the cellular processes. Altered proteostasis in skeletal muscle is likely to be responsible for contributing muscular atrophy in response to hypoxia. Therefore, we planned to elucidate the mechanism involving altered proteostasis leading to skeletal muscle atrophy under chronic hypobaric hypoxia. Material and Methods-Male Sprague Dawley rats weighing about 200-220 were divided into five groups - Control (Normoxic animals), 1d, 3d, 7d and 14d hypobaric hypoxia exposed animals. The animals were exposed to simulated hypoxia equivalent to 282 torr pressure (equivalent to an altitude of 7620m, 8% oxygen) at 25°C. On completion of chronic hypobaric hypoxia (CHH) exposure, rats were sacrificed, muscle was excised and biochemical, histopathological and protein synthesis signaling were studied. Results-A number of changes were observed with the CHH exposure time period. ROS was increased significantly on 07 and 14 days which were attributed to protein oxidation via damaging muscle protein structure by oxidation of amino acids moiety. The oxidative damage to the protein further enhanced the various protein degradation pathways. Calcium activated cysteine proteases and other intracellular proteases participate in protein turnover in muscles. Therefore, we analysed calpain and 20S proteosome activity which were noticeably increased at CHH exposure as compared to control group representing enhanced muscle protein catabolism. Since inflammatory markers (myokines) affect protein synthesis and triggers degradation machinery. So, we determined inflammatory pathway regulated under hypoxic environment. Other striking finding of the study was upregulation of Akt/PKB translational machinery that was increased on CHH exposure. Akt, p-Akt, p70 S6kinase, and GSK- 3β expression were upregulated till 7d of CHH exposure. Apoptosis related markers, caspase-3, caspase-9 and annexin V was also increased on CHH exposure. Conclusion: The present study provides evidence of disrupted proteostasis under chronic hypobaric hypoxia. A profound loss of muscle mass is accompanied by the muscle damage leading to apoptosis and cell death under CHH. These cellular stress response pathways may play a pivotal role in hypobaric hypoxia induced skeletal muscle atrophy. Further research in these signaling pathways will lead to development of therapeutic interventions for amelioration of hypoxia induced muscle atrophy.Keywords: Akt/PKB translational machinery, chronic hypobaric hypoxia, muscle atrophy, protein degradation
Procedia PDF Downloads 2701563 Numerical Crashworthiness Investigations of a Full-Scale Composite Fuselage Section
Authors: Redouane Lombarkia
Abstract:
To apply a new material model developed and validated for plain weave fabric CFRP composites usually used in stanchions in sub-cargo section in aircrafts. This work deals with the development of a numerical model of the fuselage section of commercial aircraft based on the pure explicit finite element method FEM within Abaqus/Explicit commercial code. The aim of this work is the evaluation of the energy absorption capabilities of a full-scale composite fuselage section, including sub-cargo stanchions, Drop tests were carried out from a free fall height of about 5 m and impact velocity of about 6 m∕s. To asses, the prediction efficiency of the proposed numerical modeling procedure, a comparison with literature existed experimental results was performed. We demonstrate the efficiency of the proposed methodology to well capture crash damage mechanisms compared to experimental resultsKeywords: crashworthiness, fuselage section, finite elements method (FEM), stanchions, specific energy absorption SEA
Procedia PDF Downloads 951562 The High Temperature Damage of DV–2 Turbine Blade Made from Ni–Base Superalloy
Authors: Juraj Belan, Lenka Hurtalová, Eva Tillová, Alan Vaško, Milan Uhríčik
Abstract:
High-pressure turbine (HPT) blades of DV–2 jet engines are made from Ni–base superalloy, a former Soviet Union production, specified as ŽS6K. For improving its high-temperature resistance are blades covered with Al–Si diffusion layer. A regular operation temperature of HPT blades vary from 705°C to 750°C depending on jet engine regime. An over-crossing working temperature range causes degradation of protective alitize layer as well as base material–gamma matrix and gamma prime particles what decreases turbine blade lifetime. High-temperature degradation has mainly diffusion mechanism and causes coarsening of strengthening phase gamma prime and protective alitize layer thickness growing. All changes have a significant influence on high-temperature properties of base material.Keywords: alitize layer, gamma prime phase, high-temperature degradation, Ni–base superalloy ŽS6K, turbine blade
Procedia PDF Downloads 5331561 Stability of Porous SiC Based Materials under Relevant Conditions of Radiation and Temperature
Authors: Marta Malo, Carlota Soto, Carmen García-Rosales, Teresa Hernández
Abstract:
SiC based composites are candidates for possible use as structural and functional materials in the future fusion reactors, the main role is intended for the blanket modules. In the blanket, the neutrons produced in the fusion reaction slow down and their energy is transformed into heat in order to finally generate electrical power. In the blanket design named Dual Coolant Lead Lithium (DCLL), a PbLi alloy for power conversion and tritium breeding circulates inside hollow channels called Flow Channel Inserts (FCIs). These FCI must protect the steel structures against the highly corrosive PbLi liquid and the high temperatures, but also provide electrical insulation in order to minimize magnetohydrodynamic interactions of the flowing liquid metal with the high magnetic field present in a magnetically confined fusion environment. Due to their nominally high temperature and radiation stability as well as corrosion resistance, SiC is the main choice for the flow channel inserts. The significantly lower manufacturing cost presents porous SiC (dense coating is required in order to assure protection against corrosion and as a tritium barrier) as a firm alternative to SiC/SiC composites for this purpose. This application requires the materials to be exposed to high radiation levels and extreme temperatures, conditions for which previous studies have shown noticeable changes in both the microstructure and the electrical properties of different types of silicon carbide. Both initial properties and radiation/temperature induced damage strongly depend on the crystal structure, polytype, impurities/additives that are determined by the fabrication process, so the development of a suitable material requires full control of these variables. For this work, several SiC samples with different percentage of porosity and sintering additives have been manufactured by the so-called sacrificial template method at the Ceit-IK4 Technology Center (San Sebastián, Spain), and characterized at Ciemat (Madrid, Spain). Electrical conductivity was measured as a function of temperature before and after irradiation with 1.8 MeV electrons in the Ciemat HVEC Van de Graaff accelerator up to 140 MGy (~ 2·10 -5 dpa). Radiation-induced conductivity (RIC) was also examined during irradiation at 550 ºC for different dose rates (from 0.5 to 5 kGy/s). Although no significant RIC was found in general for any of the samples, electrical conductivity increase with irradiation dose was observed to occur for some compositions with a linear tendency. However, first results indicate enhanced radiation resistance for coated samples. Preliminary thermogravimetric tests of selected samples, together with posterior XRD analysis allowed interpret radiation-induced modification of the electrical conductivity in terms of changes in the SiC crystalline structure. Further analysis is needed in order to confirm this.Keywords: DCLL blanket, electrical conductivity, flow channel insert, porous SiC, radiation damage, thermal stability
Procedia PDF Downloads 2001560 Oncogenic Role of MicroRNA-346 in Human Non-Small Cell Lung Cancer by Regulation of XPC/ERK/Snail/E-Cadherin Pathway
Authors: Cheng-Cao Sun, Shu-Jun Li, De-Jia Li
Abstract:
Determinants of growth and metastasis in cancer remain of great interest to define. MicroRNAs (miRNAs) have frequently emerged as tumor metastatic regulator by acting on multiple signaling pathways. Here, we report the definition of miR-346 as an oncogenic microRNA that facilitates non-small cell lung cancer (NSCLC) cell growth and metastasis. XPC, an important DNA damage recognition factor in nucleotide excision repair was defined as a target for down-regulation by miR-346, functioning through direct interaction with the 3'-UTR of XPC mRNA. Blocking miR-346 by an antagomiR was sufficient to inhibit NSCLC cell growth and metastasis, an effect that could be phenol-copied by RNAi-mediated silencing of XPC. In vivo studies established that miR-346 overexpression was sufficient to promote tumor growth by A549 cells in xenografts mice, relative to control cells. Overall, our results defined miR-346 as an oncogenic miRNA in NSCLC, the levels of which contributed to tumor growth and invasive aggressiveness.Keywords: microRNA-346, miR-346, XPC, non-small cell lung cancer, oncogenesis
Procedia PDF Downloads 3121559 Wood Framing Roof Resistant Support for Hurricane
Authors: P. Hajyalikhani, E. Gilmore, C. Petty, J. Duron
Abstract:
Wood framed construction is the most popular method of construction for residential buildings. The typical roof framing for wood-framed buildings is sloped and consists of several structural members, such as rafters, hips, and valleys that link to the ridge and ceiling joists. The most common type of wood framing used is platform framing, also known as stick framing. Failures of the wood framing structures are among the most common types of wind damage in densely populated regions. Wood-framed buildings are under uplift during tornadoes and hurricanes which cause the failure in the roof. The bracing long structure members such as hip and valley have a large impact on the resilience of wood-framed buildings. As a result, the common failures in wood-framed buildings are reviewed, and the critical support locations for lengthy hips and valleys with various slopes are analyzed and recommended.Keywords: rafters, hips, valleys, hip, ceiling joist, roof failures, residential and commercial structures, hurricane, tornadoes, building codes
Procedia PDF Downloads 651558 Detecting and Disabling Digital Cameras Using D3CIP Algorithm Based on Image Processing
Authors: S. Vignesh, K. S. Rangasamy
Abstract:
The paper deals with the device capable of detecting and disabling digital cameras. The system locates the camera and then neutralizes it. Every digital camera has an image sensor known as a CCD, which is retro-reflective and sends light back directly to its original source at the same angle. The device shines infrared LED light, which is invisible to the human eye, at a distance of about 20 feet. It then collects video of these reflections with a camcorder. Then the video of the reflections is transferred to a computer connected to the device, where it is sent through image processing algorithms that pick out infrared light bouncing back. Once the camera is detected, the device would project an invisible infrared laser into the camera's lens, thereby overexposing the photo and rendering it useless. Low levels of infrared laser neutralize digital cameras but are neither a health danger to humans nor a physical damage to cameras. We also discuss the simplified design of the above device that can used in theatres to prevent piracy. The domains being covered here are optics and image processing.Keywords: CCD, optics, image processing, D3CIP
Procedia PDF Downloads 3571557 Beneficial Effect of Biotin in Combination with Canagliflozin on High Fat Diet Induced Diabetes in Rats
Authors: Rayhana Begum, HongBin Wang, Nur Alam Siddiquee, Md.Yasin Ahmed
Abstract:
Biotin treatment has significant effects on blood glucose, and pharmacological doses of biotin improve hyperglycemia. The present study was aimed to investigate the efficacy and safety of biotin in combination with canagliflozin in improving glycemic control on High Fat Diet-induced diabetes in Rats. Thirty male rats were divided into five groups (six rats /group): control, high fat diet (HFD), canagliflozin (CAG), biotin (BIO), and CAG + BIO. The treatments with CAG and /or BIO significantly reduced the body weight gain, blood glucose and HbA1c levels, whereas CAG in combination with BIO revealed greater glycemic improvement than CAG monotherapy. The treatment with CAG and /or BIO causes significant change in lipid profile and CK level while the treatment with CAG in combination with BIO showed better results as compared with CAG monotherapy. Furthermore, combination of biotin with CAG improved the pancreatic and cardiac damage when compared with other treated groups.Keywords: canagliflozin, biotin, HbA1c, lipid profile
Procedia PDF Downloads 1601556 Internal Capital Market Efficiency Study Based on Improved Cash Flow Sensitivity Coefficient - Take Tomorrow Group as an Example
Abstract:
Because of the difficulty of financing from the external capital market, the reorganization and merger of private enterprises have formed a family group, seeking the help of the internal capital market to alleviate the capital demand. However, the inefficiency of the internal capital market can damage the effect it should have played, and even hinder the development of enterprises. This paper takes the "Tomorrow Group" as the research object to carry on the case analysis. After using the improved cash flow sensitivity coefficient to measure the efficiency of the internal capital market of Tomorrow Group, the inefficiency phenomenon is found. Then the analysis reveals that the reasons for its inefficiency include that the pyramidal equity structure is conducive to control, the separation of cash flow rights and control rights, the concentration of equity leads to poor balance, the abandonment of real industries and information asymmetry.Keywords: tomorrow group, internal capital market, related-party transactions, Baotou tomorrow technology Co., LTD
Procedia PDF Downloads 1361555 FEM Study of Different Methods of Fiber Reinforcement Polymer Strengthening of a High Strength Concrete Beam-Column Connection
Authors: Talebi Aliasghar, Ebrahimpour Komeleh Hooman, Maghsoudi Ali Akbar
Abstract:
In reinforced concrete (RC) structures, beam-column connection region has a considerable effect on the behavior of structures. Using fiber reinforcement polymer (FRP) for the strengthening of connections in RC structures can be one of the solutions to retrofitting this zone which result in the enhanced behavior of structure. In this paper, these changes in behavior by using FRP for high strength concrete beam-column connection have been studied by finite element modeling. The concrete damage plasticity (CDP) model has been used to analyze the RC. The results illustrated a considerable development in load-bearing capacity but also a noticeable reduction in ductility. The study also assesses these qualities for several modes of strengthening and suggests the most effective mode of strengthening. Using FRP in flexural zone and FRP with 45-degree oriented fibers in shear zone of joint showed the most significant change in behavior.Keywords: HSC, beam-column connection, Fiber Reinforcement Polymer, FRP, Finite Element Modeling, FEM
Procedia PDF Downloads 1591554 Centrifuge Testing to Determine the Effect of Temperature on the Adhesion Strength of Ice
Authors: Zaid A. Janjua, Barbara Turnbull, Kwing-So Choi
Abstract:
The adhesion of glaze ice on power infrastructure, ships and aerofoils cause monetary and structural damage. Here we investigate the influence of temperature as an important parameter affecting adhesion strength of ice. Two terms are defined to investigate this: 'freezing temperature', the temperature at which glaze ice forms; and 'ambient temperature', the temperature of the surrounding during the test. Using three metal surfaces, the adhesion strength of ice has been calculated as a value of shear stress at the point of detachment on a spinning centrifuge. Findings show that the ambient temperature has a greater influence than the freezing temperature on the adhesion strength of ice. This is because there exists an amorphous liquid-like layer at the ice-surface interface, whose bond with the surface increases in strength at lower ambient temperatures when the substrate conducts heat much faster than the ice and acts as a heat sink. The results will help us to measure the actual adhesion strength of ice to metal surfaces based on data from weather monitoring devices. Future tests envisaged focus on thermally non-conducting substrates and their influence on adhesion strength.Keywords: ice adhesion, centrifuge, glaze ice, freezing temperature, ambient temperature
Procedia PDF Downloads 3431553 Improvement in the Photocatalytic Activity of Nanostructured Manganese Ferrite – Type of Materials by Mechanochemical Activation
Authors: Katerina Zaharieva, Katya Milenova, Zara Cherkezova-Zheleva, Alexander Eliyas, Boris Kunev, Ivan Mitov
Abstract:
The synthesized nanosized manganese ferrite-type of samples have been tested as photocatalysts in the reaction of oxidative degradation of model contaminant Reactive Black 5 (RB5) dye in aqueous solutions under UV irradiation. As it is known this azo dye is applied in the textile-coloring industry and it is discharged into the waterways causing pollution. The co-precipitation procedure has been used for the synthesis of manganese ferrite-type of materials: Sample 1 - Mn0.25Fe2.75O4, Sample 2 - Mn0.5Fe2.5O4 and Sample 3 - MnFe2O4 from 0.03M aqueous solutions of MnCl2•4H2O, FeCl2•4H2O and/or FeCl3•6H2O and 0.3M NaOH in appropriate amounts. The mechanochemical activation of co-precipitated ferrite-type of samples has been performed in argon (Samples 1 and 2) or in air atmosphere (Sample 3) for 2 hours at a milling speed of 500 rpm. The mechano-chemical treatment has been carried out in a high energy planetary ball mill type PM 100, Retsch, Germany. The mass ratio between balls and powder was 30:1. As a result mechanochemically activated Sample 4 - Mn0.25Fe2.75O4, Sample 5 - Mn0.5Fe2.5O4 and Sample 6 - MnFe2O4 have been obtained. The synthesized manganese ferrite-type photocatalysts have been characterized by X-ray diffraction method and Moessbauer spectroscopy. The registered X-ray diffraction patterns and Moessbauer spectra of co-precipitated ferrite-type of materials show the presence of manganese ferrite and additional akaganeite phase. The presence of manganese ferrite and small amounts of iron phases is established in the mechanochemically treated samples. The calculated average crystallite size of manganese ferrites varies within the range 7 – 13 nm. This result is confirmed by Moessbauer study. The registered spectra show superparamagnetic behavior of the prepared materials at room temperature. The photocatalytic investigations have been made using polychromatic UV-A light lamp (Sylvania BLB, 18 W) illumination with wavelength maximum at 365 nm. The intensity of light irradiation upon the manganese ferrite-type photocatalysts was 0.66 mW.cm-2. The photocatalytic reaction of oxidative degradation of RB5 dye was carried out in a semi-batch slurry photocatalytic reactor with 0.15 g of ferrite-type powder, 150 ml of 20 ppm dye aqueous solution under magnetic stirring at rate 400 rpm and continuously feeding air flow. The samples achieved adsorption-desorption equilibrium in the dark period for 30 min and then the UV-light was turned on. After regular time intervals aliquot parts from the suspension were taken out and centrifuged to separate the powder from solution. The residual concentrations of dye were established by a UV-Vis absorbance single beam spectrophotometer CamSpec M501 (UK) measuring in the wavelength region from 190 to 800 nm. The photocatalytic measurements determined that the apparent pseudo-first-order rate constants calculated by linear slopes approximating to first order kinetic equation, increase in following order: Sample 3 (1.1х10-3 min-1) < Sample 1 (2.2х10-3 min-1) < Sample 2 (3.3 х10-3 min-1) < Sample 4 (3.8х10-3 min-1) < Sample 6 (11х10-3 min-1) < Sample 5 (15.2х10-3 min-1). The mechanochemically activated manganese ferrite-type of photocatalyst samples show significantly higher degree of oxidative degradation of RB5 dye after 120 minutes of UV light illumination in comparison with co-precipitated ferrite-type samples: Sample 5 (92%) > Sample 6 (91%) > Sample 4 (63%) > Sample 2 (53%) > Sample 1 (42%) > Sample 3 (15%). Summarizing the obtained results we conclude that the mechanochemical activation leads to a significant enhancement of the degree of oxidative degradation of the RB5 dye and photocatalytic activity of tested manganese ferrite-type of catalyst samples under our experimental conditions. The mechanochemically activated Mn0.5Fe2.5O4 ferrite-type of material displays the highest photocatalytic activity (15.2х10-3 min-1) and degree of oxidative degradation of the RB5 dye (92%) compared to the other synthesized samples. Especially a significant improvement in the degree of oxidative degradation of RB5 dye (91%) has been determined for mechanochemically treated MnFe2O4 ferrite-type of sample with the highest extent of substitution of iron ions by manganese ions than in the case of the co-precipitated MnFe2O4 sample (15%). The mechanochemically activated manganese ferrite-type of samples show good photocatalytic properties in the reaction of oxidative degradation of RB5 azo dye in aqueous solutions and it could find potential application for dye removal from wastewaters originating from textile industry.Keywords: nanostructured manganese ferrite-type materials, photocatalytic activity, Reactive Black 5, water treatment
Procedia PDF Downloads 3471552 X-Ray Diffraction and Precision Dilatometer Study of Neutron-Irradiated Nuclear Graphite Recovery Process up to 1673K
Authors: Yuhao Jin, Zhou Zhou, Katsumi Yoshida, Zhengcao Li, Tadashi Maruyama, Toyohiko Yano
Abstract:
Four kinds of nuclear graphite, IG-110U, ETP-10, CX-2002U and IG-430U were neutron-irradiated at different fluences and temperatures, ranged from 1.38 x 1024 to 7.4 x 1025 n/m2 (E > 1.0 MeV) at 473K, 573K and 673K. To take into account the disorder in the microstructure, such as stacking faults and anisotropic coherent lengths, the X-ray diffraction patterns were interpreted using a comprehensive structural model and a refinement program CARBONXS. The deduced structural parameters show the changes of lattice parameters, coherent lengths along the c-axis and the basal plane, and the degree of turbostratic disorder as a function of the irradiation dose. Our results reveal neutron irradiation effects on the microstructure and macroscopic dimension, which are consistent with previous work. The methodology used in this work enables the quantification of the damage on the microstructure of nuclear graphite induced by neutron irradiation.Keywords: nuclear graphite, neutron irradiation, thermal annealing, recovery behavior, dimensional change, CARBONX, XRD analysis
Procedia PDF Downloads 4011551 Bridge Construction and Type of Bridges and Their Construction Methods
Authors: Mokhtar Nikgoo
Abstract:
Definition of bridge: A bridge is a structure that allows people to pass through the communication road with two points. There are many different types of bridges, each of which is designed to perform a specific function. This article introduces the concept, history, components, uses, types, construction methods, selected factors, damage factors and principles of bridge maintenance. A bridge is a structure to cross a passage such as a water, valley or road without blocking another path underneath. This structure makes it possible to pass obstacles that are difficult or impossible to pass. There are different designs for bridge construction, each of which is used for a particular function and condition. In the old definition, a bridge is an arch over a river, valley, or any type of passage that makes traffic possible. But today, in the topic of urban management, the bridge is considered as a structure to cross physical barriers, so that while using space (not just the surface of the earth), it can facilitate the passage and access to places. The useful life of bridges may be between 30 and 80 years depending on the location and the materials used. But with proper maintenance and improvement, their life may last for hundreds of years.Keywords: bridge, road construction, surveying, transportation
Procedia PDF Downloads 5121550 Prototype Development of Knitted Buoyant Swimming Vest for Children
Authors: Nga-Wun Li, Chu-Po Ho, Kit-Lun Yick, Jin-Yun Zhou
Abstract:
The use of buoyant vests incorporated with swimsuits can develop children’s confidence in the water, particularly for novice swimmers. Consequently, parents intend to purchase buoyant swimming vests for the children to reduce their anxiety to water. Although the conventional buoyant swimming vests can provide the buoyant function to the wearer, their bulkiness and hardness make children feel uncomfortable and not willing to wear. This study aimed to apply inlay knitting technology to design new functional buoyant swimming vests for children. This prototype involved a shell and a buoyant knitted layer, which is the main media to provide buoyancy. Polypropylene yarn and 6.4 mm of Expandable Polyethylene (EPE) foam were fabricated in Full needle stitch with inlay knitting technology and were then linked by sewing to form the buoyant layer. The shell of the knitted buoyant vest was made of Polypropylene circular knitted fabric. The structure of knitted fabrics of the buoyant swimsuit makes them inherently stretchable, and the arrangement of the inlaid material was designed based on the body movement that can improve the ease with which the swimmer moves. Further, the shoulder seam is designed at the back to minimize the irritation of the wearer. Apart from maintaining the buoyant function to them, this prototype shows its contribution in reducing bulkiness and improving softness to the conventional buoyant swimming vest by taking the advantages of a knitted garment. The results in this study are significant to the development of the buoyant swimming vest for both the textile and the fast-growing sportswear industry.Keywords: knitting technology, buoyancy, inlay, swimming vest, functional garment
Procedia PDF Downloads 1121549 Numerical Investigation of Heat Transfer in Laser Irradiated Biological Samplebased on Dual-Phase-Lag Heat Conduction Model Using Lattice Boltzmann Method
Authors: Shashank Patidar, Sumit Kumar, Atul Srivastava, Suneet Singh
Abstract:
Present work is concerned with the numerical investigation of thermal response of biological tissues during laser-based photo-thermal therapy for destroying cancerous/abnormal cells with minimal damage to the surrounding normal cells. Light propagation through the biological sample is mathematically modelled by transient radiative transfer equation. In the present work, application of the Lattice Boltzmann Method is extended to analyze transport of short-pulse radiation in a participating medium.In order to determine the two-dimensional temperature distribution inside the tissue medium, the RTE has been coupled with Penne’s bio-heat transfer equation based on Fourier’s law by several researchers in last few years.Keywords: lattice Boltzmann method, transient radiation transfer equation, dual phase lag model
Procedia PDF Downloads 3521548 Modeling of Single Bay Precast Residential House Using Ruaumoko 2D Program
Authors: N. H. Hamid, N. M. Mohamed, S. A. Anuar
Abstract:
Precast residential houses are normally constructed in Malaysia using precast shear-key wall panel and precast wall panel are designed using BS8110 where there is no provision for earthquake. However, the safety of this house under moderate and strong earthquake is still questionable. Consequently, the full-scale of residential house are designed, constructed, tested and analyzed under in-plane lateral cyclic loading. Hysteresis loops are plotted based on the experimental work and compared with modeling of hysteresis loops using HYSTERES in RUAUMOKO 2D program. Modified Takeda hysteresis model is chosen to behave a similar pattern with experimental work. This program will display the earthquake excitations, spectral displacements, pseudo spectral acceleration, and deformation shape of the structure. It can be concluded that this building is suffering severe cracks and damage under moderate and severe earthquake.Keywords: precast shear-key, hysteresis loops, spectral displacements, deformation shape
Procedia PDF Downloads 4561547 Numerical Solution of a Mathematical Model of Vortex Using Projection Method: Applications to Tornado Dynamics
Authors: Jagdish Prasad Maurya, Sanjay Kumar Pandey
Abstract:
Inadequate understanding of the complex nature of flow features in tornado vortex is a major problem in modelling tornadoes. Tornadoes are violent atmospheric phenomenon that appear all over the world. Modelling tornadoes aim to reduce the loss of the human lives and material damage caused by the tornadoes. Dynamics of tornado is investigated by a numerical technique, the improved version of the projection method. In this paper, authors solve the problem for axisymmetric tornado vortex by the said method that uses a finite difference approach for getting an accurate and stable solution. The conclusions drawn are that large radial inflow velocity occurs near the ground that leads to increase the tangential velocity. The increased velocity phenomenon occurs close to the boundary and absolute maximum wind is obtained near the vortex core. The results validate previous numerical and theoretical models.Keywords: computational fluid dynamics, mathematical model, Navier-Stokes equations, tornado
Procedia PDF Downloads 3531546 Reclamation of Mining Using Vegetation - A Comparative Study of Open Pit Mining
Authors: G. Surendra Babu
Abstract:
We all know the importance of mineral wealth, which has been buried inside the layers of the earth for decades. These are the natural energy sources that are used in our day to day life like fuel, electricity, construction, etc. but the process of extraction causes damage to the nature that can’t be returned back and which are left over after completion of mining we can see these are barren from decades these remain unused degraded land. Most of them are covered with vegetation before the start during mining which damages the native vegetation of the region and disturbs the watershed boundary of the regions and it also disturbs the biodiversity of the reign. The major motto of the study is to understand the various issues that are found and to understand various methods of reclamations process that are suitable for revegetating and also variously practiced which are carried out in the different case studies and government guidelines procedure of lease licenses which includes the environmental clearances and also to study the vegetation pattern according to the major issues identified. And finally suggesting the new guidelines with respect to the old guidelines which helps in the revegetation of the mine-sites which helps in establishing of its own sustainable ecosystem in future.Keywords: reclamation, open-pit mining, revegetation, reclamation methods
Procedia PDF Downloads 1931545 Malpractice Makes Perfect: A Thematic Analysis on How Doctors Handle Medical Errors
Authors: Kathleen Joy Hingan, Jessiraye Luienne Catubigan, Carlo Mercado, Janisse RañEses
Abstract:
In this research, the researchers wanted to explore how specialists and resident doctors in the fields of surgery, and obstetrics and gynecology handle their medical errors. They are interested in understanding the factors that contributed to the disclosure of medical error, the feelings after the occurrence of an error, and the way they coped with it given the power relations in place. The researchers conducted semi-structured interviews, transcribed the recordings, and analyzed the transcripts using thematic analysis. They found that doctors disclosed to their superiors and co-residents to cope with and to learn from the errors. In terms of disclosure to patients, the participants told them about the adverse event, but not about the error because of fear for themselves, their colleagues, their institution, and their patient. Doctors also performed compensatory actions to make up for the error and the nondisclosure of its occurrence. These actions functioned as a form of damage control too. Resident doctors and specialists receive different sanctions because of the power structures in the system.Keywords: coping, disclosure, doctors, interviews, medical errors, thematic analysis
Procedia PDF Downloads 2901544 Long-Term Sitting Posture Identifier Connected with Cloud Service
Authors: Manikandan S. P., Sharmila N.
Abstract:
Pain in the neck, intermediate and anterior, and even low back may occur in one or more locations. Numerous factors can lead to back discomfort, which can manifest into sensations in the other parts of your body. Up to 80% of people will have low back problems at a certain stage of their lives, making spine-related pain a highly prevalent ailment. Roughly twice as commonly as neck pain, low back discomfort also happens about as often as knee pain. According to current studies, using digital devices for extended periods of time and poor sitting posture are the main causes of neck and low back pain. There are numerous monitoring techniques provided to enhance the sitting posture for the aforementioned problems. A sophisticated technique to monitor the extended sitting position is suggested in this research based on this problem. The system is made up of an inertial measurement unit, a T-shirt, an Arduino board, a buzzer, and a mobile app with cloud services. Based on the anatomical position of the spinal cord, the inertial measurement unit was positioned on the inner back side of the T-shirt. The IMU (inertial measurement unit) sensor will evaluate the hip position, imbalanced shoulder, and bending angle. Based on the output provided by the IMU, the data will be analyzed by Arduino, supplied through the cloud, and shared with a mobile app for continuous monitoring. The buzzer will sound if the measured data is mismatched with the human body's natural position. The implementation and data prediction with design to identify balanced and unbalanced posture using a posture monitoring t-shirt will be further discussed in this research article.Keywords: IMU, posture, IOT, textile
Procedia PDF Downloads 891543 Hepatotoxicity Induced by Arsenic Trioxide in Adult Mice and Their Progeny
Authors: Bouaziz H., Soudania N., Essafia M., Ben Amara I., Hakim A., Jamoussi K., Zeghal Km, Zeghal N.
Abstract:
In this investigation, we have evaluated the effects of arsenic trioxide on hepatic function in pregnant and lactating Swiss albino mice and their suckling pups. Experiments were carried out on female mice given 175 ppm As2O3 in their drinking water from the 14th day of pregnancy until day 14 after delivery. Our results showed a significant decrease in plasma levels of total protein and albumin, cholesterol and triglyceride in As2O3 treated mice and their pups. The hyperbilirubinemia and the increased plasma total alkaline phosphatase activity suggested the presence of cholestasis. Transaminase activities as well as lactate deshydrogenase activity in plasma, known as biomarkers of hepatocellular injury, were elevated indicating hepatic cells’damage after treatment with As2O3. Exposure to arsenic led to an increase of liver thiobarbituric acid reactive substances level along with a concomitant decrease in the activities of superoxide dismutase, catalase and glutathione peroxidase and in glutathione.Keywords: antioxidant status, arsenic trioxide, hepatotoxicity, mice, oxidative stress
Procedia PDF Downloads 2551542 Critical Heights of Sloped Unsupported Trenches in Unsaturated Sand
Authors: Won Taek Oh, Adin Richard
Abstract:
Workers are often required to enter unsupported trenches during the construction process, which may present serious risks. Trench failures can result in death or damage to adjacent properties, therefore trenches should be excavated with extreme precaution. Excavation work is often done in unsaturated soils, where the critical height (i.e. maximum depth that can be excavated without failure) of unsupported trenches can be more reliably estimated by considering the influence of matric suction. In this study, coupled stress/pore-water pressure analyses are conducted to investigate the critical height of sloped unsupported trenches considering the influence of pore-water pressure redistribution caused by excavating. Four different wall slopes (1.5V:1H, 2V:1H, 3V:1H, and 90°) and a vertical trench with the top 0.3 m sloped 1:1 were considered in the analyses with multiple depths of the ground water table in a sand. For comparison, the critical heights were also estimated using the limit equilibrium method for the same excavation scenarios used in the coupled analyses.Keywords: critical height, matric suction, unsaturated soil, unsupported trench
Procedia PDF Downloads 1211541 Modal Analysis for Study of Minor Historical Architecture
Authors: Milorad Pavlovic, Anna Manzato, Antonella Cecchi
Abstract:
Cultural heritage conservation is a challenge for contemporary society. In recent decades, significant resources have been allocated for the conservation and restoration of architectural heritage. Historical buildings were restored, protected and reinforced with the intent to limit the risks of degradation or loss, due to phenomena of structural damage and to external factors such as differential settlements, earthquake effects, etc. The wide diffusion of historic masonry constructions in Italy, Europe and the Mediterranean area requires reliable tools for the evaluation of their structural safety. In this paper is presented a free modal analysis performed on a minor historical architecture located in the village of Bagno Grande, near the city of L’Aquila in Italy. The location is characterized by a complex urban context, seriously damaged by the earthquake of 2009. The aim of this work is to check the structural behavior of a masonry building characterized by several boundary conditions imposed by adjacent buildings and infrastructural facilities.Keywords: FEM, masonry, minor historical architecture, modal analysis
Procedia PDF Downloads 3171540 A Mixed Approach to Assess Information System Risk, Operational Risk, and Congolese Microfinance Institutions Performance
Authors: Alfred Kamate Siviri, Angelus Mafikiri Tsongo, Jean Robert Kala Kamdjoug
Abstract:
Digitalization and information systems well organized have been selected as relevant measures to mitigate operational risks within organizations. Unfortunately, information system comes with new threats that can cause severe damage and quick organization lockout. This study aims to measure perceived information system risks and their effects on operational risks within the microfinance institution in D.R. Congo. Also, the factors influencing the operational risk are identified, and the link between operational risk with other risks and performance is to be assessed. The study proposes a research model drawn on the combination of Resources-Based-View, dynamic capabilities, the agency theory, the Information System Security Model, and social theories of risk. Therefore, we suggest adopting a mixed methods research with the sole aim of increasing the literature that already exists on perceived operational risk assessment and its link with other risk and performance, a focus on IT risk.Keywords: Democratic Republic Congo, information system risk, microfinance performance, operational risk
Procedia PDF Downloads 2241539 Study on Constitutive Model of Particle Filling Material Considering Volume Expansion
Authors: Xu Jinsheng, Tong Xin, Zheng Jian, Zhou Changsheng
Abstract:
The NEPE (nitrate ester plasticized polyether) propellant is a kind of particle filling material with relatively high filling fraction. The experimental results show that the microcracks, microvoids and dewetting can cause the stress softening of the material. In this paper, a series of mechanical testing in inclusion with CCD technique were conducted to analyze the evolution of internal defects of propellant. The volume expansion function of the particle filling material was established by measuring of longitudinal and transverse strain with optical deformation measurement system. By analyzing the defects and internal damages of the material, a visco-hyperelastic constitutive model based on free energy theory was proposed incorporating damage function. The proposed constitutive model could accurately predict the mechanical properties of uniaxial tensile tests and tensile-relaxation tests.Keywords: dewetting, constitutive model, uniaxial tensile tests, visco-hyperelastic, nonlinear
Procedia PDF Downloads 3011538 Dambreak Flood Analysis Using HEC-RAS and GIS Technologies
Authors: Oussama Derdous, Lakhdar Djemili, Hamza Bouchehed
Abstract:
The potential risks associated with dam break flooding could be considerable and result in major damage, including loss of life and property destruction. In the past, Algeria experienced such flood disasters; let’s recall the failure of Fergoug dam in 1881, this accident cost 200 lives, many houses and bridges were destroyed by the flooding. Recently the Algerian government have obligated to dam owners the development of detailed dam break Emergency Action Plans for its 64 major dams. The research presented here was conducted within this framework, Zardezas dam which is located in the city of Skikda in the North East of Algeria was the case of study. The model HEC-RAS was used for the hydrodynamic routing of the dam break flood wave. In addition, Geographic Information System (GIS) was used to create inundation maps and produce a visualization of the flood propagation in the Saf-Saf River.The simulation results that demonstrate the significance of Zardezas dam break flooding; constitute a real tool for developing emergency response plans and assisting territorial communities in land use planning.Keywords: dam break, HEC-RAS, GIS, inundation maps, Emergency Action Plan
Procedia PDF Downloads 3951537 Extraction and Characterization of Ethiopian Hibiscus macranthus Bast Fiber
Authors: Solomon Tilahun Desisa, Muktar Seid Hussen
Abstract:
Hibiscus macranthus is one of family Malvaceae and genus Hibiscus plant which grows mainly in western part of Ethiopia. Hibiscus macranthus is the most adaptable and abundant plant in the nation, which are used as an ornamental plant often a hedge or fence plant, and used as a firewood after harvesting the stem together with the bark, and used also as a fiber for trying different kinds of things by forming the rope. However, Hibiscus macranthus plant fibre has not been commercially exploited and extracted properly. This study of work describes the possibility of mechanical and retting methods of Hibiscus macranthus fibre extraction and characterization. Hibiscus macranthus fibre is a bast fibre which obtained naturally from the stem or stalks of the dicotyledonous plant since it is a natural cellulose plant fiber. And the fibre characterized by studying its physical and chemical properties. The physical characteristics were investigated as follows, including the length of 100-190mm, fineness of 1.0-1.2Tex, diameter under X100 microscopic view 16-21 microns, the moisture content of 12.46% and dry tenacity of 48-57cN/Tex along with breaking extension of 0.9-1.6%. Hibiscus macranthus fiber productivity was observed that 12-18% of the stem out of which more than 65% is primary long fibers. The fiber separation methods prove to decrease of non-cellulose ingredients in the order of mechanical, water and chemical methods. The color measurement also shows the raw Hibiscus macranthus fiber has a natural golden color according to YID1925 and paler look under both retting methods than mechanical separation. Finally, it is suggested that Hibiscus macranthus fibre can be used for manufacturing of natural and organic crop and coffee packages as well as super absorbent, fine and high tenacity textile products.Keywords: Hibiscus macranthus, bast fiber, extraction, characterization
Procedia PDF Downloads 210