Search results for: single-phase turbulent mixing rate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9003

Search results for: single-phase turbulent mixing rate

7653 Tribological Characterization of Composites Based on Epoxy Resin Filled with Tailings of Scheelite

Authors: Clarissa D. M. O. Guimaraes, Mariza C. M. Fernandes, Francisco R. V. Diaz, Juliana R. Souza

Abstract:

The use of mineral fillers in the preparation of organic matrix composites can be an efficient alternative in minimizing the environmental damage generated in passive mineral beneficiation processes. In addition, it may represent a new material option for wind, construction, and aeronautical industries, for example. In this sense, epoxy resin composites with Tailings of Scheelite (TS) were developed. The composites were manufactured with 5%, 10% and 20% of TS in volume percentage, homogenized by mechanical mixing and molded in a silicon mold. In order to make the tribological evaluation, pin on disk tests were performed to analyze coefficient of friction and wear. The wear mechanisms were identified by SEM (scanning electron microscope) images. The coefficient of friction had a tendency to decrease with increasing amount of filler. The wear tends to increase with increasing amount of filler, although it exhibits a similar wear behavior. The results suggest characteristics that are potential used in many tribological applications.

Keywords: composites, mineral filler, tailings of scheelite, tribology

Procedia PDF Downloads 166
7652 Downside Risk Analysis of the Nigerian Stock Market: A Value at Risk Approach

Authors: Godwin Chigozie Okpara

Abstract:

This paper using standard GARCH, EGARCH, and TARCH models on day of the week return series (of 246 days) from the Nigerian Stock market estimated the model variants’ VaR. An asymmetric return distribution and fat-tail phenomenon in financial time series were considered by estimating the models with normal, student t and generalized error distributions. The analysis based on Akaike Information Criterion suggests that the EGARCH model with student t innovation distribution can furnish more accurate estimate of VaR. In the light of this, we apply the likelihood ratio tests of proportional failure rates to VaR derived from EGARCH model in order to determine the short and long positions VaR performances. The result shows that as alpha ranges from 0.05 to 0.005 for short positions, the failure rate significantly exceeds the prescribed quintiles while it however shows no significant difference between the failure rate and the prescribed quantiles for long positions. This suggests that investors and portfolio managers in the Nigeria stock market have long trading position or can buy assets with concern on when the asset prices will fall. Precisely, the VaR estimates for the long position range from -4.7% for 95 percent confidence level to -10.3% for 99.5 percent confidence level.

Keywords: downside risk, value-at-risk, failure rate, kupiec LR tests, GARCH models

Procedia PDF Downloads 443
7651 The AI Method and System for Analyzing Wound Status in Wound Care Nursing

Authors: Ho-Hsin Lee, Yue-Min Jiang, Shu-Hui Tsai, Jian-Ren Chen, Mei-Yu XU, Wen-Tien Wu

Abstract:

This project presents an AI-based method and system for wound status analysis. The system uses a three-in-one sensor device to analyze wound status, including color, temperature, and a 3D sensor to provide wound information up to 2mm below the surface, such as redness, heat, and blood circulation information. The system has a 90% accuracy rate, requiring only one manual correction in 70% of cases, with a one-second delay. The system also provides an offline application that allows for manual correction of the wound bed range using color-based guidance to estimate wound bed size with 96% accuracy and a maximum of one manual correction in 96% of cases, with a one-second delay. Additionally, AI-assisted wound bed range selection achieves 100% of cases without manual intervention, with an accuracy rate of 76%, while AI-based wound tissue type classification achieves an 85.3% accuracy rate for five categories. The AI system also includes similar case search and expert recommendation capabilities. For AI-assisted wound range selection, the system uses WIFI6 technology, increasing data transmission speeds by 22 times. The project aims to save up to 64% of the time required for human wound record keeping and reduce the estimated time to assess wound status by 96%, with an 80% accuracy rate. Overall, the proposed AI method and system integrate multiple sensors to provide accurate wound information and offer offline and online AI-assisted wound bed size estimation and wound tissue type classification. The system decreases delay time to one second, reduces the number of manual corrections required, saves time on wound record keeping, and increases data transmission speed, all of which have the potential to significantly improve wound care and management efficiency and accuracy.

Keywords: wound status analysis, AI-based system, multi-sensor integration, color-based guidance

Procedia PDF Downloads 115
7650 A Neural Network Approach to Understanding Turbulent Jet Formations

Authors: Nurul Bin Ibrahim

Abstract:

Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.

Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence

Procedia PDF Downloads 70
7649 Directionally-Sensitive Personal Wearable Radiation Dosimeter

Authors: Hai Huu Le, Paul Junor, Moshi Geso, Graeme O’Keefe

Abstract:

In this paper, the authors propose a personal wearable directionally-sensitive radiation dosimeter using multiple semiconductor CdZnTe detectors. The proposed dosimeter not only measures the real-time dose rate but also provide the direction of the radioactive source. A linear relationship between radioactive source direction and the radiation intensity measured by each detectors is established and an equation to determine the source direction is derived by the authors. The efficiency and accuracy of the proposed dosimeter is verified by simulation using Geant4 package. Results have indicated that in a measurement duration of about 7 seconds, the proposed dosimeter was able to estimate the direction of a 10μCi 137/55Cs radioactive source to within 2 degrees.

Keywords: dose rate, Geant4 package, radiation dosimeter, radioactive source direction

Procedia PDF Downloads 327
7648 Experimental Study on a Solar Heat Concentrating Steam Generator

Authors: Qiangqiang Xu, Xu Ji, Jingyang Han, Changchun Yang, Ming Li

Abstract:

Replacing of complex solar concentrating unit, this paper designs a solar heat-concentrating medium-temperature steam-generating system. Solar radiation is collected by using a large solar collecting and heat concentrating plate and is converged to the metal evaporating pipe with high efficient heat transfer. In the meantime, the heat loss is reduced by employing a double-glazed cover and other heat insulating structures. Thus, a high temperature is reached in the metal evaporating pipe. The influences of the system's structure parameters on system performance are analyzed. The steam production rate and the steam production under different solar irradiance, solar collecting and heat concentrating plate area, solar collecting and heat concentrating plate temperature and heat loss are obtained. The results show that when solar irradiance is higher than 600 W/m2, the effective heat collecting area is 7.6 m2 and the double-glazing cover is adopted, the system heat loss amount is lower than the solar irradiance value. The stable steam is produced in the metal evaporating pipe at 100 ℃, 110 ℃, and 120 ℃, respectively. When the average solar irradiance is about 896 W/m2, and the steaming cumulative time is about 5 hours, the daily steam production of the system is about 6.174 kg. In a single day, the solar irradiance is larger at noon, thus the steam production rate is large at that time. Before 9:00 and after 16:00, the solar irradiance is smaller, and the steam production rate is almost 0.

Keywords: heat concentrating, heat loss, medium temperature, solar steam production

Procedia PDF Downloads 181
7647 Blood Volume Pulse Extraction for Non-Contact Photoplethysmography Measurement from Facial Images

Authors: Ki Moo Lim, Iman R. Tayibnapis

Abstract:

According to WHO estimation, 38 out of 56 million (68%) global deaths in 2012, were due to noncommunicable diseases (NCDs). To avert NCD, one of the solutions is early detection of diseases. In order to do that, we developed 'U-Healthcare Mirror', which is able to measure vital sign such as heart rate (HR) and respiration rate without any physical contact and consciousness. To measure HR in the mirror, we utilized digital camera. The camera records red, green, and blue (RGB) discoloration from user's facial image sequences. We extracted blood volume pulse (BVP) from the RGB discoloration because the discoloration of the facial skin is accordance with BVP. We used blind source separation (BSS) to extract BVP from the RGB discoloration and adaptive filters for removing noises. We utilized singular value decomposition (SVD) method to implement the BSS and the adaptive filters. HR was estimated from the obtained BVP. We did experiment for HR measurement by using our method and previous method that used independent component analysis (ICA) method. We compared both of them with HR measurement from commercial oximeter. The experiment was conducted under various distance between 30~110 cm and light intensity between 5~2000 lux. For each condition, we did measurement 7 times. The estimated HR showed 2.25 bpm of mean error and 0.73 of pearson correlation coefficient. The accuracy has improved compared to previous work. The optimal distance between the mirror and user for HR measurement was 50 cm with medium light intensity, around 550 lux.

Keywords: blood volume pulse, heart rate, photoplethysmography, independent component analysis

Procedia PDF Downloads 329
7646 When Conducting an Analysis of Workplace Incidents, It Is Imperative to Meticulously Calculate Both the Frequency and Severity of Injuries Sustain

Authors: Arash Yousefi

Abstract:

Experts suggest that relying exclusively on parameters to convey a situation or establish a condition may not be adequate. Assessing and appraising incidents in a system based on accident parameters, such as accident frequency, lost workdays, or fatalities, may not always be precise and occasionally erroneous. The frequency rate of accidents is a metric that assesses the correlation between the number of accidents causing work-time loss due to injuries and the total working hours of personnel over a year. Traditionally, this has been calculated based on one million working hours, but the American Occupational Safety and Health Organization has updated its standards. The new coefficient of 200/000 working hours is now used to compute the frequency rate of accidents. It's crucial to ensure that the total working hours of employees are equally represented when calculating individual event and incident numbers. The accident severity rate is a metric used to determine the amount of time lost or wasted during a given period, often a year, in relation to the total number of working hours. It measures the percentage of work hours lost or wasted compared to the total number of useful working hours, which provides valuable insight into the number of days lost or wasted due to work-related incidents for each working hour. Calculating the severity of an incident can be difficult if a worker suffers permanent disability or death. To determine lost days, coefficients specified in the "tables of days equivalent to OSHA or ANSI standards" for disabling injuries are used. The accident frequency coefficient denotes the rate at which accidents occur, while the accident severity coefficient specifies the extent of damage and injury caused by these accidents. These coefficients are crucial in accurately assessing the magnitude and impact of accidents.

Keywords: incidents, safety, analysis, frequency, severity, injuries, determine

Procedia PDF Downloads 90
7645 Survival and Hazard Maximum Likelihood Estimator with Covariate Based on Right Censored Data of Weibull Distribution

Authors: Al Omari Mohammed Ahmed

Abstract:

This paper focuses on Maximum Likelihood Estimator with Covariate. Covariates are incorporated into the Weibull model. Under this regression model with regards to maximum likelihood estimator, the parameters of the covariate, shape parameter, survival function and hazard rate of the Weibull regression distribution with right censored data are estimated. The mean square error (MSE) and absolute bias are used to compare the performance of Weibull regression distribution. For the simulation comparison, the study used various sample sizes and several specific values of the Weibull shape parameter.

Keywords: weibull regression distribution, maximum likelihood estimator, survival function, hazard rate, right censoring

Procedia PDF Downloads 441
7644 Frequency of Occurrence Hybrid Watermarking Scheme

Authors: Hamza A. Ali, Adnan H. M. Al-Helali

Abstract:

Generally, a watermark is information that identifies the ownership of multimedia (text, image, audio or video files). It is achieved by introducing modifications into these files that are imperceptible to the human senses but easily recoverable by a computer program. These modifications are done according to a secret key in a descriptive model that would be either in the time domain or frequency domain or both. This paper presents a procedure for watermarking by mixing amplitude modulation with frequency transformation histogram; namely a specific value is used to modulate the intensity component Y of the YIQ components of the carrier image. This scheme is referred to as histogram embedding technique (HET). Results comparison with those of other techniques such as discrete wavelet transform (DWT), discrete cosine transform (DCT) and singular value decomposition (SVD) have shown an enhance efficiency in terms of ease and performance. It has manifested a good degree of robustness against various environment effects such as resizing, rotation and different kinds of noise. This method would prove very useful technique for copyright protection and ownership judgment.

Keywords: watermarking, ownership, copyright protection, steganography, information hiding, authentication

Procedia PDF Downloads 368
7643 Theoretical and Experimental Analysis of Hard Material Machining

Authors: Rajaram Kr. Gupta, Bhupendra Kumar, T. V. K. Gupta, D. S. Ramteke

Abstract:

Machining of hard materials is a recent technology for direct production of work-pieces. The primary challenge in machining these materials is selection of cutting tool inserts which facilitates an extended tool life and high-precision machining of the component. These materials are widely for making precision parts for the aerospace industry. Nickel-based alloys are typically used in extreme environment applications where a combination of strength, corrosion resistance and oxidation resistance material characteristics are required. The present paper reports the theoretical and experimental investigations carried out to understand the influence of machining parameters on the response parameters. Considering the basic machining parameters (speed, feed and depth of cut) a study has been conducted to observe their influence on material removal rate, surface roughness, cutting forces and corresponding tool wear. Experiments are designed and conducted with the help of Central Composite Rotatable Design technique. The results reveals that for a given range of process parameters, material removal rate is favorable for higher depths of cut and low feed rate for cutting forces. Low feed rates and high values of rotational speeds are suitable for better finish and higher tool life.

Keywords: speed, feed, depth of cut, roughness, cutting force, flank wear

Procedia PDF Downloads 285
7642 Process Modified Geopolymer Concrete: A Sustainable Material for Green Construction Technology

Authors: Dibyendu Adak, Saroj Mandal

Abstract:

The fly ash based geopolymer concrete generally requires heat activation after casting, which has been considered as an important limitation for its practical application. Such limitation can be overcome by a modification in the process at the time of mixing of ingredients (fly and activator fluid) for geopolymer concrete so that curing can be made at ambient temperature. This process modified geopolymer concrete shows an appreciable improvement in structural performance compared to conventional heat cured geopolymer concrete and control cement concrete. The improved durability performance based on water absorption, sulphate test, and RCPT is also noted. The microstructural properties analyzed through Field Emission Scanning Electron Microscope (FESEM) with Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD) techniques show the better interaction of fly ash and activator solution at early ages for the process modified geopolymer concrete. This accelerates the transformation of the amorphous phase of fly ash to the crystalline phase.

Keywords: fly ash, geopolymer concrete, process modification, structural properties, durability, micro-structures

Procedia PDF Downloads 163
7641 Hybridization of Steel and Polypropylene Fibers in Concrete: A Comprehensive Study with Various Mix Ratios

Authors: Qaiser uz Zaman Khan

Abstract:

This research article provides a comprehensive study of combining steel fiber and polypropylene fibers in concrete at different mix ratios. This blending of various fibers has led to the development of hybrid fiber-reinforced concrete (HFRC), which offers notable improvements in mechanical properties and increased resistance to cracking. Steel fibers are known for their high tensile strength and excellent crack control abilities, while polypropylene fibers offer increased toughness and impact resistance. The synergistic use of these two fiber types in concrete has yielded promising outcomes, effectively enhancing its overall performance. This article explores the key aspects of hybridization, including fiber types, proportions, mixing methods, and the resulting properties of the concrete. Additionally, challenges, potential applications, and future research directions in the field are discussed.

Keywords: FRC, fiber-reinforced concrete, split tensile testing, HFRC, mechanical properties, steel fibers, reinforced concrete, polypropylene fibers

Procedia PDF Downloads 91
7640 CFD Studies on Forced Convection Nanofluid Flow Inside a Circular Conduit

Authors: M. Khalid, W. Rashmi, L. L. Kwan

Abstract:

This work provides an overview on the experimental and numerical simulations of various nanofluids and their flow and heat transfer behavior. It was further extended to study the effect of nanoparticle concentration, fluid flow rates and thermo-physical properties on the heat transfer enhancement of Al2O3/water nanofluid in a turbulent flow circular conduit using ANSYS FLUENT™ 14.0. Single-phase approximation (homogeneous model) and two-phase (mixture and Eulerian) models were used to simulate the nanofluid flow behavior in the 3-D horizontal pipe. The numerical results were further validated with experimental correlations reported in the literature. It was found that heat transfer of nanofluids increases with increasing particle volume concentration and Reynolds number, respectively. Results showed good agreement (~9% deviation) with the experimental correlations, especially for a single-phase model with constant properties. Among two-phase models, mixture model (~14% deviation) showed better prediction compared to Eulerian-dispersed model (~18% deviation) when temperature independent properties were used. Non-drag forces were also employed in the Eulerian two-phase model. However, the two-phase mixture model with temperature dependent nanofluid properties gave slightly closer agreement (~12% deviation).

Keywords: nanofluid, CFD, heat transfer, forced convection, circular conduit

Procedia PDF Downloads 523
7639 Development and Investigation of Efficient Substrate Feeding and Dissolved Oxygen Control Algorithms for Scale-Up of Recombinant E. coli Cultivation Process

Authors: Vytautas Galvanauskas, Rimvydas Simutis, Donatas Levisauskas, Vykantas Grincas, Renaldas Urniezius

Abstract:

The paper deals with model-based development and implementation of efficient control strategies for recombinant protein synthesis in fed-batch E.coli cultivation processes. Based on experimental data, a kinetic dynamic model for cultivation process was developed. This model was used to determine substrate feeding strategies during the cultivation. The proposed feeding strategy consists of two phases – biomass growth phase and recombinant protein production phase. In the first process phase, substrate-limited process is recommended when the specific growth rate of biomass is about 90-95% of its maximum value. This ensures reduction of glucose concentration in the medium, improves process repeatability, reduces the development of secondary metabolites and other unwanted by-products. The substrate limitation can be enhanced to satisfy restriction on maximum oxygen transfer rate in the bioreactor and to guarantee necessary dissolved carbon dioxide concentration in culture media. In the recombinant protein production phase, the level of substrate limitation and specific growth rate are selected within the range to enable optimal target protein synthesis rate. To account for complex process dynamics, to efficiently exploit the oxygen transfer capability of the bioreactor, and to maintain the required dissolved oxygen concentration, adaptive control algorithms for dissolved oxygen control have been proposed. The developed model-based control strategies are useful in scale-up of cultivation processes and accelerate implementation of innovative biotechnological processes for industrial applications.

Keywords: adaptive algorithms, model-based control, recombinant E. coli, scale-up of bioprocesses

Procedia PDF Downloads 257
7638 A Unique Immunization Card for Early Detection of Retinoblastoma

Authors: Hiranmoyee Das

Abstract:

Aim. Due to late presentation and delayed diagnosis mortality rate of retinoblastoma is more than 50% in developing counties. So to facilitate the diagnosis, to decrease the disease and treatment burden and to increase the disease survival rate, an attempt was made for early diagnosis of Retinoblastoma by including fundus examination in routine immunization programs. Methods- A unique immunization card is followed in a tertiary health care center where examination of pupillary reflex is made mandatory in each visit of the child for routine immunization. In case of any abnormality, the child is referred to the ophthalmology department. Conclusion- Early detection is the key in the management of retinoblastoma. Every child is brought to the health care system at least five times before the age of 2 years for routine immunization. We should not miss this golden opportunity for early detection of retinoblastoma.

Keywords: retinoblastoma, immunization, unique, early

Procedia PDF Downloads 197
7637 Nacre Deposition Rate in Japanese and Hybrid Mother Oysters, Pinctada Fucata, and Its Relationship with Their Respective Pearls

Authors: Gunawan Muhammad, Takashi Atsumi, Akira Komaru

Abstract:

Pinctada fucata has been the most important pearl culture species in Japan and known as Japanese Akoya Pearl Oyster. However, during summer 1994, mass mortality devastated pearl culture in most parts of Japan. Therefore, pearl farmers started to import Chinese Pearl Oysters from Hainan Island that came from the same species because they are believed to be more resistant towards high water temperature, despite their lack of ability in producing high-quality pearls. The local farmers were then hybridized Japanese and Chinese pearl oysters and currently known as Hybrid pearl oysters, as an attempt to produce a new oyster's strain which is more resistant towards high temperature but also able to produce higher quality pearls. However, despite both strains were implanted by mantle tissues from the same group of donors, the thickness of pearl nacre produced by both strains was different, even though tablet thickness shows a rather similar pattern. Hence, this leads to a question of whether mother oysters play a major role in both nacre deposition rate and tablet thickness of pearls or not. This study first describes the nacre deposition rate of the shells of Japanese and Hybrid mother oysters towards the water temperature condition in Ago Bay, Mie Prefecture, Japan. Later, a comparative study was conducted among 4 shell positions that had been chosen according to the mantle tissue location and shell growth directions. A correlative study was then taken between shells and pearls nacre deposition rate to know whether mother oyster ability in depositing nacre on their shells is related to that of pearls. All the four shell positions were significantly different in shell nacre growth rate (Kruskal-Wallis, p-value < 0.05), and the third position have faster nacre growth among the other three both in Japanese and Hybrid strains, especially in warm temperature. The ability to deposit nacre between Japanese and Hybrid during warm water conditions (August and September) is also significantly different in almost all positions (Mann Whitney U, p-value < 0.01), Japanese oyster growth faster than Hybrid in all four positions. This leads to a different total growth among the two strains and a higher possibility of thicker nacre thickness in Japanese shell nacre. Tablet thickness is significantly different among all positions of shells (Kruskal-Wallis, p-value < 0.01), the 2nd position deposited rather thinner tablet thickness than the other three, including on the 6th month of culture which is more desirable in producing pearls with good luster. This result gives us new information that pearl growth rate is highly affected by the mother oysters; however, nacre tablet thickness might be the result of the shell matrix expressed by different mantle position from donor oysters.

Keywords: nacre, deposition, biomineralization, pearl aquaculture, pearl oyster, Akoya pearl, pearl

Procedia PDF Downloads 138
7636 Characterization and Design of a Crumb Rubber Modified Asphalt Mix Formulation

Authors: H. Al-Baghli

Abstract:

Laboratory trial results of mixing crumb rubber produced from discarded tires with 60/70 pen grade Kuwaiti bitumen are presented on this paper. PG grading and multiple stress creep recovery tests were conducted on Kuwaiti bitumen blended with 15% and 18% crumb rubber at temperatures ranging from 40 to 70 °C. The results from elastic recovery and non-recoverable creep presented optimum performance at 18% rubber content. The optimum rubberized-bitumen mix was next transformed into a pelletized form (PelletPave®), and was used as a partial replacement to the conventional bitumen in the manufacture of continuously graded hot mix asphalts at a number of binder contents. The trialed PelletPave® contents were at 2.5%, 3.0%, and 3.5% by mass of asphalt mix. In this investigation, it was not possible to utilize the results of standard Marshall method of mix design (i.e. volumetric, stability and flow tests) and subsequently additional assessment of mix compactability was carried out using gyratory compactor in order to determine the optimum PelletPave® and total binder contents.

Keywords: crumb rubber, Marshall mix design, PG grading, rubberized-bitumen

Procedia PDF Downloads 218
7635 Ethyl Methane Sulfonate-Induced Dunaliella salina KU11 Mutants Affected for Growth Rate, Cell Accumulation and Biomass

Authors: Vongsathorn Ngampuak, Yutachai Chookaew, Wipawee Dejtisakdi

Abstract:

Dunaliella salina has great potential as a system for generating commercially valuable products, including beta-carotene, pharmaceuticals, and biofuels. Our goal is to improve this potential by enhancing growth rate and other properties of D. salina under optimal growth conditions. We used ethyl methane sulfonate (EMS) to generate random mutants in D. salina KU11, a strain classified in Thailand. In a preliminary experiment, we first treated D. salina cells with 0%, 0.8%, 1.0%, 1.2%, 1.44% and 1.66% EMS to generate a killing curve. After that, we randomly picked 30 candidates from approximately 300 isolated survivor colonies from the 1.44% EMS treatment (which permitted 30% survival) as an initial test of the mutant screen. Among the 30 survivor lines, we found that 2 strains (mutant #17 and #24) had significantly improved growth rates and cell number accumulation at stationary phase approximately up to 1.8 and 1.45 fold, respectively, 2 strains (mutant #6 and #23) had significantly decreased growth rates and cell number accumulation at stationary phase approximately down to 1.4 and 1.35 fold, respectively, while 26 of 30 lines had similar growth rates compared with the wild type control. We also analyzed cell size for each strain and found there was no significant difference comparing all mutants with the wild type. In addition, mutant #24 had shown an increase of biomass accumulation approximately 1.65 fold compared with the wild type strain on day 5 that was entering early stationary phase. From these preliminary results, it could be feasible to identify D. salina mutants with significant improved growth rate, cell accumulation and biomass production compared to the wild type for the further study; this makes it possible to improve this microorganism as a platform for biotechnology application.

Keywords: Dunaliella salina, ethyl methyl sulfonate, growth rate, biomass

Procedia PDF Downloads 241
7634 The Treatment of Nitrate Polluted Groundwater Using Bio-electrochemical Systems Inoculated with Local Groundwater Sediments

Authors: Danish Laidin, Peter Gostomski, Aaron Marshall, Carlo Carere

Abstract:

Groundwater contamination of nitrate (NO3-) is becoming more prevalent in regions of intensive and extensive agricultural activities. Household nitrate removal involves using ion exchange membranes and reverse osmosis (RO) systems, whereas industrial nitrate removal may use organic carbon substrates (e.g. methanol) for heterotrophic microbial denitrification. However, these approaches both require high capital investment and operating costs. In this study, denitrification was demonstrated using bio-electrochemical systems (BESs) inoculated from sediments and microbial enrichment cultures. The BES reactors were operated continuously as microbial electrolytic cells (MECs) with a poised potential of -0.7V and -1.1V vs Ag/AgCl. Three parallel MECs were inoculated using hydrogen-driven denitrifying enrichments, stream sediments, and biofilm harvested from a denitrifying biotrickling filter, respectively. These reactors were continuously operated for over a year as various operating conditions were investigated to determine the optimal conditions for electroactive denitrification. The mass loading rate of nitrate was varied between 10 – 70 mg NO3-/d, and the maximum observed nitrate removal rate was 22 mg NO3- /(cm2∙d) with a current of 2.1 mA. For volumetric load experiments, the dilution rate of 1 mM NO3- feed was varied between 0.01 – 0.1 hr-1 to achieve a nitrate loading rate similar to the mass loading rate experiments. Under these conditions, the maximum rate of denitrification observed was 15.8 mg NO3- /(cm2∙d) with a current of 1.7mA. Hydrogen (H2) was supplied intermittently to investigate the hydrogenotrophic potential of the denitrifying biofilm electrodes. H2 supplementation at 0.1 mL/min resulted in an increase of nitrate removal from 0.3 mg NO3- /(cm2∙d) to 3.4 mg NO3- /(cm2∙d) in the hydrogenotrophically subcultured reactor but had no impact on the reactors which exhibited direct electron transfer properties. Results from this study depict the denitrification performance of the immobilized biofilm electrodes, either by direct electron transfer or hydrogen-driven denitrification, and the contribution of the planktonic cells present in the growth medium. Other results will include the microbial community analysis via 16s rDNA amplicon sequencing, varying the effect of poising cathodic potential from 0.7V to 1.3V vs Ag/AgCl, investigating the potential of using in-situ electrochemically produced hydrogen for autotrophic denitrification and adjusting the conductivity of the feed solution to mimic groundwater conditions. These findings highlight the overall performance of sediment inoculated MECs in removing nitrate and will be used for the future development of sustainable solutions for the treatment of nitrate polluted groundwater.

Keywords: bio-electrochemical systems, groundwater, electroactive denitrification, microbial electrolytic cell

Procedia PDF Downloads 66
7633 The Role of Physically Adsorbing Species of Oxyhydryl Reagents in Flotation Aggregate Formation

Authors: S. A. Kondratyev, O. I. Ibragimova

Abstract:

The authors discuss the collecting abilities of desorbable species (DS) of saturated fatty acids. The DS species of the reagent are understood as species capable of moving from the surface of the mineral particle to the bubble at the moment of the rupture of the interlayer of liquid separating these objects of interaction. DS species of carboxylic acids (molecules and ionic-molecular complexes) have the ability to spread over the surface of the bubble. The rate of their spreading at pH 7 and 10 over the water surface is determined. The collectibility criterion of saturated fatty acids is proposed. The values of forces exerted by the spreading DS species of reagents on liquid in the interlayer and the liquid flow rate from the interlayer are determined.

Keywords: criterion of action of physically adsorbed reagent, flotation, saturated fatty acids, surface pressure

Procedia PDF Downloads 222
7632 Innovation Mechanism in Developing Cultural and Creative Industries

Authors: Liou Shyhnan, Chia Han Yang

Abstract:

The study aims to investigate the promotion of innovation in the development of cultural and creative industries (CCI) and apply research on culture and creativity to this promotion. Using the research perspectives of culture and creativity as the starting points, this study has examined the challenges, trends, and opportunities that have emerged from the development of the CCI until the present. It is found that a definite context of cause and effect exist between them, and that a homologous theoretical basis can be used to understand and interpret them. Based on the characteristics of the aforementioned challenges and trends, this study has compiled two main theoretical systems for conducting research on culture and creativity: (i) reciprocal process between creativity and culture, and (ii) a mechanism for innovation involving multicultural convergence. Both theoretical systems were then used as the foundation to arrive at possible research propositions relating to the two developmental systems. This was respectively done through identification of the theoretical context through a literature review, and interviews and observations of actual case studies within Taiwan’s CCI. In so doing, the critical factors that can address the aforementioned challenges and trends were discovered. Our results indicated that, for reciprocal process between creativity and culture, we recognize that culture serves as creative resources in cultural and creative industries. According to shared consensus, culture provides symbolic meanings and emotional attachment for products and experiences offered by CCI. Besides, different cultures vary in their effects on creativity processes and standards, thus engendering distinctive preferences for and evaluations of the creative expressions and experiences of CCIs. In addition, we identify that creativity serves as the engine for driving the continuation and rebirth of cultures. Accounting for the core of culture, the employment of technology, design, and business facilitates the transformation and innovation mechanism for promoting culture continuity. In addition, with cultural centered, the digital technology, design thinking, and business model are critical constitutes of the innovation mechanism to promote the cultural continuity. Regarding cultural preservation and regeneration of local spaces and folk customs, we argue that the preservation and regeneration of local spaces and cultural cultures must embody the interactive experiences of present-day life. And cultural space and folk custom would regenerate with interact and experience in modern life. Regarding innovation mechanism for multicultural convergence, we propose that innovative stakeholders from different disciplines (e.g., creators, designers, engineers, and marketers) in CCIs rely on the establishment of a cocreation mechanism to promote interdisciplinary interaction. Furthermore, CCI development needs to develop a cocreation mechanism for enhancing the interdisciplinary collaboration among CCI innovation stakeholders. We further argue multicultural mixing would enhance innovation in developing CCI, and assuming an open and mutually enlightening attitude to enrich one another’s cultures in the multicultural exchanges under globalization will create diversity in homogenous CCIs. Finally, for promoting innovation in developing cultural and creative industries, we further propose a model for joint knowledge creation that can be established for enhancing the mutual reinforcement of theoretical and practical research on culture and creativity.

Keywords: culture and creativity, innovation, cultural and creative industries, cultural mixing

Procedia PDF Downloads 325
7631 A Quantitative Assessment of the Social Marginalization in Romania

Authors: Andra Costache, Rădiţa Alexe

Abstract:

The analysis of the spatial disparities of social marginalization is a requirement in the present-day socio-economic and political context of Romania, an East-European state, member of the European Union since 2007, at present faced with the imperatives of the growth of its territorial cohesion. The main objective of this article is to develop a methodology for the assessment of social marginalization, in order to understand the intensity of the marginalization phenomenon at different spatial scales. The article proposes a social marginalization index (SMI), calculated through the integration of ten indicators relevant for the two components of social marginalization: the material component and the symbolical component. The results highlighted a strong connection between the total degree of social marginalization and the dependence on social benefits, unemployment rate, non-inclusion in the compulsory education, criminality rate, and the type of pension insurance.

Keywords: Romania, social marginalization index, territorial disparities, EU

Procedia PDF Downloads 345
7630 Numerical Simulation and Experimental Validation of the Hydraulic L-Shaped Check Ball Behavior

Authors: Shinji Kajiwara

Abstract:

The spring-driven ball-type check valve is one of the most important components of hydraulic systems: it controls the position of the ball and prevents backward flow. To simplify the structure, the spring must be eliminated, and to accomplish this, the flow pattern and the behavior of the check ball in L-shaped pipe must be determined. In this paper, we present a full-scale model of a check ball made of acrylic resin, and we determine the relationship between the initial position of the ball, the position and diameter of the inflow port. The check flow rate increases in a standard center inflow model, and it is possible to greatly decrease the check-flow rate by shifting the inflow from the center.

Keywords: hydraulics, pipe flow, numerical simulation, flow visualization, check ball, L-shaped pipe

Procedia PDF Downloads 300
7629 Reconstructing Calvarial Bone Lesions Using PHBV Scaffolds and Cord Blood Mesenchymal Stem Cells in Rat

Authors: Hamed Hosseinkazemi, Esmaeil Biazar

Abstract:

For tissue engineering of bone, anatomical and operational reconstructions of damaged tissue seem to be vital. This is done via reconstruction of bone and appropriate biological joint with bone tissues of damaged areas. In this study the condition of biodegradable bed Nanofibrous PHBV and USSC cells were used to accelerate bone repair of damaged area. Hollow nanofabrication scaffold of damageable life was designed as PHBV by electrospinning and via determining the best factors such as the kind and amount of solvent, specific volume and rate. The separation of osseous tissue infiltration and evaluating its nature by flow cytometrocical analysis was done. Animal test including USSC as well as PHBV condition in the damaged bone was done in the rat. After 8 weeks the implanted area was analyzed using CT scan and was sent to histopathology ward. Finally, the rate and quality of reconstruction were determined after H and E coloring. Histomorphic analysis indicated a statistically significant difference between the experimental group of PHBV, USSC+PHBV and control group. Besides, the histopathologic analysis showed that bone reconstruction rate was high in the area containing USSC and PHBV, compared with area having PHBV and control group and consequently the reconstruction quality of bones and the relationship between the new bone tissues and surrounding bone tissues were high too. Using PHBR scaffold and USSC together could be useful in the amending of wide range of bone lesion.

Keywords: bone lesion, nanofibrous PHBV, stem cells, umbilical cord blood

Procedia PDF Downloads 318
7628 Improving the Patient Guidance Satisfaction and Integrity of Patients Hospitalized in Iodine-131 Isolation Rooms

Authors: Yu Sin Syu

Abstract:

Objective: The study aimed to improve the patient guidance satisfaction of patients hospitalized in iodine-131 isolation rooms, as well as the patient guidance completion rate for such patients. Method: A patient care guidance checklist and patient care guidance satisfaction questionnaire were administered to 29 patients who had previously been hospitalized in iodine-131 isolation rooms. The evaluation was conducted on a one-on-one basis, and its results showed that the patients’ satisfaction with patient guidance was only 3.7 points and that the completion rate for the patient guidance performed by nurses was only 67%. Therefore, various solutions were implemented to create a more complete patient guidance framework for nurses, including the incorporation of regular care-related training in in-service education courses; the establishment of patient care guidance standards for patients in iodine-131 isolation rooms; the establishment of inpatient care standards and auditing processes for iodine-131 isolation rooms; the creation of an introductory handbook on ward environment; Invite other the care team the revision of iodine-131 health education brochures; the creation of visual cards and videos covering equipment operation procedures; and introduction of QR codes. Results: Following the implementation of the above measures, the overall satisfaction of patients hospitalized in iodine-131 isolation rooms increased from 3.7 points to 4.6 points, and the completion rate for patient guidance rose from 67% to 100%. Conclusion: Given the excellent results achieved in this study, it is hoped that this nursing project can serve as a benchmark for other relevant departments.

Keywords: admission care guidance, guidance satisfaction, integrity, Iodine131 isolation

Procedia PDF Downloads 127
7627 Distribution of Traffic Volume at Fuel Station during Peak Hour Period on Arterial Road

Authors: Surachai Ampawasuvan, Supornchai Utainarumol

Abstract:

Most of fuel station’ customers, who drive on the major arterial road wants to use the stations to fill fuel to their vehicle during their journey to destinations. According to the survey of traffic volume of the vehicle using fuel stations by video cameras, automatic counting tools, or questionnaires, it was found that most users prefer to use fuel stations on holiday rather than on working day. They also prefer to use fuel stations in the morning rather than in the evening. When comparing the ratio of the distribution pattern of traffic volume of the vehicle using fuel stations by video cameras, automatic counting tools, there is no significant difference. However, when comparing the ratio of peak hour (peak hour rate) of the results from questionnaires at 13 to 14 percent with the results obtained by using the methods of the Institute of Transportation Engineering (ITE), it is found that the value is similar. However, it is different from a survey by video camera and automatic traffic counting at 6 to 7 percent of about half. So, this study suggests that in order to forecast trip generation of vehicle using fuel stations on major arterial road which is mostly characterized by Though Traffic, it is recommended to use the value of half of peak hour rate, which would make the forecast for trips generation to be more precise and accurate and compatible to surrounding environment.

Keywords: peak rate, trips generation, fuel station, arterial road

Procedia PDF Downloads 408
7626 Forest Fire Burnt Area Assessment in a Part of West Himalayan Region Using Differenced Normalized Burnt Ratio and Neural Network Approach

Authors: Sunil Chandra, Himanshu Rawat, Vikas Gusain, Triparna Barman

Abstract:

Forest fires are a recurrent phenomenon in the Himalayan region owing to the presence of vulnerable forest types, topographical gradients, climatic weather conditions, and anthropogenic pressure. The present study focuses on the identification of forest fire-affected areas in a small part of the West Himalayan region using a differential normalized burnt ratio method and spectral unmixing methods. The study area has a rugged terrain with the presence of sub-tropical pine forest, montane temperate forest, and sub-alpine forest and scrub. The major reason for fires in this region is anthropogenic in nature, with the practice of human-induced fires for getting fresh leaves, scaring wild animals to protect agricultural crops, grazing practices within reserved forests, and igniting fires for cooking and other reasons. The fires caused by the above reasons affect a large area on the ground, necessitating its precise estimation for further management and policy making. In the present study, two approaches have been used for carrying out a burnt area analysis. The first approach followed for burnt area analysis uses a differenced normalized burnt ratio (dNBR) index approach that uses the burnt ratio values generated using the Short-Wave Infrared (SWIR) band and Near Infrared (NIR) bands of the Sentinel-2 image. The results of the dNBR have been compared with the outputs of the spectral mixing methods. It has been found that the dNBR is able to create good results in fire-affected areas having homogenous forest stratum and with slope degree <5 degrees. However, in a rugged terrain where the landscape is largely influenced by the topographical variations, vegetation types, tree density, the results may be largely influenced by the effects of topography, complexity in tree composition, fuel load composition, and soil moisture. Hence, such variations in the factors influencing burnt area assessment may not be effectively carried out using a dNBR approach which is commonly followed for burnt area assessment over a large area. Hence, another approach that has been attempted in the present study utilizes a spectral mixing method where the individual pixel is tested before assigning an information class to it. The method uses a neural network approach utilizing Sentinel-2 bands. The training and testing data are generated from the Sentinel-2 data and the national field inventory, which is further used for generating outputs using ML tools. The analysis of the results indicates that the fire-affected regions and their severity can be better estimated using spectral unmixing methods, which have the capability to resolve the noise in the data and can classify the individual pixel to the precise burnt/unburnt class.

Keywords: categorical data, log linear modeling, neural network, shifting cultivation

Procedia PDF Downloads 54
7625 Use of Large Eddy Simulations Model to Simulate the Flow of Heavy Oil-Water-Air through Pipe

Authors: Salim Al Jadidi, Shian Gao, Shivananda Moolya

Abstract:

Computational Fluid Dynamic (CFD) technique coupled with Sub-Grid-Scale (SGS) model is used to study the flow behavior of heavy oil-water-air flow in a horizontal pipe by adapting ANSYS Fluent CFD software. The technique suitable for the transport of water-lubricated heavy viscous oil in a horizontal pipe is the Core Annular flow (CAF) technique. The present study focuses on the numerical study of CAF adapting Large Eddy Simulations (LES). The basic objective of the present study is to gain a basic knowledge of the flow behavior of heavy oil using turbulent CAF through a conventional horizontal pipe. This work also focuses on the success and applicability of LES. The simulation of heavy oil-water-air three-phase flow and two-phase flow of heavy oil–water in a conventional horizontal pipe is performed using ANSYS Fluent 16.2 software. The influence of three-phase heavy oil-water air flow in a selected pipe is affected by gravity. It is also observed from the result that the air phase and the variation in the temperature impact the behavior of the annular stream and pressure drop. Some results obtained during the study are validated with the results gained from part of the literature experiments and simulations, and the results show reasonably good agreement between the studies.

Keywords: computational fluid dynamics, gravity, heavy viscous oil, three-phase flow

Procedia PDF Downloads 77
7624 Mango (Mangifera indica L.) Lyophilization Using Vacuum-Induced Freezing

Authors: Natalia A. Salazar, Erika K. Méndez, Catalina Álvarez, Carlos E. Orrego

Abstract:

Lyophilization, also called freeze-drying, is an important dehydration technique mainly used for pharmaceuticals. Food industry also uses lyophilization when it is important to retain most of the nutritional quality, taste, shape and size of dried products and to extend their shelf life. Vacuum-Induced during freezing cycle (VI) has been used in order to control ice nucleation and, consequently, to reduce the time of primary drying cycle of pharmaceuticals preserving quality properties of the final product. This procedure has not been applied in freeze drying of foods. The present work aims to investigate the effect of VI on the lyophilization drying time, final moisture content, density and reconstitutional properties of mango (Mangifera indica L.) slices (MS) and mango pulp-maltodextrin dispersions (MPM) (30% concentration of total solids). Control samples were run at each freezing rate without using induced vacuum. The lyophilization endpoint was the same for all treatments (constant difference between capacitance and Pirani vacuum gauges). From the experimental results it can be concluded that at the high freezing rate (0.4°C/min) reduced the overall process time up to 30% comparing process time required for the control and VI of the lower freeze rate (0.1°C/min) without affecting the quality characteristics of the dried product, which yields a reduction in costs and energy consumption for MS and MPM freeze drying. Controls and samples treated with VI at freezing rate of 0.4°C/min in MS showed similar results in moisture and density parameters. Furthermore, results from MPM dispersion showed favorable values when VI was applied because dried product with low moisture content and low density was obtained at shorter process time compared with the control. There were not found significant differences between reconstitutional properties (rehydration for MS and solubility for MPM) of freeze dried mango resulting from controls, and VI treatments.

Keywords: drying time, lyophilization, mango, vacuum induced freezing

Procedia PDF Downloads 410