Search results for: score prediction
2802 Predicting Factors for Occurrence of Cardiac Arrest in Critical, Emergency and Urgency Patients in an Emergency Department
Authors: Angkrit Phitchayangkoon, Ar-Aishah Dadeh
Abstract:
Background: A key aim of triage is to identify the patients with high risk of cardiac arrest because they require intensive monitoring, resuscitation facilities, and early intervention. We aimed to identify the predicting factors such as initial vital signs, serum pH, serum lactate level, initial capillary blood glucose, and Modified Early Warning Score (MEWS) which affect the occurrence of cardiac arrest in an emergency department (ED). Methods: We conducted a retrospective data review of ED patients in an emergency department (ED) from 1 August 2014 to 31 July 2016. Significant variables in univariate analysis were used to create a multivariate analysis. Differentiation of predicting factors between cardiac arrest patient and non-cardiac arrest patients for occurrence of cardiac arrest in an emergency department (ED) was the primary outcome. Results: The data of 527 non-trauma patients with Emergency Severity Index (ESI) 1-3 were collected. The factors found to have a significant association (P < 0.05) in the non-cardiac arrest group versus the cardiac arrest group at the ED were systolic BP (mean [IQR] 135 [114,158] vs 120 [90,140] mmHg), oxygen saturation (mean [IQR] 97 [89,98] vs 82.5 [78,95]%), GCS (mean [IQR] 15 [15,15] vs 11.5 [8.815]), normal sinus rhythm (mean 59.8 vs 30%), sinus tachycardia (mean 46.7 vs 21.7%), pH (mean [IQR] 7.4 [7.3,7.4] vs 7.2 [7,7.3]), serum lactate (mean [IQR] 2 [1.1,4.2] vs 7 [5,10.8]), and MEWS score (mean [IQR] 3 [2,5] vs 5 [3,6]). A multivariate analysis was then performed. After adjusting for multiple factors, ESI level 2 patients were more likely to have cardiac arrest in the ER compared with ESI 1 (odds ratio [OR], 1.66; P < 0.001). Furthermore, ESI 2 patients were more likely than ESI 1 patients to have cardiovascular disease (OR, 1.89; P = 0.01), heart rate < 55 (OR, 6.83; P = 0.18), SBP < 90 (OR, 3.41; P = 0.006), SpO2 < 94 (OR, 4.76; P = 0.012), sinus tachycardia (OR, 4.32; P = 0.002), lactate > 4 (OR, 10.66; P = < 0.001), and MEWS > 4 (OR, 4.86; P = 0.028). These factors remained predictive of cardiac arrest at the ED. Conclusion: The factors related to cardiac arrest in the ED are ESI 1 patients, ESI 2 patients, patients diagnosed with cardiovascular disease, SpO2 < 94, lactate > 4, and a MEWS > 4. These factors can be used as markers in the event of simultaneous arrival of many patients and can help as a pre-state for patients who have a tendency to develop cardiac arrest. The hemodynamic status and vital signs of these patients should be closely monitored. Early detection of potentially critical conditions to prevent critical medical intervention is mandatory.Keywords: cardiac arrest, predicting factor, emergency department, emergency patient
Procedia PDF Downloads 1602801 A Framework on Data and Remote Sensing for Humanitarian Logistics
Authors: Vishnu Nagendra, Marten Van Der Veen, Stefania Giodini
Abstract:
Effective humanitarian logistics operations are a cornerstone in the success of disaster relief operations. However, for effectiveness, they need to be demand driven and supported by adequate data for prioritization. Without this data operations are carried out in an ad hoc manner and eventually become chaotic. The current availability of geospatial data helps in creating models for predictive damage and vulnerability assessment, which can be of great advantage to logisticians to gain an understanding on the nature and extent of the disaster damage. This translates into actionable information on the demand for relief goods, the state of the transport infrastructure and subsequently the priority areas for relief delivery. However, due to the unpredictable nature of disasters, the accuracy in the models need improvement which can be done using remote sensing data from UAVs (Unmanned Aerial Vehicles) or satellite imagery, which again come with certain limitations. This research addresses the need for a framework to combine data from different sources to support humanitarian logistic operations and prediction models. The focus is on developing a workflow to combine data from satellites and UAVs post a disaster strike. A three-step approach is followed: first, the data requirements for logistics activities are made explicit, which is done by carrying out semi-structured interviews with on field logistics workers. Second, the limitations in current data collection tools are analyzed to develop workaround solutions by following a systems design approach. Third, the data requirements and the developed workaround solutions are fit together towards a coherent workflow. The outcome of this research will provide a new method for logisticians to have immediately accurate and reliable data to support data-driven decision making.Keywords: unmanned aerial vehicles, damage prediction models, remote sensing, data driven decision making
Procedia PDF Downloads 3802800 Financial Fraud Prediction for Russian Non-Public Firms Using Relational Data
Authors: Natalia Feruleva
Abstract:
The goal of this paper is to develop the fraud risk assessment model basing on both relational and financial data and test the impact of the relationships between Russian non-public companies on the likelihood of financial fraud commitment. Relationships mean various linkages between companies such as parent-subsidiary relationship and person-related relationships. These linkages may provide additional opportunities for committing fraud. Person-related relationships appear when firms share a director, or the director owns another firm. The number of companies belongs to CEO and managed by CEO, the number of subsidiaries was calculated to measure the relationships. Moreover, the dummy variable describing the existence of parent company was also included in model. Control variables such as financial leverage and return on assets were also implemented because they describe the motivating factors of fraud. To check the hypotheses about the influence of the chosen parameters on the likelihood of financial fraud, information about person-related relationships between companies, existence of parent company and subsidiaries, profitability and the level of debt was collected. The resulting sample consists of 160 Russian non-public firms. The sample includes 80 fraudsters and 80 non-fraudsters operating in 2006-2017. The dependent variable is dichotomous, and it takes the value 1 if the firm is engaged in financial crime, otherwise 0. Employing probit model, it was revealed that the number of companies which belong to CEO of the firm or managed by CEO has significant impact on the likelihood of financial fraud. The results obtained indicate that the more companies are affiliated with the CEO, the higher the likelihood that the company will be involved in financial crime. The forecast accuracy of the model is about is 80%. Thus, the model basing on both relational and financial data gives high level of forecast accuracy.Keywords: financial fraud, fraud prediction, non-public companies, regression analysis, relational data
Procedia PDF Downloads 1212799 Dietary Diversity Practice and Associated Facrors Among Hypertension Patients at Tirunesh Beijing Hospital
Authors: Wudneh Asegedech Ayele
Abstract:
Background: Dietary diversity is strongly related with non-communicable disease (NCDs). Diet plays a key role as a risk factor for hypertension. Diets rich in fruits, vegetables, and low-fat dairy products that include whole grains, poultry, fish, and nuts, that contain only small amounts of red meat, sweets, and sugar-containing beverages, and that contain decreased amounts of total and saturated fat and cholesterol have been found to have a protective effect against hypertension. Methods: hospital based Cross-sectional study design was employed from June 1-June 25, 2021. Sampling technique was Systematic random sampling and data were collected using an interview method. Data were entered into Epi Data version 3.1 and exported to SPSS version 25 for processed and analysis respectively. Descriptive statistics were used to summarize data. Bivariate and multivariate logistic regression will employed to determine dietary diversity among hypertension patients. Results: Adequate dietary diversity score were 96 (24.68%). Most of them cereal, white roots and tubers, dark green leafy vegetables, Vitamin A rich fruits ,meat, egg and coffee or tea more intakes. Hypertensive patients who didn’t consume cereals four times less likely adequate dietary diversity than who consumed cereals [AOR= 4.083, 95%: CI (2.096 -7.352)]. Hypertensive patients who didn’t consume white roots and tubers 14 times less likely adequate dietary diversity than who consumed white roots and tubers [AOR= 13.733, 95% CI: (5.388-34.946)]. Conclusion and recommendation the study showed one of fourth part reported adequate dietary diversity score. Cereals, fruits, vegetables and milk and milk products were statistically associated with dietary diversity practice. Health education about dietary modifications and behavioral change to dietary diversityKeywords: dietary diversity practice and associated facrors among hypertension patients at tirunesh beijing hospital, hypertension, dietary, diversity and tirunesh beijing hospital, associated facrors among hypertension patient, at tirunesh beijing hospita
Procedia PDF Downloads 412798 Predictability of Kiremt Rainfall Variability over the Northern Highlands of Ethiopia on Dekadal and Monthly Time Scales Using Global Sea Surface Temperature
Authors: Kibrom Hadush
Abstract:
Countries like Ethiopia, whose economy is mainly rain-fed dependent agriculture, are highly vulnerable to climate variability and weather extremes. Sub-seasonal (monthly) and dekadal forecasts are hence critical for crop production and water resource management. Therefore, this paper was conducted to study the predictability and variability of Kiremt rainfall over the northern half of Ethiopia on monthly and dekadal time scales in association with global Sea Surface Temperature (SST) at different lag time. Trends in rainfall have been analyzed on annual, seasonal (Kiremt), monthly, and dekadal (June–September) time scales based on rainfall records of 36 meteorological stations distributed across four homogenous zones of the northern half of Ethiopia for the period 1992–2017. The results from the progressive Mann–Kendall trend test and the Sen’s slope method shows that there is no significant trend in the annual, Kiremt, monthly and dekadal rainfall total at most of the station's studies. Moreover, the rainfall in the study area varies spatially and temporally, and the distribution of the rainfall pattern increases from the northeast rift valley to northwest highlands. Methods of analysis include graphical correlation and multiple linear regression model are employed to investigate the association between the global SSTs and Kiremt rainfall over the homogeneous rainfall zones and to predict monthly and dekadal (June-September) rainfall using SST predictors. The results of this study show that in general, SST in the equatorial Pacific Ocean is the main source of the predictive skill of the Kiremt rainfall variability over the northern half of Ethiopia. The regional SSTs in the Atlantic and the Indian Ocean as well contribute to the Kiremt rainfall variability over the study area. Moreover, the result of the correlation analysis showed that the decline of monthly and dekadal Kiremt rainfall over most of the homogeneous zones of the study area are caused by the corresponding persistent warming of the SST in the eastern and central equatorial Pacific Ocean during the period 1992 - 2017. It is also found that the monthly and dekadal Kiremt rainfall over the northern, northwestern highlands and northeastern lowlands of Ethiopia are positively correlated with the SST in the western equatorial Pacific, eastern and tropical northern the Atlantic Ocean. Furthermore, the SSTs in the western equatorial Pacific and Indian Oceans are positively correlated to the Kiremt season rainfall in the northeastern highlands. Overall, the results showed that the prediction models using combined SSTs at various ocean regions (equatorial and tropical) performed reasonably well in the prediction (With R2 ranging from 30% to 65%) of monthly and dekadal rainfall and recommends it can be used for efficient prediction of Kiremt rainfall over the study area to aid with systematic and informed decision making within the agricultural sector.Keywords: dekadal, Kiremt rainfall, monthly, Northern Ethiopia, sea surface temperature
Procedia PDF Downloads 1422797 The Comparison of Dismount Skill between National and International Men’s Artistic Gymnastics in Parallel Bars Apparatus
Authors: Chen ChihYu, Tang Wen Tzu, Chen Kuang Hui
Abstract:
Aim —To compare the dismount skill between Taiwanese and elite international gymnastics in parallel bars following the 2017-2020 code of points. Methods—The gymnasts who advanced to the parallel bars event finals of these four competitions including World Championships, Universiade, the National Games of Taiwan, and the National Intercollegiate Athletic Games of Taiwan both 2017 and 2019 were selected in this study. The dismount skill of parallel bars was analyzed, and the average difficulty score was compared by one-way ANOVA. Descriptive statistics were applied to present the type of dismount skill and the difficulty of each gymnast in these four competitions. The data from World Championships and Universiade were combined as the international group (INT), and data of Taiwanese National Games and National Intercollegiate Athletic Games were also combined as the national group (NAT). The differences between INT and NAT were analyzed by the Chi-square test. The statistical significance of this study was set at α= 0.05. Results— i) There was a significant difference in the mean parallel bars dismount skill in these four competitions analyzed by one-way ANOVA. Both dismount scores of World Championships and Universiade were significantly higher than in Taiwanese National Games and National Intercollegiate Athletic Games (0.58±0.08 & 0.56±0.08 > 0.42±0.06 & 40±0.06, p < 0.05). ii) Most of the gymnasts in World Championships and Universiade selected the 0.6-point skill as the parallel bars dismount element, and for the Taiwanese National Games and the National Intercollegiate Athletic Games, most of the gymnasts performed the 0.4-point dismount skill. iii) The result of the Chi-square test has shown that there was a significant difference in the selection of parallel bars dismount skill. The INT group used the E or E+ difficulty element as the dismount skill, and the NAT group selected the D or D- difficulty element. Conclusion— The level of parallel bars dismount in Taiwanese gymnastics is inferior to elite international gymnastics. It is suggested that Taiwanese gymnastics must try to practice the F difficulty dismount (double salto forward tucked with half twist) in the future.Keywords: Artistic Gymnastics World Championships, dismount, difficulty score, element
Procedia PDF Downloads 1432796 The Layout Analysis of Handwriting Characters and the Fusion of Multi-style Ancient Books’ Background
Authors: Yaolin Tian, Shanxiong Chen, Fujia Zhao, Xiaoyu Lin, Hailing Xiong
Abstract:
Ancient books are significant culture inheritors and their background textures convey the potential history information. However, multi-style texture recovery of ancient books has received little attention. Restricted by insufficient ancient textures and complex handling process, the generation of ancient textures confronts with new challenges. For instance, training without sufficient data usually brings about overfitting or mode collapse, so some of the outputs are prone to be fake. Recently, image generation and style transfer based on deep learning are widely applied in computer vision. Breakthroughs within the field make it possible to conduct research upon multi-style texture recovery of ancient books. Under the circumstances, we proposed a network of layout analysis and image fusion system. Firstly, we trained models by using Deep Convolution Generative against Networks (DCGAN) to synthesize multi-style ancient textures; then, we analyzed layouts based on the Position Rearrangement (PR) algorithm that we proposed to adjust the layout structure of foreground content; at last, we realized our goal by fusing rearranged foreground texts and generated background. In experiments, diversified samples such as ancient Yi, Jurchen, Seal were selected as our training sets. Then, the performances of different fine-turning models were gradually improved by adjusting DCGAN model in parameters as well as structures. In order to evaluate the results scientifically, cross entropy loss function and Fréchet Inception Distance (FID) are selected to be our assessment criteria. Eventually, we got model M8 with lowest FID score. Compared with DCGAN model proposed by Radford at el., the FID score of M8 improved by 19.26%, enhancing the quality of the synthetic images profoundly.Keywords: deep learning, image fusion, image generation, layout analysis
Procedia PDF Downloads 1602795 An Information System for Strategic Performance Scoring in Municipal Management
Authors: Emin Gundogar, Aysegul Yilmaz
Abstract:
Strategic performance scoring is a significant procedure in management. There are various methods to improve this procedure. This study introduces an information system that is developed to score performance for municipal management. The application of the system is clarified by exemplifying municipal processes.Keywords: management information system, municipal management, performance scoring
Procedia PDF Downloads 7692794 Evaluating and Improving Healthcare Staff Knowledge of the [NG179] NICE Guidelines on Elective Surgical Care during the COVID-19 Pandemic: A Quality Improvement Project
Authors: Stavroula Stavropoulou-Tatla, Danyal Awal, Mohammad Ayaz Hossain
Abstract:
The first wave of the COVID-19 pandemic saw several countries issue guidance postponing all non-urgent diagnostic evaluations and operations, leading to an estimated backlog of 28 million cases worldwide and over 4 million in the UK alone. In an attempt to regulate the resumption of elective surgical activity, the National Institute for Health and Care Excellence (NICE) introduced the ‘COVID-19 rapid guideline [NG179]’. This project aimed to increase healthcare staff knowledge of the aforementioned guideline to a targeted score of 100% in the disseminated questionnaire within 3 months at the Royal Free Hospital. A standardized online questionnaire was used to assess the knowledge of surgical and medical staff at baseline and following each 4-week-long Plan-Study-Do-Act (PDSA) cycle. During PDSA1, the A4 visual summary accompanying the guideline was visibly placed in all relevant clinical areas and the full guideline was distributed to the staff in charge together with a short briefing on the salient points. PDSA2 involved brief small-group teaching sessions. A total of 218 responses was collected. Mean percentage scores increased significantly from 51±19% at baseline to 81±16% after PDSA1 (t=10.32, p<0.0001) and further to 93±8% after PDSA2 (t=4.9, p<0.0001), with 54% of participants achieving a perfect score. In conclusion, the targeted distribution of guideline printouts and visual aids, combined with small-group teaching sessions, were simple and effective ways of educating healthcare staff about the new standards of elective surgical care at the time of COVID-19. This could facilitate the safe restoration of surgical activity, which is critical in order to mitigate the far-reaching consequences of surgical delays on an unprecedented scale during a time of great crisis and uncertainty.Keywords: COVID-19, elective surgery, NICE guidelines, quality improvement
Procedia PDF Downloads 1952793 GATA3-AS1 lncRNA as a Predictive Biomarker for Neoadjuvant Chemotherapy Response in Locally Advanced Luminal B Breast Cancer: An RNA ISH Study
Authors: Tania Vasquez Mata, Luis A. Herrera, Cristian Arriaga Canon
Abstract:
Background: Locally advanced breast cancer of the luminal B phenotype, poses challenges due to its variable response to neoadjuvant chemotherapy. A predictive biomarker is needed to identify patients who will not respond to treatment, allowing for alternative therapies. This study aims to validate the use of the lncRNA GATA3-AS1, as a predictive biomarker using RNA in situ hybridization. Research aim: The aim of this study is to determine if GATA3-AS1 can serve as a biomarker for resistance to neoadjuvant chemotherapy in patients with locally advanced luminal B breast cancer. Methodology: The study utilizes RNA in situ hybridization with predesigned probes for GATA3-AS1 on Formalin-Fixed Paraffin-Embedded tissue sections. The samples underwent pretreatment and protease treatment to enable probe penetration. Chromogenic detection and signal evaluation were performed using specific criteria. Findings: Patients who did not respond to neoadjuvant chemotherapy showed a 3+ score for GATA3-AS1, while those who had a complete response had a 1+ score. Theoretical importance: This study demonstrates the potential clinical utility of GATA3-AS1 as a biomarker for resistance to neoadjuvant chemotherapy. Identifying non-responders early on can help avoid unnecessary treatment and explore alternative therapy options. Data collection and analysis procedures: Tissue samples from patients with locally advanced luminal B breast cancer were collected and processed using RNA in situ hybridization. Signal evaluation was conducted under a microscope, and scoring was based on specific criteria. Questions addressed: Can GATA3-AS1 serve as a predictive biomarker for neoadjuvant chemotherapy response in locally advanced luminal B breast cancer? Conclusion: The lncRNA GATA3-AS1 can be used as a biomarker for resistance to neoadjuvant chemotherapy in patients with locally advanced luminal B breast cancer. Its identification through RNA in situ hybridization of tissue obtained from the initial biopsy can aid in treatment decision-making.Keywords: biomarkers, breast neoplasms, genetics, neoadjuvant therapy, tumor
Procedia PDF Downloads 572792 Design of Sustainable Concrete Pavement by Incorporating RAP Aggregates
Authors: Selvam M., Vadthya Poornachandar, Surender Singh
Abstract:
These Reclaimed Asphalt Pavement (RAP) aggregates are generally dumped in the open area after the demolition of Asphalt Pavements. The utilization of RAP aggregates in cement concrete pavements may provide several socio-economic-environmental benefits and could embrace the circular economy. The cross recycling of RAP aggregates in the concrete pavement could reduce the consumption of virgin aggregates and saves the fertile land. However, the structural, as well as functional properties of RAP-concrete could be significantly lower than the conventional Pavement Quality Control (PQC) pavements. This warrants judicious selection of RAP fraction (coarse and fine aggregates) along with the accurate proportion of the same for PQC highways. Also, the selection of the RAP fraction and its proportion shall not be solely based on the mechanical properties of RAP-concrete specimens but also governed by the structural and functional behavior of the pavement system. In this study, an effort has been made to predict the optimum RAP fraction and its corresponding proportion for cement concrete pavements by considering the low-volume and high-volume roads. Initially, the effect of inclusions of RAP on the fresh and mechanical properties of concrete pavement mixes is mapped through an extensive literature survey. Almost all the studies available to date are considered for this study. Generally, Indian Roads Congress (IRC) methods are the most widely used design method in India for the analysis of concrete pavements, and the same has been considered for this study. Subsequently, fatigue damage analysis is performed to evaluate the required safe thickness of pavement slab for different fractions of RAP (coarse RAP). Consequently, the performance of RAP-concrete is predicted by employing the AASHTO-1993 model for the following distresses conditions: faulting, cracking, and smoothness. The performance prediction and total cost analysis of RAP aggregates depict that the optimum proportions of coarse RAP aggregates in the PQC mix are 35% and 50% for high volume and low volume roads, respectively.Keywords: concrete pavement, RAP aggregate, performance prediction, pavement design
Procedia PDF Downloads 1592791 Machine Learning Techniques in Seismic Risk Assessment of Structures
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine
Procedia PDF Downloads 1062790 A Computational Approach for the Prediction of Relevant Olfactory Receptors in Insects
Authors: Zaide Montes Ortiz, Jorge Alberto Molina, Alejandro Reyes
Abstract:
Insects are extremely successful organisms. A sophisticated olfactory system is in part responsible for their survival and reproduction. The detection of volatile organic compounds can positively or negatively affect many behaviors in insects. Compounds such as carbon dioxide (CO2), ammonium, indol, and lactic acid are essential for many species of mosquitoes like Anopheles gambiae in order to locate vertebrate hosts. For instance, in A. gambiae, the olfactory receptor AgOR2 is strongly activated by indol, which accounts for almost 30% of human sweat. On the other hand, in some insects of agricultural importance, the detection and identification of pheromone receptors (PRs) in lepidopteran species has become a promising field for integrated pest management. For example, with the disruption of the pheromone receptor, BmOR1, mediated by transcription activator-like effector nucleases (TALENs), the sensitivity to bombykol was completely removed affecting the pheromone-source searching behavior in male moths. Then, the detection and identification of olfactory receptors in the genomes of insects is fundamental to improve our understanding of the ecological interactions, and to provide alternatives in the integrated pests and vectors management. Hence, the objective of this study is to propose a bioinformatic workflow to enhance the detection and identification of potential olfactory receptors in genomes of relevant insects. Applying Hidden Markov models (Hmms) and different computational tools, potential candidates for pheromone receptors in Tuta absoluta were obtained, as well as potential carbon dioxide receptors in Rhodnius prolixus, the main vector of Chagas disease. This study showed the validity of a bioinformatic workflow with a potential to improve the identification of certain olfactory receptors in different orders of insects.Keywords: bioinformatic workflow, insects, olfactory receptors, protein prediction
Procedia PDF Downloads 1502789 Modified Weibull Approach for Bridge Deterioration Modelling
Authors: Niroshan K. Walgama Wellalage, Tieling Zhang, Richard Dwight
Abstract:
State-based Markov deterioration models (SMDM) sometimes fail to find accurate transition probability matrix (TPM) values, and hence lead to invalid future condition prediction or incorrect average deterioration rates mainly due to drawbacks of existing nonlinear optimization-based algorithms and/or subjective function types used for regression analysis. Furthermore, a set of separate functions for each condition state with age cannot be directly derived by using Markov model for a given bridge element group, which however is of interest to industrial partners. This paper presents a new approach for generating Homogeneous SMDM model output, namely, the Modified Weibull approach, which consists of a set of appropriate functions to describe the percentage condition prediction of bridge elements in each state. These functions are combined with Bayesian approach and Metropolis Hasting Algorithm (MHA) based Markov Chain Monte Carlo (MCMC) simulation technique for quantifying the uncertainty in model parameter estimates. In this study, factors contributing to rail bridge deterioration were identified. The inspection data for 1,000 Australian railway bridges over 15 years were reviewed and filtered accordingly based on the real operational experience. Network level deterioration model for a typical bridge element group was developed using the proposed Modified Weibull approach. The condition state predictions obtained from this method were validated using statistical hypothesis tests with a test data set. Results show that the proposed model is able to not only predict the conditions in network-level accurately but also capture the model uncertainties with given confidence interval.Keywords: bridge deterioration modelling, modified weibull approach, MCMC, metropolis-hasting algorithm, bayesian approach, Markov deterioration models
Procedia PDF Downloads 7292788 The Relationship between Sleep Traits and Tinnitus in UK Biobank: A Population-Based Cohort Study
Authors: Jiajia Peng, Yijun Dong, Jianjun Ren, Yu Zhao
Abstract:
Objectives: Understanding the association between sleep traits and tinnitus could help prevent and provide appropriate interventions against tinnitus. Therefore, this study aimed to assess the relationship between different sleep patterns and tinnitus. Design: A cross-sectional analysis using baseline data (2006–2010, n=168,064) by logistic regressions was conducted to evaluate the association between sleep traits (including the overall health sleep score and five sleep behaviors), and the occurrence (yes/no), frequency (constant/transient), and severity (upsetting/not upsetting) of tinnitus. Further, a prospective analysis of participants without tinnitus at baseline (n=9,581) was performed, who had been followed up for seven years (2012–2019) to assess the association between new-onset tinnitus and sleep characteristics. Moreover, a subgroup analysis was also carried out to estimate the differences in sex by dividing the participants into male and female groups. A sensitivity analysis was also conducted by excluding ear-related diseases to avoid their confounding effects on tinnitus (n=102,159). Results: In the cross-sectional analysis, participants with “current tinnitus” (OR: 1.13, 95% CI: 1.04–1.22, p=0.004) had a higher risk of having a poor overall healthy sleep score and unhealthy sleep behaviors such as short sleep durations (OR: 1.09, 95% CI: 1.04–1.14, p<0.001), late chronotypes (OR: 1.09, 95% CI: 1.05–1.13, p<0.001), and sleeplessness (OR: 1.16, 95% CI: 1.11–1.22, p<0.001) than those participants who “did not have current tinnitus.” However, this trend was not obvious between “constant tinnitus” and “transient tinnitus.” When considering the severity of tinnitus, the risk of “upsetting tinnitus” was obviously higher if participants had lower overall healthy sleep scores (OR: 1.31, 95% CI: 1.13–1.53, p<0.001). Additionally, short sleep duration (OR: 1.22, 95% CI: 1.12–1.33, p<0.001), late chronotypes (OR: 1.13, 95% CI: 1.04–1.22, p=0.003), and sleeplessness (OR: 1.43, 95% CI: 1.29–1.59, p<0.001) showed positive correlations with “upsetting tinnitus.” In the prospective analysis, sleeplessness presented a consistently significant association with “upsetting tinnitus” (RR: 2.28, P=0.001). Consistent results were observed in the sex subgroup analysis, where a much more pronounced trend was identified in females compared with males. The results of the sensitivity analysis were consistent with those of the cross-sectional and prospective analyses. Conclusions: Different types of sleep disturbance may be associated with the occurrence and severity of tinnitus; therefore, precise interventions for different types of sleep disturbance, particularly sleeplessness, may help in the prevention and treatment of tinnitus.Keywords: tinnitus, sleep, sleep behaviors, sleep disturbance
Procedia PDF Downloads 1422787 Design of a Standard Weather Data Acquisition Device for the Federal University of Technology, Akure Nigeria
Authors: Isaac Kayode Ogunlade
Abstract:
Data acquisition (DAQ) is the process by which physical phenomena from the real world are transformed into an electrical signal(s) that are measured and converted into a digital format for processing, analysis, and storage by a computer. The DAQ is designed using PIC18F4550 microcontroller, communicating with Personal Computer (PC) through USB (Universal Serial Bus). The research deployed initial knowledge of data acquisition system and embedded system to develop a weather data acquisition device using LM35 sensor to measure weather parameters and the use of Artificial Intelligence(Artificial Neural Network - ANN)and statistical approach(Autoregressive Integrated Moving Average – ARIMA) to predict precipitation (rainfall). The device is placed by a standard device in the Department of Meteorology, Federal University of Technology, Akure (FUTA) to know the performance evaluation of the device. Both devices (standard and designed) were subjected to 180 days with the same atmospheric condition for data mining (temperature, relative humidity, and pressure). The acquired data is trained in MATLAB R2012b environment using ANN, and ARIMAto predict precipitation (rainfall). Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Correction Square (R2), and Mean Percentage Error (MPE) was deplored as standardize evaluation to know the performance of the models in the prediction of precipitation. The results from the working of the developed device show that the device has an efficiency of 96% and is also compatible with Personal Computer (PC) and laptops. The simulation result for acquired data shows that ANN models precipitation (rainfall) prediction for two months (May and June 2017) revealed a disparity error of 1.59%; while ARIMA is 2.63%, respectively. The device will be useful in research, practical laboratories, and industrial environments.Keywords: data acquisition system, design device, weather development, predict precipitation and (FUTA) standard device
Procedia PDF Downloads 932786 A Novel Epitope Prediction for Vaccine Designing against Ebola Viral Envelope Proteins
Authors: Manju Kanu, Subrata Sinha, Surabhi Johari
Abstract:
Viral proteins of Ebola viruses belong to one of the best studied viruses; however no effective prevention against EBOV has been developed. Epitope-based vaccines provide a new strategy for prophylactic and therapeutic application of pathogen-specific immunity. A critical requirement of this strategy is the identification and selection of T-cell epitopes that act as vaccine targets. This study describes current methodologies for the selection process, with Ebola virus as a model system. Hence great challenge in the field of ebola virus research is to design universal vaccine. A combination of publicly available bioinformatics algorithms and computational tools are used to screen and select antigen sequences as potential T-cell epitopes of supertypes Human Leukocyte Antigen (HLA) alleles. MUSCLE and MOTIF tools were used to find out most conserved peptide sequences of viral proteins. Immunoinformatics tools were used for prediction of immunogenic peptides of viral proteins in zaire strains of Ebola virus. Putative epitopes for viral proteins (VP) were predicted from conserved peptide sequences of VP. Three tools NetCTL 1.2, BIMAS and Syfpeithi were used to predict the Class I putative epitopes while three tools, ProPred, IEDB-SMM-align and NetMHCII 2.2 were used to predict the Class II putative epitopes. B cell epitopes were predicted by BCPREDS 1.0. Immunogenic peptides were identified and selected manually by putative epitopes predicted from online tools individually for both MHC classes. Finally sequences of predicted peptides for both MHC classes were looked for common region which was selected as common immunogenic peptide. The immunogenic peptides were found for viral proteins of Ebola virus: epitopes FLESGAVKY, SSLAKHGEY. These predicted peptides could be promising candidates to be used as target for vaccine design.Keywords: epitope, b cell, immunogenicity, ebola
Procedia PDF Downloads 3152785 Thermo-Mechanical Analysis of Composite Structures Utilizing a Beam Finite Element Based on Global-Local Superposition
Authors: Andre S. de Lima, Alfredo R. de Faria, Jose J. R. Faria
Abstract:
Accurate prediction of thermal stresses is particularly important for laminated composite structures, as large temperature changes may occur during fabrication and field application. The normal transverse deformation plays an important role in the prediction of such stresses, especially for problems involving thick laminated plates subjected to uniform temperature loads. Bearing this in mind, the present study aims to investigate the thermo-mechanical behavior of laminated composite structures using a new beam element based on global-local superposition, accounting for through-the-thickness effects. The element formulation is based on a global-local superposition in the thickness direction, utilizing a cubic global displacement field in combination with a linear layerwise local displacement distribution, which assures zig-zag behavior of the stresses and displacements. By enforcing interlaminar stress (normal and shear) and displacement continuity, as well as free conditions at the upper and lower surfaces, the number of degrees of freedom in the model is maintained independently of the number of layers. Moreover, the proposed formulation allows for the determination of transverse shear and normal stresses directly from the constitutive equations, without the need of post-processing. Numerical results obtained with the beam element were compared to analytical solutions, as well as results obtained with commercial finite elements, rendering satisfactory results for a range of length-to-thickness ratios. The results confirm the need for an element with through-the-thickness capabilities and indicate that the present formulation is a promising alternative to such analysis.Keywords: composite beam element, global-local superposition, laminated composite structures, thermal stresses
Procedia PDF Downloads 1562784 Practical Modelling of RC Structural Walls under Monotonic and Cyclic Loading
Authors: Reza E. Sedgh, Rajesh P. Dhakal
Abstract:
Shear walls have been used extensively as the main lateral force resisting systems in multi-storey buildings. The recent development in performance based design urges practicing engineers to conduct nonlinear static or dynamic analysis to evaluate seismic performance of multi-storey shear wall buildings by employing distinct analytical models suggested in the literature. For practical purpose, application of macroscopic models to simulate the global and local nonlinear behavior of structural walls outweighs the microscopic models. The skill level, computational time and limited access to RC specialized finite element packages prevents the general application of this method in performance based design or assessment of multi-storey shear wall buildings in design offices. Hence, this paper organized to verify capability of nonlinear shell element in commercially available package (Sap2000) in simulating results of some specimens under monotonic and cyclic loads with very oversimplified available cyclic material laws in the analytical tool. The selection of constitutive models, the determination of related parameters of the constituent material and appropriate nonlinear shear model are presented in detail. Adoption of proposed simple model demonstrated that the predicted results follow the overall trend of experimental force-displacement curve. Although, prediction of ultimate strength and the overall shape of hysteresis model agreed to some extent with experiment, the ultimate displacement(significant strength degradation point) prediction remains challenging in some cases.Keywords: analytical model, nonlinear shell element, structural wall, shear behavior
Procedia PDF Downloads 4072783 Diagnostic Clinical Skills in Cardiology: Improving Learning and Performance with Hybrid Simulation, Scripted Histories, Wearable Technology, and Quantitative Grading – The Assimilate Excellence Study
Authors: Daly M. J, Condron C, Mulhall C, Eppich W, O'Neill J.
Abstract:
Introduction: In contemporary clinical cardiology, comprehensive and holistic bedside evaluation including accurate cardiac auscultation is in decline despite having positive effects on patients and their outcomes. Methods: Scripted histories and scoring checklists for three clinical scenarios in cardiology were co-created and refined through iterative consensus by a panel of clinical experts; these were then paired with recordings of auscultatory findings from three actual patients with known valvular heart disease. A wearable vest with embedded pressure-sensitive panel speakers was developed to transmit these recordings when examined at the standard auscultation points. RCSI medical students volunteered for a series of three formative long case examinations in cardiology (LC1 – LC3) using this hybrid simulation. Participants were randomised into two groups: Group 1 received individual teaching from an expert trainer between LC1 and LC2; Group 2 received the same intervention between LC2 and LC3. Each participant’s long case examination performance was recorded and blindly scored by two peer participants and two RCSI examiners. Results: Sixty-eight participants were included in the study (age 27.6 ± 0.1 years; 74% female) and randomised into two groups; there were no significant differences in baseline characteristics between groups. Overall, the median total faculty examiner score was 39.8% (35.8 – 44.6%) in LC1 and increased to 63.3% (56.9 – 66.4%) in LC3, with those in Group 1 showing a greater improvement in LC2 total score than that observed in Group 2 (p < .001). Using the novel checklist, intraclass correlation coefficients (ICC) were excellent between examiners in all cases: ICC .994 – .997 (p < .001); correlation between peers and examiners improved in LC2 following peer grading of LC1 performances: ICC .857 – .867 (p < .001). Conclusion: Hybrid simulation and quantitative grading improve learning, standardisation of assessment, and direct comparisons of both performance and acumen in clinical cardiology.Keywords: cardiology, clinical skills, long case examination, hybrid simulation, checklist
Procedia PDF Downloads 1112782 Using a Train-the-Trainer Model to Deliver Post-Partum Haemorrhage Simulation in Rural Uganda
Authors: Michael Campbell, Malaz Elsaddig, Kevin Jones
Abstract:
Background: Despite encouraging progress, global maternal mortality has remained stubbornly high since the declaration of the Millennium development goals. Sub-Saharan Africa accounts for well over half of maternal deaths with Post-Partum Haemorrhage (PPH) being the lead cause. ‘In house’ simulation training delivered by local doctors may be a sustainable approach for improving emergency obstetric care. The aim of this study was to evaluate the use of a Train-the-Trainer (TtT) model in a rural Ugandan hospital to ascertain whether it can feasibly improve practitioners’ management of PPH. Methods: Three Ugandan doctors underwent a training course to enable them to design and deliver simulation training. These doctors used MamaNatalie® models to simulate PPH scenarios for midwives, nurses and medical students. The main outcome was improvement in participants’ knowledge and confidence, assessed using self-reported scores on a 10-point scale. Results: The TtT model produced significant improvements in the confidence and knowledge scores of the ten participants. The mean confidence score rose significantly (p=0.0005) from 6.4 to 8.6 following the simulation training. There was also a significant increase in the mean knowledge score from 7.2 to 9.0 (p=0.04). Medical students demonstrated the greatest overall increase in confidence scores whilst increases in knowledge scores were largest amongst nurses. Conclusions: This study demonstrates that a TtT model can be used in a low resource setting to improve healthcare professionals’ confidence and knowledge in managing obstetric emergencies. This Train-the-Trainer model represents a sustainable approach to addressing skill deficits in low resource settings. We believe that its expansion across healthcare institutions in Sub-Saharan Africa will help to reduce the region’s high maternal mortality rate and step closer to achieving the ambitions of the Millennium development goals.Keywords: low resource setting, post-partum haemorrhage, simulation training, train the trainer
Procedia PDF Downloads 1782781 Forecast Financial Bubbles: Multidimensional Phenomenon
Authors: Zouari Ezzeddine, Ghraieb Ikram
Abstract:
From the results of the academic literature which evokes the limitations of previous studies, this article shows the reasons for multidimensionality Prediction of financial bubbles. A new framework for modeling study predicting financial bubbles by linking a set of variable presented on several dimensions dictating its multidimensional character. It takes into account the preferences of financial actors. A multicriteria anticipation of the appearance of bubbles in international financial markets helps to fight against a possible crisis.Keywords: classical measures, predictions, financial bubbles, multidimensional, artificial neural networks
Procedia PDF Downloads 5802780 Epidemiology and Risk Factors of Injury and Stress Fractures in Male and Female Runners
Authors: Balazs Patczai, Katalin Gocze, Gabriella Kiss, Dorottya Szabo, Tibor Mintal
Abstract:
Introduction: Running has become increasingly popular on a global scale in the past decades. Amateur athletes are taking their sport to a new level in an attempt to surpass their performance goals. The aim of our study was to assess the musculoskeletal condition of amateur runners and the prevalence of injuries with a special focus on stress fracture risk. Methods: The cross sectional analysis included ankle mobility, hamstring and lower back flexibility, the use of Renne’s test for iliotibial band syndrome, functional tests for trunk and rotary stability, and measurements of bone density. Data was collected at 2 major half-marathon events in Hungary. Results: Participants (n=134) mean age was 41.76±8.57 years (males: 40.67±8.83, females: 42.08±8.56). Measures of hamstring and lower back flexibility fell into the category of good for both genders (males: 7.13±6.83cm, females: 10.17±6.67cm). No side asymmetry nor gender differences were characteristic in the case of ankle mobility. Trunk stability was significantly better for males than in females (p=0.004). Markers of bone health were in the low normal range for females and were significantly better for males (T-score: p=0.003, T-ratio: p=0.014, Z-score: p=0.034, Z-ratio: p=0.011). 5.2% of females had a previous stress fracture and 24.1% experienced irregular menstrual cycles during the past year. As for the knowledge on the possible association of energy deficiency, menstrual disturbances and their effect on bone health, Only 8.6% of females have heard of the female athlete triad either during their studies or from a health professional. Discussion: The overall musculoskeletal state was satisfactory for both genders both physically and functionally. More attention and effort should be placed on primary and secondary prevention of amateur runners. Very few active women are well informed about the effects of low energy availability and menstrual dysfunction and the negative impact these have on bone health.Keywords: bone health, flexibility, running, stress fracture
Procedia PDF Downloads 1262779 Timely Palliative Screening and Interventions in Oncology
Authors: Jaci Marie Mastrandrea, Rosario Haro
Abstract:
Background: The National Comprehensive Cancer Network (NCCN) recommends that healthcare institutions have established processes for integrating palliative care (PC) into cancer treatment and that all cancer patients be screened for PC needs upon initial diagnosis as well as throughout the entire continuum of care (National Comprehensive Cancer Network, 2021). Early PC screening and intervention is directly associated with improved patient outcomes. The Sky Lakes Cancer Treatment Center (SLCTC) is an institution that has access to PC services yet does not have protocols in place for identifying patients with palliative needs or a standardized referral process. The aim of this quality improvement project was to improve early access to PC services by establishing a standardized screening and referral process for outpatient oncology patients. Method: The sample population included all adult patients with an oncology diagnosis who presented to the SLCTC for treatment during the project timeline. The “Palliative and Supportive Needs Assessment'' (PSNA) screening tool was developed from validated, evidence-based PC referral criteria. The tool was initially implemented using paper forms, and data was collected over a period of eight weeks. Patients were screened by nurses on the SLCTC oncology treatment team. Nurses responsible for screening patients received an educational inservice prior to implementation. Patients with a PSNA score of three or higher received an educational handout on the topic of PC and education about PC and symptom management. A score of five or higher indicates that PC referral is strongly recommended, and the patient’s EHR is flagged for the oncology provider to review orders for PC referral. The PSNA tool was approved by Sky Lakes administration for full integration into Epic-Beacon. The project lead collaborated with the Sky Lakes’ information systems team and representatives from Epic on the tool’s aesthetic and functionality within the Epic system. SLCTC nurses and physicians were educated on how to document the PSNA within Epic and where to view results. Results: Prior to the implementation of the PSNA screening tool, the SLCTC had zero referrals to PC in the past year, excluding referrals to hospice. Data was collected from the completed screening assessments of 100 patients under active treatment at the SLCTC. Seventy-three percent of patients met criteria for PC referral with a score greater than or equal to three. Of those patients who met referral criteria, 53.4% (39 patients) were referred for a palliative and supportive care consultation. Patients that were not referred to PC upon meeting criteria were flagged in EPIC for re-screening within one to three months. Patients with lung cancer, chronic hematologic malignancies, breast cancer, and gastrointestinal malignancy most frequently met the criteria for PC referral and scored highest overall on the scale of 0-12. Conclusion: The implementation of a standardized PC screening tool at the SLCTC significantly increased awareness of PC needs among cancer patients in the outpatient setting. Additionally, data derived from this quality improvement project supports the national recommendation for PC to be an integral component of cancer treatment across the entire continuum of care.Keywords: oncology, palliative and supportive care, symptom management, outpatient oncology, palliative screening tool
Procedia PDF Downloads 1122778 From Text to Data: Sentiment Analysis of Presidential Election Political Forums
Authors: Sergio V Davalos, Alison L. Watkins
Abstract:
User generated content (UGC) such as website post has data associated with it: time of the post, gender, location, type of device, and number of words. The text entered in user generated content (UGC) can provide a valuable dimension for analysis. In this research, each user post is treated as a collection of terms (words). In addition to the number of words per post, the frequency of each term is determined by post and by the sum of occurrences in all posts. This research focuses on one specific aspect of UGC: sentiment. Sentiment analysis (SA) was applied to the content (user posts) of two sets of political forums related to the US presidential elections for 2012 and 2016. Sentiment analysis results in deriving data from the text. This enables the subsequent application of data analytic methods. The SASA (SAIL/SAI Sentiment Analyzer) model was used for sentiment analysis. The application of SASA resulted with a sentiment score for each post. Based on the sentiment scores for the posts there are significant differences between the content and sentiment of the two sets for the 2012 and 2016 presidential election forums. In the 2012 forums, 38% of the forums started with positive sentiment and 16% with negative sentiment. In the 2016 forums, 29% started with positive sentiment and 15% with negative sentiment. There also were changes in sentiment over time. For both elections as the election got closer, the cumulative sentiment score became negative. The candidate who won each election was in the more posts than the losing candidates. In the case of Trump, there were more negative posts than Clinton’s highest number of posts which were positive. KNIME topic modeling was used to derive topics from the posts. There were also changes in topics and keyword emphasis over time. Initially, the political parties were the most referenced and as the election got closer the emphasis changed to the candidates. The performance of the SASA method proved to predict sentiment better than four other methods in Sentibench. The research resulted in deriving sentiment data from text. In combination with other data, the sentiment data provided insight and discovery about user sentiment in the US presidential elections for 2012 and 2016.Keywords: sentiment analysis, text mining, user generated content, US presidential elections
Procedia PDF Downloads 1922777 Accessibility of Institutional Credit and Its Impact on Agricultural Output: A Case Study
Authors: Showkat Ahmad Bhat, M. S. Bhatt
Abstract:
The study evaluates the ex-post impact of institutional credit on agricultural output. It first examines the key factors that influence the accessibility of institutional credit by farm households. For quantitative analysis both program participant and non-participant respondents were drawn and cross-sectional survey data were collected from 412 households in Pulwama District of Jammu & Kashmir (India). Propensity Score Matching Method was employed to analyze the impact of the institutional credit on agricultural output. Results show that institutional credit has a positive and significant impact on the agricultural output measured in terms of farm income and crop productivity. To estimate the accessibility of credit, an examination of both demand side and supply side factors were carried out. The demand for credit was measured with respect to respondents who applied for credit. Supply side credit allocation measured in terms of the proportion of ‘credit amount’ farmers obtained. Logit and Two-limit Tobit Regression Models were used to investigate the determinants that influence the accessibility of formal credit for Demand for and supply of credit respectively. The estimated results suggested that the demand for credit is positively and significantly affected by the factors such as: age of the household head, formal education, membership, cash crop grown, farm size and saving account. All the variables were found significantly increasing the household’s likelihood to demand for and supply of credit from banks. However, the impact of these factors varies considerably across the credit markets. Factors which were found negatively and significantly influencing the accessibility of credit were: ‘square of the age’, household assets and rate of interest. The credit constraints analysis suggested that square of the age; household assets and rate of interest were the three most important factors that increased the probability of being constrained. The study finally discusses these results in detail and draws some recommendations.Keywords: institutional credit, agriculture, propensity score matching logit model, Tobit model
Procedia PDF Downloads 3132776 Comparison between Two Software Packages GSTARS4 and HEC-6 about Prediction of the Sedimentation Amount in Dam Reservoirs and to Estimate Its Efficient Life Time in the South of Iran
Authors: Fatemeh Faramarzi, Hosein Mahjoob
Abstract:
Building dams on rivers for utilization of water resources causes problems in hydrodynamic equilibrium and results in leaving all or part of the sediments carried by water in dam reservoir. This phenomenon has also significant impacts on water and sediment flow regime and in the long term can cause morphological changes in the environment surrounding the river, reducing the useful life of the reservoir which threatens sustainable development through inefficient management of water resources. In the past, empirical methods were used to predict the sedimentation amount in dam reservoirs and to estimate its efficient lifetime. But recently the mathematical and computational models are widely used in sedimentation studies in dam reservoirs as a suitable tool. These models usually solve the equations using finite element method. This study compares the results from tow software packages, GSTARS4 & HEC-6, in the prediction of the sedimentation amount in Dez dam, southern Iran. The model provides a one-dimensional, steady-state simulation of sediment deposition and erosion by solving the equations of momentum, flow and sediment continuity and sediment transport. GSTARS4 (Generalized Sediment Transport Model for Alluvial River Simulation) which is based on a one-dimensional mathematical model that simulates bed changes in both longitudinal and transverse directions by using flow tubes in a quasi-two-dimensional scheme to calibrate a period of 47 years and forecast the next 47 years of sedimentation in Dez Dam, Southern Iran. This dam is among the highest dams all over the world (with its 203 m height), and irrigates more than 125000 square hectares of downstream lands and plays a major role in flood control in the region. The input data including geometry, hydraulic and sedimentary data, starts from 1955 to 2003 on a daily basis. To predict future river discharge, in this research, the time series data were assumed to be repeated after 47 years. Finally, the obtained result was very satisfactory in the delta region so that the output from GSTARS4 was almost identical to the hydrographic profile in 2003. In the Dez dam due to the long (65 km) and a large tank, the vertical currents are dominant causing the calculations by the above-mentioned method to be inaccurate. To solve this problem, we used the empirical reduction method to calculate the sedimentation in the downstream area which led to very good answers. Thus, we demonstrated that by combining these two methods a very suitable model for sedimentation in Dez dam for the study period can be obtained. The present study demonstrated successfully that the outputs of both methods are the same.Keywords: Dez Dam, prediction, sedimentation, water resources, computational models, finite element method, GSTARS4, HEC-6
Procedia PDF Downloads 3132775 Biomechanical Prediction of Veins and Soft Tissues beneath Compression Stockings Using Fluid-Solid Interaction Model
Authors: Chongyang Ye, Rong Liu
Abstract:
Elastic compression stockings (ECSs) have been widely applied in prophylaxis and treatment of chronic venous insufficiency of lower extremities. The medical function of ECS is to improve venous return and increase muscular pumping action to facilitate blood circulation, which is largely determined by the complex interaction between the ECS and lower limb tissues. Understanding the mechanical transmission of ECS along the skin surface, deeper tissues, and vascular system is essential to assess the effectiveness of the ECSs. In this study, a three-dimensional (3D) finite element (FE) model of the leg-ECS system integrated with a 3D fluid-solid interaction (FSI) model of the leg-vein system was constructed to analyze the biomechanical properties of veins and soft tissues under different ECS compression. The Magnetic Resonance Imaging (MRI) of the human leg was divided into three regions, including soft tissues, bones (tibia and fibula) and veins (peroneal vein, great saphenous vein, and small saphenous vein). The ECSs with pressure ranges from 15 to 26 mmHg (Classes I and II) were adopted in the developed FE-FSI model. The soft tissue was assumed as a Neo-Hookean hyperelastic model with the fixed bones, and the ECSs were regarded as an orthotropic elastic shell. The interfacial pressure and stress transmission were simulated by the FE model, and venous hemodynamics properties were simulated by the FSI model. The experimental validation indicated that the simulated interfacial pressure distributions were in accordance with the pressure measurement results. The developed model can be used to predict interfacial pressure, stress transmission, and venous hemodynamics exerted by ECSs and optimize the structure and materials properties of ECSs design, thus improving the efficiency of compression therapy.Keywords: elastic compression stockings, fluid-solid interaction, tissue and vein properties, prediction
Procedia PDF Downloads 1132774 Economic and Environmental Life Cycle Analysis of Construction and Demolition Waste Management System
Authors: Yanqing Yi, Maria Cristina Lavagnolo, Alessandro Manzardo
Abstract:
Construction and demolition waste (C&DW) is a major challenge in the European Union, emphasizing the urgent need for appropriate waste management processes. Selecting these solutions is challenging, as it requires identifying efficient C&DW management techniques that balance acceptable practices, regulatory compliance, resource conservation, economic viability, and environmental concerns. Techniques for analyzing many kinds of criteria allow for the use of multi-criteria analysis in life cycle assessment (LCA). Although LCA is commonly used to analyze environmental effects, the economic factor has not been fully integrated into the LCA approach in C&DW management. The life cycle costing (LCC) approach was designed to assess economic performance in the C&DW management process. The choice of an effective multi-criteria decision-making (MCDM) technique is critical for the C&DW system. This study seeks to propose a model that employs MCDM by considering LCA and LCC results, thereby augmenting both environmental and economic sustainability. A widely used compensatory MCDM technique, TOPSIS, has been chosen to identify the most effective C&DW management scheme by comparing and ranking various scenarios. Four waste management alternatives were examined in the Lombardy region of Italy, namely, (i) landfill; (ii) recycling for concrete production and road construction, incineration with energy recovery; (iii) recycling for road construction; (iv) recycling for concrete production and road construction. We determine that, with the implementation of various scenarios, the most suitable scenario emerges to be recycled for concrete production and road construction, with a score of 0.711/1; recycling for road construction, with a final score of 0.291/1, ranks second; recycling for concrete production and road construction, incineration with energy recovery scores 0.002/1, ranks third; and landfill (scores: 0/1) is the worst choice, indicating it has the highest environmental impact. Finally, suggestions were developed to improve the system's environmental performance.Keywords: life cycle assessment, life cycle costing, construction and demolition waste, multi-criteria decision making
Procedia PDF Downloads 722773 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge
Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi
Abstract:
Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring
Procedia PDF Downloads 210