Search results for: nested polymerase chain reaction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4086

Search results for: nested polymerase chain reaction

2736 Effect of Polymer Molecular Structures on Properties of Dental Cement Restoratives

Authors: Dong Xie, Jun Zhao, Yiming Weng

Abstract:

One of the challenges in dental cement biomaterials is how to make a restorative with mechanical strengths and wear resistance that are comparable to contemporary dental resin composites. Currently none of the dental cement restoratives has been used in high stress-bearing sites due to their low mechanical strengths and poor wear-resistance. The objective of this study was to synthesize and characterize the poly(alkenoic acid)s with different molecular structures, use these polymers to formulate a dental cement restorative, and study the effect of molecular structures on reaction kinetics, viscosity, and mechanical strengths of the formed polymers and cement restoratives. In this study, poly(alkenoic acid)s with different molecular structures were synthesized. The purified polymers were formulated with commercial Fuji II LC glass fillers to form the experimental cement restoratives. The reaction kinetics was studied via 1HNMR spectroscopy. The formed restoratives were evaluated using compressive strength, diametral tensile strength, flexural strength, hardness and wear-resistance tests. Specimens were conditioned in distilled water at 37 oC for 24 h prior to testing. Fuji II LC restorative was used as control. The results show that the higher the arm number and initiator concentration, the faster the reaction was. It was also found that the higher the arm number and branching that the polymer had, the lower the viscosity of the polymer in water and the lower the mechanical strengths of the formed restorative. The experimental restoratives were 31-53% in compressive strength, 37-55% in compressive modulus, 80-126% in diametral tensile strength, 76-94% in flexural strength, 4-21% in fracture toughness and 53-96% in hardness higher than Fuji II LC. For wear test, the experimental restoratives were only 5.4-13% of abrasive and 6.4-12% of attritional wear depths of Fuji II LC in each wear cycle. The aging study also showed that all the experimental restoratives increased their strength continuously during 30 days, unlike Fuji II LC. It is concluded that polymer molecular structures have significant and positive impact on mechanical properties of dental cement restoratives.

Keywords: dental materials, polymers, strength, biomaterials

Procedia PDF Downloads 427
2735 Mechanical Contribution of Silica Fume and Hydrated Lime Addition in Mortars Assessed by Ultrasonic Pulse Velocity Tests

Authors: Nacim Khelil, Amar Kahil, Said Boukais

Abstract:

The aim of the present study is to investigate the changes in the mechanical properties of mortars including additions of Condensed Silica Fume (CSF), Hydrated Lime (CH) or both at various amounts (5% to 15% of cement replacement) and high water ratios (w/b) (0.4 to 0.7). The physical and mechanical changes in the mixes were evaluated using non-destructive tests (Ultrasonic Pulse Velocity (UPV)) and destructive tests (crushing tests) on 28 day-long specimens consecutively, in order to assess CSF and CH replacement rate influence on the mechanical and physical properties of the mortars, as well as CSF-CH pre-mixing on the improvement of these properties. A significant improvement of the mechanical properties of the CSF, CSF-CH mortars, has been noted. CSF-CH mixes showed the best improvements exceeding 50% improvement, showing the sizable pozzolanic reaction contribution to the specimen strength development. UPV tests have shown increased velocities for CSF and CSH mixes, however no proportional evolution with compressive strengths could be noted. The results of the study show that CSF-CH addition could represent a suitable solution to significantly increase the mechanical properties of mortars.

Keywords: compressive strength, condensed silica fume, hydrated lime, pozzolanic reaction, UPV testing

Procedia PDF Downloads 130
2734 DesignChain: Automated Design of Products Featuring a Large Number of Variants

Authors: Lars Rödel, Jonas Krebs, Gregor Müller

Abstract:

The growing price pressure due to the increasing number of global suppliers, the growing individualization of products and ever-shorter delivery times are upcoming challenges in the industry. In this context, Mass Personalization stands for the individualized production of customer products in batch size 1 at the price of standardized products. The possibilities of digitalization and automation of technical order processing open up the opportunity for companies to significantly reduce their cost of complexity and lead times and thus enhance their competitiveness. Many companies already use a range of CAx tools and configuration solutions today. Often, the expert knowledge of employees is hidden in "knowledge silos" and is rarely networked across processes. DesignChain describes the automated digital process from the recording of individual customer requirements, through design and technical preparation, to production. Configurators offer the possibility of mapping variant-rich products within the Design Chain. This transformation of customer requirements into product features makes it possible to generate even complex CAD models, such as those for large-scale plants, on a rule-based basis. With the aid of an automated CAx chain, production-relevant documents are thus transferred digitally to production. This process, which can be fully automated, allows variants to always be generated on the basis of current version statuses.

Keywords: automation, design, CAD, CAx

Procedia PDF Downloads 63
2733 Optimization of Pyrogallol Based Manganese / Ferroin Catalyzed Nonlinear Chemical Systems and Interaction with Monomeric and Polymeric Entities

Authors: Ghulam Mustafa Peerzada, Shagufta Rashid, Nadeem Bashir

Abstract:

These the influence of initial reagent concentrations on the Belousov-Zhabotinsky (BZ) system with Mn2+/Mn3+ as redox catalyst, inorganic bromate as oxidant and pyrogallol as organic substrate was studied. The reactions were monitored by potentiometery in oxidation reduction potential (ORP) mode. The aforesaid reagents were mixed with varying concentrations to evolve the optimal concentrations at which the reaction system exhibited better oscillations. The various oscillatory parameters such as induction period (tin), time period (tp), frequency (v), amplitude (A) and number of oscillations (n) were derived and the dependence of concentration of the reacting species on these oscillatory parameters was interpreted on the basis of the Field-Koros-Noyes mechanism. Ferroin based BZ system with pyrogallol as organic substrate was optimized under CSTR condition at temperature of 30±0.1oC Effect of molecules like monomer and polymer as additives to the system was checked and their interaction with the system was also studied. It has been observed that the monomer affects the time period, while the polymer has its effect on the amplitude of oscillations because of monomer’s interaction with the bromine and polymer’s with that of the Ferroin.

Keywords: Belousov Zhabotinsky reaction, oscillatory parameters, polymer, pyrogallol

Procedia PDF Downloads 297
2732 Selective Immobilization of Fructosyltransferase onto Glutaraldehyde Modified Support and Its Application in the Production of Fructo-Oligosaccharides

Authors: Milica B. Veljković, Milica B. Simović, Marija M. Ćorović, Ana D. Milivojević, Anja I. Petrov, Katarina M. Banjanac, Dejan I. Bezbradica

Abstract:

In recent decades, the scientific community has recognized the growing importance of prebiotics, and therefore, numerous studies are focused on their economic production due to their low presence in natural resources. It has been confirmed that prebiotics is a source of energy for probiotics in the gastrointestinal tract (GIT) and enable their proliferation, consequently leading to the normal functioning of the intestinal microbiota. Also, products of their fermentation are short-chain fatty acids (SCFA), which play a key role in maintaining and improving the health not only of the GIT but also of the whole organism. Among several confirmed prebiotics, fructooligosaccharides (FOS) are considered interesting candidates for use in a wide range of products in the food industry. They are characterized as low-calorie and non-cariogenic substances that represent an adequate sugar substitute and can be considered suitable for use in products intended for diabetics. The subject of this research will be the production of FOS by transforming sucrose using a fructosyltransferase (FTase) present in commercial preparation Pectinex® Ultra SP-L, with special emphasis on the development of adequate FTase immobilization method that would enable selective isolation of the enzyme responsible for the synthesis of FOS from the complex enzymatic mixture. This would lead to considerable enzyme purification and allow its direct incorporation into different sucrose-based products without the fear that the action of the other hydrolytic enzymes may adversely affect the products' functional characteristics. Accordingly, the possibility of selective immobilization of the enzyme using support with primary amino groups, Purolite® A109, which was previously activated and modified using glutaraldehyde (GA), was investigated. In the initial phase of the research, the effects of individual immobilization parameters such as pH, enzyme concentration, and immobilization time were investigated to optimize the process using support chemically activated with 15% and 0.5% GA to form dimers and monomers, respectively. It was determined that highly active immobilized preparations (371.8 IU/g of support - dimer and 213.8 IU/g of support – monomer) were achieved under acidic conditions (pH 4) provided that an enzyme concentration was 50 mg/g of support after 7 h and 3 h, respectively. Bearing in mind the obtained results of the expressed activity, it is noticeable that the formation of dimers showed higher reactivity compared to the form of monomers. Also, in the case of support modification using 15% GA, the value of the ratio of FTase and pectinase (as dominant enzyme mixture component) activity immobilization yields was 16.45, indicating the high feasibility of selective immobilization of FTase on modified polystyrene resin. After obtaining immobilized preparations of satisfactory features, they were tested in a reaction of FOS synthesis under determined optimal conditions. The maximum FOS yields of approximately 50% of total carbohydrates in the reaction mixture were recorded after 21 h. Finally, it can be concluded that the examined immobilization method yielded highly active, stable and, more importantly, refined enzyme preparation that can be further utilized on a larger scale for the development of continual processes for FOS synthesis, as well as for modification of different sucrose-based mediums.

Keywords: chemical modification, fructooligosaccharides, glutaraldehyde, immobilization of fructosyltransferase

Procedia PDF Downloads 168
2731 A Semantic and Concise Structure to Represent Human Actions

Authors: Tobias Strübing, Fatemeh Ziaeetabar

Abstract:

Humans usually manipulate objects with their hands. To represent these actions in a simple and understandable way, we need to use a semantic framework. For this purpose, the Semantic Event Chain (SEC) method has already been presented which is done by consideration of touching and non-touching relations between manipulated objects in a scene. This method was improved by a computational model, the so-called enriched Semantic Event Chain (eSEC), which incorporates the information of static (e.g. top, bottom) and dynamic spatial relations (e.g. moving apart, getting closer) between objects in an action scene. This leads to a better action prediction as well as the ability to distinguish between more actions. Each eSEC manipulation descriptor is a huge matrix with thirty rows and a massive set of the spatial relations between each pair of manipulated objects. The current eSEC framework has so far only been used in the category of manipulation actions, which eventually involve two hands. Here, we would like to extend this approach to a whole body action descriptor and make a conjoint activity representation structure. For this purpose, we need to do a statistical analysis to modify the current eSEC by summarizing while preserving its features, and introduce a new version called Enhanced eSEC or (e2SEC). This summarization can be done from two points of the view: 1) reducing the number of rows in an eSEC matrix, 2) shrinking the set of possible semantic spatial relations. To achieve these, we computed the importance of each matrix row in an statistical way, to see if it is possible to remove a particular one while all manipulations are still distinguishable from each other. On the other hand, we examined which semantic spatial relations can be merged without compromising the unity of the predefined manipulation actions. Therefore by performing the above analyses, we made the new e2SEC framework which has 20% fewer rows, 16.7% less static spatial and 11.1% less dynamic spatial relations. This simplification, while preserving the salient features of a semantic structure in representing actions, has a tremendous impact on the recognition and prediction of complex actions, as well as the interactions between humans and robots. It also creates a comprehensive platform to integrate with the body limbs descriptors and dramatically increases system performance, especially in complex real time applications such as human-robot interaction prediction.

Keywords: enriched semantic event chain, semantic action representation, spatial relations, statistical analysis

Procedia PDF Downloads 106
2730 Safety and Efficacy of Recombinant Clostridium botulinum Types B Vaccine Candidate

Authors: Mi-Hye Hwang, Young Min Son, Kichan Lee, Bang-Hun Hyun, Byeong Yeal Jung

Abstract:

Botulism is a paralytic disease of human beings and animals caused by neurotoxin produced by Clostridium botulinum. The neurotoxins are genetically distinguished into 8 types, A to H. Ingestion of performed toxin, usually types B, C, and D, have been shown to produce diseases in most cases of cattle botulism. Vaccination is the best measure to prevent cattle botulism. However, the commercially available toxoid-based vaccines are difficult and hazardous to produce. We produced recombinant protein using gene of heavy chain domain of botulinum toxin B of which binds to cellular receptor of neuron cells and used as immunogen. In this study, we evaluated the safety and efficacy of botulism vaccine composed of recombinant types B. Safety test was done by National Regulation for Veterinary Biologicals. For efficacy test, female ICR mice (5 weeks old) were subcutaneously injected, intraperitoneally challenged, and examined the survival rates compared with vaccination and non-vaccination group. Mouse survival rate of recombinant types B vaccine was above 80%, while one of non-vaccination group was 0%. A vaccine composed of recombinant types B was safe and efficacious in mouse. Our results suggest that recombinant heavy chain receptor binding domain can be used as an effective vaccine candidate for type B botulism.

Keywords: botulism, livestock, vaccine, recombinant protein, toxin

Procedia PDF Downloads 216
2729 Starch Valorization: Biorefinery Concept for the Circular Bioeconomy

Authors: Maider Gómez Palmero, Ana Carrasco Pérez, Paula de la Sen de la Cruz, Francisco Javier Royo Herrer, Sonia Ascaso Malo

Abstract:

The production of bio-based products for different purposes is one of the strategies that has grown the most at European and even global levels, seeking to contribute to mitigating the impacts associated with climate change and to achieve the ambitious objectives set in this regard. However, the substitution of fossil-based products for bio-based products requires a challenging and deep transformation and adaptation of the secondary and primary sectors and, more specifically, in the latter, the agro-industries. The first step to developing a bio-based value chain focuses on the availability of a resource with the right characteristics for the substitution sought. This, in turn, requires a significant reshaping of the forestry/agricultural sector but also of the agro-industry, which has a relevant potential to be deployed as a supplier and develop a robust logistical supply chain and to market a biobased raw material at a competitive price. However, this transformation may involve a profound restructuring of its traditional business model to incorporate biorefinery concepts. In this sense, agro-industries that generate by-products in their processes that are currently not valorized, such as potato processing rejects or the starch found in washing water, constitute a potential raw material that can be used for different bio-applications. This article aims to explore this potential to evaluate the most suitable bio applications to target and identify opportunities and challenges.

Keywords: starch valorisation, biorefinery, bio-based raw materials, bio-applications

Procedia PDF Downloads 29
2728 Solid Biofuel Production by Hydrothermal Carbonization of Wood Shavings: Effect of Carbonization Temperature and Biomass-to-Water Ratio on Hydrochar’s Properties

Authors: Mohammed Aliyu, Kazunori Iwabuchi, Ibrahim Shaba Mohammed, Abubakar Sadeeq Mohammed, Solomon Musa Dauda, Zinash Delebo Osunde

Abstract:

Hydrothermal carbonization (HTC) is recognised as a low temperature and effective technique for the conversion of biomass to solid biofuel. In this study, the effect of process temperature and biomass-to-water ratio (B/W) on the fuel properties of hydrochar produced from wood shavings was investigated. HTC was conducted in an autoclave using reaction temperature of 230 °C and 260 °C for 20 minutes with B/W ratio of 0.11 to 0.43. The produced hydrochars were characterised by the mass yield (MY), higher heating value (HHV), proximate and ultimate properties. The results showed that the properties of the hydrochars improved with increasing process temperature and B/W ratio. The higher heating value (HHV) increased to 26.74 MJ/kg as the severity of the reaction was increased to the process temperature of 260 °C. Also, the atomic H/C and O/C ratios of hydrochars produced at 230 °C and 260 °C were closed to the regions of a peat and lignite on the plotted van Krevelen diagram. Hence, the produced hydrochar has a promising potential as a sustainable solid biofuel for energy application.

Keywords: wood shavings, biomass/water ratio, thermochemical conversion, hydrothermal carbonization, hydrochar

Procedia PDF Downloads 97
2727 Research on Thermal Runaway Reaction of Ammonium Nitrate with Incompatible Substances

Authors: Weic-Ting Chen, Jo-Ming Tseng

Abstract:

Ammonium nitrate (AN) has caused many accidents in the world, which have caused a large number of people’s life and serious economic losses. In this study, the safety of the AN production process was discussed deeply, and the influence of incompatible substances was estimated according to the change of their heat value by mixing them with incompatible substances by thermal analysis techniques, and their safety parameters were calculated according to their kinetic parameters. In this study, differential scanning calorimeters (DSC) were applied for the temperature rise test and adiabatic thermal analysis in combination with the Advanced Reactive System Screening Tool (ARSST). The research results could contribute to the safety of the ammonium nitrate production process. Manufacturers can better understand the possibility of chemical heat release and the operating conditions that will cause a chemical reaction to be out of control when storing or adding new substances, so safety parameters were researched for these complex reactions. The results of this study will benefit the process of AN and the relevant staff, which also have safety protection in the working environment.

Keywords: ammonium nitrate, incompatible substances, differential scanning calorimeters, advanced reactive system screening tool, safety parameters

Procedia PDF Downloads 77
2726 Role of Molecular Changes and Immunohistochemical in Early Detection of Liver Cancer

Authors: Fatimah A. Alhomaid

Abstract:

The present study was planned to investigate the role of molecular changes and immunohistochemical in early detection of liver cancer in Saudi patients. our results were carried out on 54 patients liver cancer. We obtained our data from laboratory in King Khalid University Hospital. The specimens were taken (54) patients with liver cancer 34 male and 14 female and 2 control. The average age of varied from 37-85 years. The tumor was diagnosed as grade I in tow patients (male and female) and grade 2 in 45 patients (28 male and 17 female) while the grade 3 in 4 patients (all males). The specimens were processed for haematoxylin and eosin staining, immunohistochemical technique and flow cytometry analysis. Our study noted that most patients had adenocarcinoma which characterized by presence of signet-ring cells were very clear in advanced patients with adenocarcinoma. Our sections in adenocarcinoma in grade 2 and stage 3 had an increase in signet ring cells,an increase in the acini of glands and an increase in number of lymphocytes which spread to the muscular layer. With advancing the disease, there were haemorrhage in blood and increase in lymphocytes and increase in the number of nuclei in the tubular glands. Our study was carried on 48 patients, immunohistochemical diagnosis (CK20, PCNA, P53) and the analysis of DNA content by flow cytometry technique. Our study indicated that the presence of correlation between the immunohistochemical analysis for P53 and the grades. The reaction of P53 appeared as strong in nucleus in grades &stage 3 and appeared in other sections as dark brown pigment. Our study indicated that the absence of correlation between the immunohistochemical analysis for PCAN and the grades. In our sections there were strong reaction in the more 80% of nuclei in grade 1& stage 2. Our study indicated that the presence of correlation between the immunohistochemical analysis for CK20 and the grades. Our results indicated the presence of positive reaction in cytoplasm varied from weak to moderate in grade 3 & stage 4. Concerning the Flow cytometry technique our results indicated that the presence of correlation between the DNA and different stages of liver cancer.

Keywords: cancer, CK20, DNA, cytometry analysis, liver, immunohistochemical, molecular changes, PCNA, p53

Procedia PDF Downloads 247
2725 Catalytic Combustion of Methane over Pd-Meox-CeO₂/Al₂O₃ (Me= Co or Ni) Catalysts

Authors: Silviya Todorova, Anton Naydenov, Ralitsa Velinova, Alexander Larin

Abstract:

Catalytic combustion of methane has been extensively investigated for emission control and power generation during the last decades. The alumina-supported palladium catalyst is widely accepted as the most active catalysts for catalytic combustion of methane. The activity of Pd/Al₂O₃ decreases during the time on stream, especially underwater vapor. The following order of activity in the reaction of complete oxidation of methane was established: Co₃O₄> CuO>NiO> Mn₂O₃> Cr₂O₃. It may be expected that the combination between Pd and these oxides could lead to the promising catalysts in the reaction of complete methane. In the present work, we investigate the activity of Pd/Al₂O₃ catalysts promoted with other metal oxides (MOx; M= Ni, Co, Ce). The Pd-based catalysts modified by metal oxide were prepared by sequential impregnation of Al₂O₃ with aqueous solutions of Me(NO₃)₂.6H₂O and Pd(NO₃)₂H₂O. All samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS). An improvement of activity was observed after modification with different oxides. The results demonstrate that the Pd/Al₂O₃ catalysts modified with Co and Ce by impregnation with a common solution of respective salts, exhibit the most promising catalytic activity for methane oxidation. Most probably, the presence of Co₃O₄ and CeO₂ on catalytic surface increases surface oxygen and therefore leads to the better reactivity in methane combustion.

Keywords: methane combustion, palladium, Co-Ce, Ni-Ce

Procedia PDF Downloads 167
2724 Synthesis of 2-Aminoisocoumarinoselenazoles via Transition Metal-Free Alkylation and Ru(II)-Catalyzed [4+2] Alkyne Annulation

Authors: Sunil Kumar, Sandip Dhole, Deepak Salunke, Chung-ming Sun

Abstract:

Heterocycles bearing nitrogen, oxygen, and selenium are present in innumerable biologically active compounds. For instance, coumarin containing dicoumarol acts as naturally occurring anticoagulant. 2-Acylamido selenazole works as Store-Operated Calcium (SOC) channel regulator. Therefore, due to biologically significance of selenazole and coumarin and our quest to develop efficient methodologies for the synthesis of complex heterocycles, the trisubstituted angular isocoumarinoselenazole synthesis was proposed and achieved by starting from nitrobenzoic acid derivative, available commercially. Synthetic procedure involves three steps: i) the construction of 2-aminobenzoselenazoles, ii) their regioselective N-alkylation at position-2 and iii) alkyne insertion via Ru catalyzed C-H activation. Transition metal free synthesis of benzoselenazoles was successfully brought about by the addition/elimination reaction via intramolecular C-Se bond formation. In the next step, N-alkylation of selenazole furnished two regioisomers. Both the isomers exhibited different reactivity towards [4+2] alkyne annulation reaction. The fusion of α-pyrone ring on the benzo[1,3-d]selenazole skeleton was achieved via Ru(II)-catalyzed C-H activation and alkyne insertion. As evident from mechanism, the selenazole 'N' plays an important role for the experiential selectivity.

Keywords: alkylation, alkyne insertion, coumarin, selenazole

Procedia PDF Downloads 107
2723 Technological Innovations as a Potential Vehicle for Supply Chain Integration on Basic Metal Industries

Authors: Alie Wube Dametew, Frank Ebinger

Abstract:

This study investigated the roles of technological innovation on basic metal industries and then developed technological innovation framework for enhancing sustainable competitive advantage in the basic metal industries. The previous research work indicates that technological innovation has critical impact in promoting local industries to improve their performance and achieve sustainable competitive environments. The filed observation, questioner and expert interview result from basic metal industries indicate that the technological capability of local industries to invention, adoption, modification, improving and use a given innovative technology is very poor. As the result, this poor technological innovation was occurred due to improper innovation and technology transfer framework, non-collaborative operating environment between foreign and local industries, very weak national technology policies, problems research and innovation centers, the common miss points on basic metal industry innovation systems were investigated in this study. One of the conclusions of the article is that, through using the developed technological innovation framework in this study, basic metal industries improve innovation process and support an innovative culture for sector capabilities and achieve sustainable competitive advantage.

Keywords: technological innovation, competitive advantage, sustainable, basic metal industry, conceptual model, sustainability, supply chain integration

Procedia PDF Downloads 230
2722 A Life Cycle Assessment (LCA) of Aluminum Production Process

Authors: Alaa Al Hawari, Mohammad Khader, Wael El Hasan, Mahmoud Alijla, Ammar Manawi, Abdelbaki Benamour

Abstract:

The production of aluminium alloys and ingots -starting from the processing of alumina to aluminium, and the final cast product- was studied using a Life Cycle Assessment (LCA) approach. The studied aluminium supply chain consisted of a carbon plant, a reduction plant, a casting plant, and a power plant. In the LCA model, the environmental loads of the different plants for the production of 1 ton of aluminium metal were investigated. The impact of the aluminium production was assessed in eight impact categories. The results showed that for all of the impact categories the power plant had the highest impact only in the cases of Human Toxicity Potential (HTP) the reduction plant had the highest impact and in the Marine Aquatic Eco-Toxicity Potential (MAETP) the carbon plant had the highest impact. Furthermore, the impact of the carbon plant and the reduction plant combined was almost the same as the impact of the power plant in the case of the Acidification Potential (AP). The carbon plant had a positive impact on the environment when it comes to the Eutrophication Potential (EP) due to the production of clean water in the process. The natural gas based power plant used in the case study had 8.4 times less negative impact on the environment when compared to the heavy fuel based power plant and 10.7 times less negative impact when compared to the hard coal based power plant.

Keywords: life cycle assessment, aluminium production, supply chain, ecological impacts

Procedia PDF Downloads 513
2721 Heterogeneous Catalytic Hydroesterification of Soybean Oil to Develop a Biodiesel Formation

Authors: O. Mowla, E. Kennedy, M. Stockenhuber

Abstract:

Finding alternative renewable resources of energy has attracted the attentions in consequence of limitation of the traditional fossil fuel resources, increasing of crude oil price and environmental concern over greenhouse gas emissions. Biodiesel (or Fatty Acid Methyl Esters (FAME)), an alternative energy source, is synthesised from renewable sources such as vegetable oils and animal fats and can be produced from waste oils. FAME can be produced via hydroesterification of oils. The process involves two stages. In the first stage of this process, fatty acids and glycerol are being obtained by hydrolysis of the feed stock oil. In the second stage, the recovered fatty acids are then esterified with an alcohol to methyl esters. The presence of a catalyst accelerates the rate of the hydroesterification reaction of oils. The overarching aim of this study is to find the effect of using zeolite as a catalyst in the heterogeneous hydroesterification of soybean oil. Both stages of the catalytic hydroesterification of soybean oil had been conducted at atmospheric and high-pressure conditions using reflux glass reactor and Parr reactor, respectively. The effect of operating parameters such as temperature and reaction time on the overall yield of biodiesel formation was also investigated.

Keywords: biodiesel, heterogeneous catalytic hydroesterification, soybean oil, zeolite

Procedia PDF Downloads 417
2720 4-DOFs Parallel Mechanism for Minimally Invasive Robotic Surgery

Authors: Khalil Ibrahim, Ahmed Ramadan, Mohamed Fanni, Yo Kobayashi, Ahmed Abo-Ismail, Masakatus G. Fujie

Abstract:

This paper deals with the design process and the dynamic control simulation of a new type of 4-DOFs parallel mechanism that can be used as an endoscopic surgical manipulator. The proposed mechanism, 2-PUU_2-PUS, is designed based on the screw theory and the parallel virtual chain type synthesis method. Based on the structure analysis of the 4-DOF parallel mechanism, the inverse position equation is studied using the inverse analysis theory of kinematics. The design and the stress analysis of the mechanism are investigated using SolidWorks software. The virtual prototype of the parallel mechanism is constructed, and the dynamic simulation is performed using ADAMS TM software. The system model utilizing PID and PI controllers has been built using MATLAB software. A more realistic simulation in accordance with a given bending angle and point to point control is implemented by the use of both ADAMS/MATLAB software. The simulation results showed that this control method has solved the coordinate control for the 4-DOF parallel manipulator so that each output is feedback to the four driving rods. From the results, the tracking performance is achieved. Other control techniques, such as intelligent ones, are recommended to improve the tracking performance and reduce the numerical truncation error.

Keywords: parallel mechanisms, medical robotics, tracjectory control, virtual chain type synthesis method

Procedia PDF Downloads 450
2719 COVID-19 Genomic Analysis and Complete Evaluation

Authors: Narin Salehiyan, Ramin Ghasemi Shayan

Abstract:

In order to investigate coronavirus RNA replication, transcription, recombination, protein processing and transport, virion assembly, the identification of coronavirus-specific cell receptors, and polymerase processing, the manipulation of coronavirus clones and complementary DNAs (cDNAs) of defective-interfering (DI) RNAs is the subject of this chapter. The idea of the Covid genome is nonsegmented, single-abandoned, and positive-sense RNA. When compared to other RNA viruses, its size is significantly greater, ranging from 27 to 32 kb. The quality encoding the enormous surface glycoprotein depends on 4.4 kb, encoding a forcing trimeric, profoundly glycosylated protein. This takes off exactly 20 nm over the virion envelope, giving the infection the appearance-with a little creative mind of a crown or coronet. Covid research has added to the comprehension of numerous parts of atomic science as a general rule, like the component of RNA union, translational control, and protein transport and handling. It stays a fortune equipped for creating startling experiences.

Keywords: covid-19, corona, virus, genome, genetic

Procedia PDF Downloads 58
2718 Decoupled Dynamic Control of Unicycle Robot Using Integral Linear Quadratic Regulator and Sliding Mode Controller

Authors: Shweda Mohan, J. L. Nandagopal, S. Amritha

Abstract:

This paper focuses on the dynamic modelling of unicycle robot. Two main concepts used for balancing unicycle robot are: reaction wheel pendulum and inverted pendulum. The pitch axis is modelled as inverted pendulum and roll axis is modelled as reaction wheel pendulum. The unicycle yaw dynamics is not considered which makes the derivation of dynamics relatively simple. For the roll controller, sliding-mode controller has been adopted and optimal methods are used to minimize switching-function chattering. For pitch controller, an LQR controller has been implemented to drive the unicycle robot to follow the desired velocity trajectory. The pitching and rolling balance could be achieved by two DC motors. Unicycle robot is a non-holonomic, non-linear, static unbalance system that has the minimal number of point contact to the ground, therefore, it is a perfect platform for researchers to study motion and balance control. These real-time solutions will be a viable solution for advanced robotic systems and controls.

Keywords: decoupled dynamics, linear quadratic regulator (LQR) control, Lyapunov function sliding mode control, unicycle robot, velocity and trajectory control

Procedia PDF Downloads 350
2717 Towards the Use of Software Product Metrics as an Indicator for Measuring Mobile Applications Power Consumption

Authors: Ching Kin Keong, Koh Tieng Wei, Abdul Azim Abd. Ghani, Khaironi Yatim Sharif

Abstract:

Maintaining factory default battery endurance rate over time in supporting huge amount of running applications on energy-restricted mobile devices has created a new challenge for mobile applications developer. While delivering customers’ unlimited expectations, developers are barely aware of efficient use of energy from the application itself. Thus developers need a set of valid energy consumption indicators in assisting them to develop energy saving applications. In this paper, we present a few software product metrics that can be used as an indicator to measure energy consumption of Android-based mobile applications in the early of design stage. In particular, Trepn Profiler (Power profiling tool for Qualcomm processor) has used to collect the data of mobile application power consumption, and then analyzed for the 23 software metrics in this preliminary study. The results show that McCabe cyclomatic complexity, number of parameters, nested block depth, number of methods, weighted methods per class, number of classes, total lines of code and method lines have direct relationship with power consumption of mobile application.

Keywords: battery endurance, software metrics, mobile application, power consumption

Procedia PDF Downloads 381
2716 Linking Information Systems Capabilities for Service Quality: The Role of Customer Connection and Environmental Dynamism

Authors: Teng Teng, Christos Tsinopoulos

Abstract:

The purpose of this research is to explore the link between IS capabilities, customer connection, and quality performance in the service context, with investigation of the impact of firm’s stable and dynamic environments. The application of Information Systems (IS) has become a significant effect on contemporary service operations. Firms invest in IS with the presumption that they will facilitate operations processes so that their performance will improve. Yet, IS resources by themselves are not sufficiently 'unique' and thus, it would be more useful and theoretically relevant to focus on the processes they affect. One such organisational process, which has attracted a lot of research attention by supply chain management scholars, is the integration of customer connection, where IS-enabled customer connection enhances communication and contact processes, and with such customer resources integration comes greater success for the firm in its abilities to develop a good understanding of customer needs and set accurate customer. Nevertheless, prior studies on IS capabilities have focused on either one specific type of technology or operationalised it as a highly aggregated concept. Moreover, although conceptual frameworks have been identified to show customer integration is valuable in service provision, there is much to learn about the practices of integrating customer resources. In this research, IS capabilities have been broken down into three dimensions based on the framework of Wade and Hulland: IT for supply chain activities (ITSCA), flexible IT infrastructure (ITINF), and IT operations shared knowledge (ITOSK); and focus on their impact on operational performance of firms in services. With this background, this paper addresses the following questions: -How do IS capabilities affect the integration of customer connection and service quality? -What is the relationship between environmental dynamism and the relationship of customer connection and service quality? A survey of 156 service establishments was conducted, and the data analysed to determine the role of customer connection in mediating the effects of IS capabilities on firms’ service quality. Confirmatory factor analysis was used to check convergent validity. There is a good model fit for the structural model. Moderating effect of environmental dynamism on the relationship of customer connection and service quality is analysed. Results show that ITSCA, ITINF, and ITOSK have a positive influence on the degree of the integration of customer connection. In addition, customer connection positively related to service quality; this relationship is further emphasised when firms work in a dynamic environment. This research takes a step towards quelling concerns about the business value of IS, contributing to the development and validation of the measurement of IS capabilities in the service operations context. Additionally, it adds to the emerging body of literature linking customer connection to the operational performance of service firms. Managers of service firms should consider the strength of the mediating role of customer connection when investing in IT-related technologies and policies. Particularly, service firms developing IS capabilities should simultaneously implement processes that encourage supply chain integration.

Keywords: customer connection, environmental dynamism, information systems capabilities, service quality, service supply chain

Procedia PDF Downloads 126
2715 Microbial Fuel Cells and Their Applications in Electricity Generating and Wastewater Treatment

Authors: Shima Fasahat

Abstract:

This research is an experimental research which was done about microbial fuel cells in order to study them for electricity generating and wastewater treatment. These days, it is very important to find new, clean and sustainable ways for energy supplying. Because of this reason there are many researchers around the world who are studying about new and sustainable energies. There are different ways to produce these kind of energies like: solar cells, wind turbines, geothermal energy, fuel cells and many other ways. Fuel cells have different types one of these types is microbial fuel cell. In this research, an MFC was built in order to study how it can be used for electricity generating and wastewater treatment. The microbial fuel cell which was used in this research is a reactor that has two tanks with a catalyst solution. The chemical reaction in microbial fuel cells is a redox reaction. The microbial fuel cell in this research is a two chamber MFC. Anode chamber is an anaerobic one (ABR reactor) and the other chamber is a cathode chamber. Anode chamber consists of stabilized sludge which is the source of microorganisms that do redox reaction. The main microorganisms here are: Propionibacterium and Clostridium. The electrodes of anode chamber are graphite pages. Cathode chamber consists of graphite page electrodes and catalysts like: O2, KMnO4 and C6N6FeK4. The membrane which separates the chambers is Nafion117. The reason of choosing this membrane is explained in the complete paper. The main goal of this research is to generate electricity and treating wastewater. It was found that when you use electron receptor compounds like: O2, MnO4, C6N6FeK4 the velocity of electron receiving speeds up and in a less time more current will be achieved. It was found that the best compounds for this purpose are compounds which have iron in their chemical formula. It is also important to pay attention to the amount of nutrients which enters to bacteria chamber. By adding extra nutrients in some cases the result will be reverse.  By using ABR the amount of chemical oxidation demand reduces per day till it arrives to a stable amount.

Keywords: anaerobic baffled reactor, bioenergy, electrode, energy efficient, microbial fuel cell, renewable chemicals, sustainable

Procedia PDF Downloads 211
2714 Single Imputation for Audiograms

Authors: Sarah Beaver, Renee Bryce

Abstract:

Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125Hz to 8000Hz. The data contains patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R\textsuperscript{2} values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R\textsuperscript{2} values for the best models for KNN ranges from .89 to .95. The best imputation models received R\textsuperscript{2} between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our best imputation models versus constant imputations by a two percent increase.

Keywords: machine learning, audiograms, data imputations, single imputations

Procedia PDF Downloads 66
2713 Heterodimetallic Ferrocenyl Dithiophosphonate Complexes of Nickel(II), Zinc(II) and Cadmium(II) as High Efficiency Co-Sensitizers in Dye-Sensitized Solar Cells

Authors: Tomilola J. Ajayi, Moses Ollengo, Lukas le Roux, Michael N. Pillay, Richard J. Staples, Shannon M. Biros Werner E. van Zyl

Abstract:

The formation, characterization, and dye-sensitized solar cell application of nickel(II), zinc(II) and cadmium(II) ferrocenyl dithiophosphonate complexes were investigated. The multidentate monoanionic ligand [S₂PFc(OH)]¯ (L1) was synthesized from the reaction between ferrocenyl Lawesson’s reagent, [FcP(=S)μ-S]₂ (FcLR), (Fc = ferrocenyl) and water. Ligand L1 could potentially coordinate to metal centers through the S, S’ and O donor atoms. The reaction between metal salt precursors and L1 produced a Ni(II) complex of the type [Ni{S₂P(Fc)(OH)}₂] (1) (molar ratio 1:2), a tetranickel (II) complex of the type [Ni₂{S₂OP(Fc)}₂]₂ (2) (molar ratio (1:1), as well as a Zn(II) complex [Zn{S₂P(Fc)(OH)}₂]₂ (3), and a Cd(II) complex [Cd{S₂P(Fc)(OH)}₂]₂ (4). Complexes 1-4 were characterized by 1H and 31P NMR and FT-IR, and complexes 1 and 2 were additionally analysed by X-Ray crystallography. After co-sensitization, the DSSCs were characterized using UV-Vis, cyclic voltammetry, electrochemical impedance spectroscopy, and photovoltaic measurements (I-V curves). Overall finding shows that co-sensitization of our compounds with ruthenium dye N719 resulted in a better overall solar conversion efficiency than only pure N719 dye under the same experimental conditions. In conclusion, we report the first examples of dye-sensitized solar cells (DSSCs) co-sensitized with ferrocenyl dithiophosphonate complexes.

Keywords: dithiophosphonate, dye sensitized solar cell, co-sensitization, solar efficiency

Procedia PDF Downloads 134
2712 An Analysis of the Temporal Aspects of Visual Attention Processing Using Rapid Series Visual Processing (RSVP) Data

Authors: Shreya Borthakur, Aastha Vartak

Abstract:

This Electroencephalogram (EEG) project on Rapid Visual Serial Processing (RSVP) paradigm explores the temporal dynamics of visual attention processing in response to rapidly presented visual stimuli. The study builds upon previous research that used real-world images in RSVP tasks to understand the emergence of object representations in the human brain. The objectives of the research include investigating the differences in accuracy and reaction times between 5 Hz and 20 Hz presentation rates, as well as examining the prominent brain waves, particularly alpha and beta waves, associated with the attention task. The pre-processing and data analysis involves filtering EEG data, creating epochs for target stimuli, and conducting statistical tests using MATLAB, EEGLAB, Chronux toolboxes, and R. The results support the hypotheses, revealing higher accuracy at a slower presentation rate, faster reaction times for less complex targets, and the involvement of alpha and beta waves in attention and cognitive processing. This research sheds light on how short-term memory and cognitive control affect visual processing and could have practical implications in fields like education.

Keywords: RSVP, attention, visual processing, attentional blink, EEG

Procedia PDF Downloads 53
2711 AHP and TOPSIS Methods for Supplier Selection Problem in Medical Devices Company

Authors: Sevde D. Karayel, Ediz Atmaca

Abstract:

Supplier selection subject is vital because of development competitiveness and performance of firms which have right, rapid and with low cost procurement. Considering the fact that competition between firms is no longer on their supply chains, hence it is very clear that performance of the firms’ not only depend on their own success but also success of all departments in supply chain. For this purpose, firms want to work with suppliers which are cost effective, flexible in terms of demand and high quality level for customer satisfaction. However, diversification and redundancy of their expectations from suppliers, supplier selection problems need to be solved as a hard problem. In this study, supplier selection problem is discussed for critical piece, which is using almost all production of products in and has troubles with lead time from supplier, in a firm that produces medical devices. Analyzing policy in the current situation of the firm in the supplier selection indicates that supplier selection is made based on the purchasing department experience and other authorized persons’ general judgments. Because selection do not make based on the analytical methods, it is caused disruptions in production, lateness and extra cost. To solve the problem, AHP and TOPSIS which are multi-criteria decision making techniques, which are effective, easy to implement and can analyze many criteria simultaneously, are used to make a selection among alternative suppliers.

Keywords: AHP-TOPSIS methods, multi-criteria decision making, supplier selection problem, supply chain management

Procedia PDF Downloads 250
2710 Development of Alternative Fuels Technologies: Compressed Natural Gas Home Refueling Station

Authors: Szymon Kuczynski, Krystian Liszka, Mariusz Laciak, Andrii Oliinyk, Adam Szurlej

Abstract:

Compressed natural gas (CNG) represents an excellent compromise between the availability of a technology that is proven and relatively easy to use in many areas of the automotive industry and incurred costs. This fuel causes a lower corrosion effect due to the lower content of products causing the potential difference on the walls of the engine system. Natural gas powered vehicles (NGVs) do not emit any substances that can contaminate water or land. The absence of carcinogenic substances in gaseous fuel extends the life of the engine. In the longer term, it contributes positively to waste management as well as waste disposal. Popularization of propulsion systems powered by natural gas CNG positively affects the reduction of heavy duty transport. For these reasons, CNG as a fuel stimulates considerable interest around the world. Over the last few years, technologies related to use of natural gas as an engine fuel have been developed and improved. These solutions have evolved from the prototype phase to the industrial scale implementation. The widespread availability of gaseous fuels has led to the development of a technology that allows the CNG fuel to be refueled directly from the urban gas network to the vehicle tank (ie. HYGEN - CNGHRS). Home refueling installations, although they have been known for many years, are becoming increasingly important in the present day. The major obstacle in the sale of this technology was, until recently, quite high capital expenditure compared to the later benefits. Home refueling systems allow refueling vehicle tank, with full control of fuel costs and refueling time. CNG Home Refueling Stations (such as HYGEN) allow gas value chain to overcome the dogma that there is a lack of refueling infrastructure allowing companies in gas value chain to participate in transportation market. Technology is based on one stage hydraulic compressor (instead of multistage mechanical compressor technology) which provides the possibility to compress low pressure gas from distribution gas network to 200 bar for its further usage as a fuel for NGVs. This boosts revenues and profits of gas companies by expanding its presence in higher margin of energy sector.

Keywords: alternative fuels, CNG (compressed natural gas), CNG stations, NGVs (natural gas vehicles), gas value chain

Procedia PDF Downloads 184
2709 Profit Share in Income: An Analysis of Its Influence on Macroeconomic Performance

Authors: Alain Villemeur

Abstract:

The relationships between the profit share in income on the one hand and the growth rates of output and employment on the other hand have been studied for 17 advanced economies since 1961. The vast majority (98%) of annual values for the profit share fall between 20% and 40%, with an average value of 33.9%. For the 17 advanced economies, Gross Domestic Product and productivity growth rates tend to fall as the profit share in income rises. For the employment growth rates, the relationships are complex; nevertheless, over long periods (1961-2000), it appears that the more job-creating economies are Australia, Canada, and the United States; they have experienced a profit share close to 1/3. This raises a number of questions, not least the value of 1/3 for the profit share and its role in macroeconomic fundamentals. To explain these facts, an endogenous growth model is developed. This growth and distribution model reconciles the great ideas of Kaldor (economic growth as a chain reaction), of Keynes (effective demand and marginal efficiency of capital) and of Ricardo (importance of the wage-profit distribution) in an economy facing creative destruction. A production function is obtained, depending mainly on the growth of employment, the rate of net investment and the profit share in income. In theory, we show the existence of incentives: an incentive for job creation when the profit share is less than 1/3 and another incentive for job destruction in the opposite case. Thus, increasing the profit share can boost the employment growth rate until it reaches the value of 1/3; otherwise lowers the employment growth rate. Three key findings can be drawn from these considerations. The first reveals that the best GDP and productivity growth rates are obtained with a profit share of less than 1/3. The second is that maximum job growth is associated with a 1/3 profit share, given the existence of incentives to create more jobs when the profit share is less than 1/3 or to destroy more jobs otherwise. The third is the decline in performance (GDP growth rate and productivity growth rate) when the profit share increases. In conclusion, increasing the profit share in income weakens GDP growth or productivity growth as a long-term trend, contrary to the trickle-down hypothesis. The employment growth rate is maximum for a profit share in income of 1/3. All these lessons suggest macroeconomic policies considering the profit share in income.

Keywords: advanced countries, GDP growth, employment growth, profit share, economic policies

Procedia PDF Downloads 46
2708 The Extraction and Stripping of Hg(II) from Produced Water via Hollow Fiber Contactor

Authors: Dolapop Sribudda, Ura Pancharoen

Abstract:

The separation of Hg(II) from produced water by hollow fiber contactors (HFC) was investigation. This system included of two hollow fiber modules in the series connecting. The first module used for the extraction reaction and the second module for stripping reaction. Aliquat336 extractant was fed from the organic reservoirs into the shell side of the first hollow fiber module and continuous to the shell side of the second module. The organic liquid was continuously feed recirculate and back to the reservoirs. The feed solution was pumped into the lumen (tube side) of the first hollow fiber module. Simultaneously, the stripping solution was pumped in the same way in tube side of the second module. The feed and stripping solution was fed which had a counter current flow. Samples were kept in the outlet of feed and stripping solution for 1 hour and characterized concentration of Hg(II) by Inductively Couple Plasma Atomic Emission Spectroscopy (ICP-AES). Feed solution was produced water from natural gulf of Thailand. The extractant was Aliquat336 dissolved in kerosene diluent. Stripping solution used was nitric acid (HNO3) and thiourea (NH2CSNH2). The effect of carrier concentration and type of stripping solution were investigated. Results showed that the best condition were 10 % (v/v) Aliquat336 and 1.0 M NH2CSNH2. At the optimum condition, the extraction and stripping of Hg(II) were 98% and 44.2%, respectively.

Keywords: Hg(II), hollow fiber contactor, produced water, wastewater treatment

Procedia PDF Downloads 386
2707 A Preliminary Report of HBV Full Genome Sequencing Derived from Iranian Intravenous Drug Users

Authors: Maryam Vaezjalali, Koroush Rahimian, Maryam Asli, Tahmineh Kandelouei, Foad Davoodbeglou, Amir H. Kashi

Abstract:

Objectives: The present study was conducted to assess the HBV molecular profiles including genotypes, subgenotypes, subtypes & mutations in hepatitis B genes. Materials/Patients and Methods: This study was conducted on 229 intravenous drug users who referred to three Drop- in-Centers and a hospital in Tehran. HBV DNA was extracted from HBsAg positive serum samples and amplified by Nested PCR. HBV genotype, subgenotypes, subtype and genes mutation were determined by direct sequencing. Phylogenetic tree was constructed using neighbor- joining (NJ) method. Statistical analyses were carried out by SPSS 20. Results: HBV DNA was found in 3 HBsAg positive cases. Phylogenetic tree of derived HBV DNAs showed the existence of genotype D (subgenotype D1, subtype ayw2). Also immune escape mutations were determined in S gene. Conclusion: There were a few variations and genotypes and subtypes among infected intravenous drug users. This study showed the predominance of genotype D among intravenous drug users. Our study concurs with other reports from Iran, that all showing currently only genotype D is the only detectable genotype in Iran.

Keywords: drug users, genotype, HBV, phylogenetic tree

Procedia PDF Downloads 313