Search results for: modified simplex algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5894

Search results for: modified simplex algorithm

4544 Improved Classification Procedure for Imbalanced and Overlapped Situations

Authors: Hankyu Lee, Seoung Bum Kim

Abstract:

The issue with imbalance and overlapping in the class distribution becomes important in various applications of data mining. The imbalanced dataset is a special case in classification problems in which the number of observations of one class (i.e., major class) heavily exceeds the number of observations of the other class (i.e., minor class). Overlapped dataset is the case where many observations are shared together between the two classes. Imbalanced and overlapped data can be frequently found in many real examples including fraud and abuse patients in healthcare, quality prediction in manufacturing, text classification, oil spill detection, remote sensing, and so on. The class imbalance and overlap problem is the challenging issue because this situation degrades the performance of most of the standard classification algorithms. In this study, we propose a classification procedure that can effectively handle imbalanced and overlapped datasets by splitting data space into three parts: nonoverlapping, light overlapping, and severe overlapping and applying the classification algorithm in each part. These three parts were determined based on the Hausdorff distance and the margin of the modified support vector machine. An experiments study was conducted to examine the properties of the proposed method and compared it with other classification algorithms. The results showed that the proposed method outperformed the competitors under various imbalanced and overlapped situations. Moreover, the applicability of the proposed method was demonstrated through the experiment with real data.

Keywords: classification, imbalanced data with class overlap, split data space, support vector machine

Procedia PDF Downloads 308
4543 Sparse Principal Component Analysis: A Least Squares Approximation Approach

Authors: Giovanni Merola

Abstract:

Sparse Principal Components Analysis aims to find principal components with few non-zero loadings. We derive such sparse solutions by adding a genuine sparsity requirement to the original Principal Components Analysis (PCA) objective function. This approach differs from others because it preserves PCA's original optimality: uncorrelatedness of the components and least squares approximation of the data. To identify the best subset of non-zero loadings we propose a branch-and-bound search and an iterative elimination algorithm. This last algorithm finds sparse solutions with large loadings and can be run without specifying the cardinality of the loadings and the number of components to compute in advance. We give thorough comparisons with the existing sparse PCA methods and several examples on real datasets.

Keywords: SPCA, uncorrelated components, branch-and-bound, backward elimination

Procedia PDF Downloads 384
4542 A Distributed Cryptographically Generated Address Computing Algorithm for Secure Neighbor Discovery Protocol in IPv6

Authors: M. Moslehpour, S. Khorsandi

Abstract:

Due to shortage in IPv4 addresses, transition to IPv6 has gained significant momentum in recent years. Like Address Resolution Protocol (ARP) in IPv4, Neighbor Discovery Protocol (NDP) provides some functions like address resolution in IPv6. Besides functionality of NDP, it is vulnerable to some attacks. To mitigate these attacks, Internet Protocol Security (IPsec) was introduced, but it was not efficient due to its limitation. Therefore, SEND protocol is proposed to automatic protection of auto-configuration process. It is secure neighbor discovery and address resolution process. To defend against threats on NDP’s integrity and identity, Cryptographically Generated Address (CGA) and asymmetric cryptography are used by SEND. Besides advantages of SEND, its disadvantages like the computation process of CGA algorithm and sequentially of CGA generation algorithm are considerable. In this paper, we parallel this process between network resources in order to improve it. In addition, we compare the CGA generation time in self-computing and distributed-computing process. We focus on the impact of the malicious nodes on the CGA generation time in the network. According to the result, although malicious nodes participate in the generation process, CGA generation time is less than when it is computed in a one-way. By Trust Management System, detecting and insulating malicious nodes is easier.

Keywords: NDP, IPsec, SEND, CGA, modifier, malicious node, self-computing, distributed-computing

Procedia PDF Downloads 278
4541 Considering Effect of Wind Turbines in the Distribution System

Authors: Majed Ahmadi

Abstract:

In recent years, the high penetration of different types of renewable energy sources (RESs) has affected most of the available strategies. The main motivations behind the high penetration of RESs are clean energy, modular system and easy installation. Among different types of RESs, wind turbine (WT) is an interesting choice referring to the availability of wind in almost any area. The new technologies of WT can provide energy from residential applications to wide grid connected applications. Regarding the WT, advantages such as reducing the dependence on fossil fuels and enhancing the independence and flexibility of large power grid are the most prominent. Nevertheless, the high volatile nature of wind speed injects much uncertainty in the grid that if not managed optimally can put the analyses far from the reality.the aim of this project is scrutiny and to offer proper ways for renewing distribution networks with envisage the effects of wind power plants and uncertainties related to distribution systems including wind power generating plants output rate and consumers consuming rate and also decrease the incidents of the whole network losses, amount of pollution, voltage refraction and cost extent.to solve this problem we use dual point estimate method.And algorithm used in this paper is reformed bat algorithm, which will be under exact research furthermore the results.

Keywords: order renewal, wind turbines, bat algorithm, outspread production, uncertainty

Procedia PDF Downloads 286
4540 Fuzzy-Genetic Algorithm Multi-Objective Optimization Methodology for Cylindrical Stiffened Tanks Conceptual Design

Authors: H. Naseh, M. Mirshams, M. Mirdamadian, H. R. Fazeley

Abstract:

This paper presents an extension of fuzzy-genetic algorithm multi-objective optimization methodology that could effectively be used to find the overall satisfaction of objective functions (selecting the design variables) in the early stages of design process. The coupling of objective functions due to design variables in an engineering design process will result in difficulties in design optimization problems. In many cases, decision making on design variables conflicts with more than one discipline in system design. In space launch system conceptual design, decision making on some design variable (e.g. oxidizer to fuel mass flow rate O/F) in early stages of the design process is related to objective of liquid propellant engine (specific impulse) and Tanks (structure weight). Then, the primary application of this methodology is the design of a liquid propellant engine with the maximum specific impulse and cylindrical stiffened tank with the minimum weight. To this end, the design problem is established the fuzzy rule set based on designer's expert knowledge with a holistic approach. The independent design variables in this model are oxidizer to fuel mass flow rate, thickness of stringers, thickness of rings, shell thickness. To handle the mentioned problems, a fuzzy-genetic algorithm multi-objective optimization methodology is developed based on Pareto optimal set. Consequently, this methodology is modeled with the one stage of space launch system to illustrate accuracy and efficiency of proposed methodology.

Keywords: cylindrical stiffened tanks, multi-objective, genetic algorithm, fuzzy approach

Procedia PDF Downloads 656
4539 A Mini Radar System for Low Altitude Targets Detection

Authors: Kangkang Wu, Kaizhi Wang, Zhijun Yuan

Abstract:

This paper deals with a mini radar system aimed at detecting small targets at the low latitude. The radar operates at Ku-band in the frequency modulated continuous wave (FMCW) mode with two receiving channels. The radar system has the characteristics of compactness, mobility, and low power consumption. This paper focuses on the implementation of the radar system, and the Block least mean square (Block LMS) algorithm is applied to minimize the fortuitous distortion. It is validated from a series of experiments that the track of the unmanned aerial vehicle (UAV) can be easily distinguished with the radar system.

Keywords: unmanned aerial vehicle (UAV), interference, Block Least Mean Square (Block LMS) Algorithm, Frequency Modulated Continuous Wave (FMCW)

Procedia PDF Downloads 320
4538 Monte Carlo Pathwise Sensitivities for Barrier Options with Application to Coco-Bond Calibration

Authors: Thomas Gerstner, Bastian von Harrach, Daniel Roth

Abstract:

The Monte Carlo pathwise sensitivities approach is well established for smooth payoff functions. In this work, we present a new Monte Carlo algorithm that is able to calculate the pathwise sensitivities for discontinuous payoff functions. Our main tool is the one-step survival idea of Glasserman and Staum. Although this technique yields to new terms per observation, while differentiating, the algorithm is still efficient. As an application, we use the results for a two-dimensional calibration of a Coco-Bond, which we model with different types of discretely monitored barrier options.

Keywords: Monte Carlo, discretely monitored barrier options, pathwise sensitivities, Coco-Bond

Procedia PDF Downloads 359
4537 Paddy/Rice Singulation for Determination of Husking Efficiency and Damage Using Machine Vision

Authors: M. Shaker, S. Minaei, M. H. Khoshtaghaza, A. Banakar, A. Jafari

Abstract:

In this study a system of machine vision and singulation was developed to separate paddy from rice and determine paddy husking and rice breakage percentages. The machine vision system consists of three main components including an imaging chamber, a digital camera, a computer equipped with image processing software. The singulation device consists of a kernel holding surface, a motor with vacuum fan, and a dimmer. For separation of paddy from rice (in the image), it was necessary to set a threshold. Therefore, some images of paddy and rice were sampled and the RGB values of the images were extracted using MATLAB software. Then mean and standard deviation of the data were determined. An Image processing algorithm was developed using MATLAB to determine paddy/rice separation and rice breakage and paddy husking percentages, using blue to red ratio. Tests showed that, a threshold of 0.75 is suitable for separating paddy from rice kernels. Results from the evaluation of the image processing algorithm showed that the accuracies obtained with the algorithm were 98.36% and 91.81% for paddy husking and rice breakage percentage, respectively. Analysis also showed that a suction of 45 mmHg to 50 mmHg yielding 81.3% separation efficiency is appropriate for operation of the kernel singulation system.

Keywords: breakage, computer vision, husking, rice kernel

Procedia PDF Downloads 383
4536 Parallel Gripper Modelling and Design Optimization Using Multi-Objective Grey Wolf Optimizer

Authors: Golak Bihari Mahanta, Bibhuti Bhusan Biswal, B. B. V. L. Deepak, Amruta Rout, Gunji Balamurali

Abstract:

Robots are widely used in the manufacturing industry for rapid production with higher accuracy and precision. With the help of End-of-Arm Tools (EOATs), robots are interacting with the environment. Robotic grippers are such EOATs which help to grasp the object in an automation system for improving the efficiency. As the robotic gripper directly influence the quality of the product due to the contact between the gripper surface and the object to be grasped, it is necessary to design and optimize the gripper mechanism configuration. In this study, geometric and kinematic modeling of the parallel gripper is proposed. Grey wolf optimizer algorithm is introduced for solving the proposed multiobjective gripper optimization problem. Two objective functions developed from the geometric and kinematic modeling along with several nonlinear constraints of the proposed gripper mechanism is used to optimize the design variables of the systems. Finally, the proposed methodology compared with a previously proposed method such as Teaching Learning Based Optimization (TLBO) algorithm, NSGA II, MODE and it was seen that the proposed method is more efficient compared to the earlier proposed methodology.

Keywords: gripper optimization, metaheuristics, , teaching learning based algorithm, multi-objective optimization, optimal gripper design

Procedia PDF Downloads 188
4535 Understanding the Prevalence and Expression of Virulence Factors Harbored by Enterotoxigenic Escherichia Coli

Authors: Debjyoti Bhakat, Indranil Mondal, Asish K. Mukhopadayay, Nabendu S. Chatterjee

Abstract:

Enterotoxigenic Escherichia coli is one of the leading causes of diarrhea in infants and travelers in developing countries. Colonization factors play an important role in pathogenesis and are one of the main targets for Enterotoxigenic Escherichia coli (ETEC) vaccine development. However, ETEC vaccines had poorly performed in the past, as the prevalence of colonization factors is region-dependent. There are more than 25 classical colonization factors presently known to be expressed by ETEC, although all are not expressed together. Further, there are other multiple non-classical virulence factors that are also identified. Here the presence and expression of common classical and non-classical virulence factors were studied. Further studies were done on the expression of prevalent colonization factors in different strains. For the prevalence determination, multiplex polymerase chain reaction (PCR) was employed, which was confirmed by simplex PCR. Quantitative RT-PCR was done to study the RNA expression of these virulence factors. Strains negative for colonization factors expression were confirmed by SDS-PAGE. Among the clinical isolates, the most prevalent toxin was est+elt, followed by est and elt, while the pattern was reversed in the control strains. There were 29% and 40% strains negative for any classical colonization factors (CF) or non-classical virulence factors (NCVF) among the clinical and control strains, respectively. Among CF positive ETEC strains, CS6 and CS21 were the prevalent ones in the clinical strains, whereas in control strains, CS6 was the predominant one. For NCVF genes, eatA was the most prevalent among the clinical isolates and etpA for control. CS6 was the most expressed CF, and eatA was the predominantly expressed NCVF for both clinical and controlled ETEC isolates. CS6 expression was more in strains having CS6 alone. Different strains express CS6 at different levels. Not all strains expressed their respective virulence factors. Understanding the prevalent colonization factor, CS6, and its nature of expression will contribute to designing an effective vaccine against ETEC in this region of the globe. The expression pattern of CS6 also will help in examining the relatedness between the ETEC subtypes.

Keywords: classical virulence factors, CS6, diarrhea, enterotoxigenic escherichia coli, expression, non-classical virulence factors

Procedia PDF Downloads 158
4534 An Enhanced Hybrid Backoff Technique for Minimizing the Occurrence of Collision in Mobile Ad Hoc Networks

Authors: N. Sabiyath Fatima, R. K. Shanmugasundaram

Abstract:

In Mobile Ad-hoc Networks (MANETS), every node performs both as transmitter and receiver. The existing backoff models do not exactly forecast the performance of the wireless network. Also, the existing models experience elevated packet collisions. Every time a collision happens, the station’s contention window (CW) is doubled till it arrives at the utmost value. The main objective of this paper is to diminish collision by means of contention window Multiplicative Increase Decrease Backoff (CWMIDB) scheme. The intention of rising CW is to shrink the collision possibility by distributing the traffic into an outsized point in time. Within wireless Ad hoc networks, the CWMIDB algorithm dynamically controls the contention window of the nodes experiencing collisions. During packet communication, the backoff counter is evenly selected from the given choice of [0, CW-1]. At this point, CW is recognized as contention window and its significance lies on the amount of unsuccessful transmission that had happened for the packet. On the initial transmission endeavour, CW is put to least amount value (C min), if transmission effort fails, subsequently the value gets doubled, and once more the value is set to least amount on victorious broadcast. CWMIDB is simulated inside NS2 environment and its performance is compared with Binary Exponential Backoff Algorithm. The simulation results show improvement in transmission probability compared to that of the existing backoff algorithm.

Keywords: backoff, contention window, CWMIDB, MANET

Procedia PDF Downloads 280
4533 Writing a Parametric Design Algorithm Based on Recreation and Structural Analysis of Patkane Model: The Case Study of Oshtorjan Mosque

Authors: Behnoush Moghiminia, Jesus Anaya Diaz

Abstract:

The current study attempts to present the relationship between the structure development and Patkaneh as one of the Iranian geometric patterns and parametric algorithms by introducing two practical methods. While having a structural function, Patkaneh is also used as an ornamental element. It can be helpful in the scientific and practical review of Patkaneh. The current study aims to use Patkaneh as a parametric form generator based on the algorithm. The current paper attempts to express how can a more complete algorithm of this covering be obtained based on the parametric study and analysis of a sample of a Patkaneh and also investigate the relationship between the development of the geometrical pattern of Patkaneh as a structural-decorative element of Iranian architecture and digital design. In this regard, to achieve the research purposes, researchers investigated the oldest type of Patkaneh in the architecture history of Iran, such as the Northern Entrance Patkaneh of Oshtorjan Jame’ Mosque. An accurate investigation was done on the history of the background to answer the questions. Then, by investigating the structural behavior of Patkaneh, the decorative or structural-decorative role of Patkaneh was investigated to eliminate the ambiguity. Then, the geometrical structure of Patkaneh was analyzed by introducing two practical methods. The first method is based on the constituent units of Patkaneh (Square and diamond) and investigating the interactive relationships between them in 2D and 3D. This method is appropriate for cases where there are rational and regular geometrical relationships. The second method is based on the separation of the floors and the investigation of their interrelation. It is practical when the constituent units are not geometrically regular and have numerous diversity. Finally, the parametric form algorithm of these methods was codified.

Keywords: geometric properties, parametric design, Patkaneh, structural analysis

Procedia PDF Downloads 153
4532 Insider Theft Detection in Organizations Using Keylogger and Machine Learning

Authors: Shamatha Shetty, Sakshi Dhabadi, Prerana M., Indushree B.

Abstract:

About 66% of firms claim that insider attacks are more likely to happen. The frequency of insider incidents has increased by 47% in the last two years. The goal of this work is to prevent dangerous employee behavior by using keyloggers and the Machine Learning (ML) model. Every keystroke that the user enters is recorded by the keylogging program, also known as keystroke logging. Keyloggers are used to stop improper use of the system. This enables us to collect all textual data, save it in a CSV file, and analyze it using an ML algorithm and the VirusTotal API. Many large companies use it to methodically monitor how their employees use computers, the internet, and email. We are utilizing the SVM algorithm and the VirusTotal API to improve overall efficiency and accuracy in identifying specific patterns and words to automate and offer the report for improved monitoring.

Keywords: cyber security, machine learning, cyclic process, email notification

Procedia PDF Downloads 58
4531 A Comparison of the Adsorption Mechanism of Arsenic on Iron-Modified Nanoclays

Authors: Michael Leo L. Dela Cruz, Khryslyn G. Arano, Eden May B. Dela Pena, Leslie Joy Diaz

Abstract:

Arsenic adsorbents were continuously being researched to ease the detrimental impact of arsenic to human health. A comparative study on the adsorption mechanism of arsenic on iron modified nanoclays was undertaken. Iron intercalated montmorillonite (Fe-MMT) and montmorillonite supported zero-valent iron (ZVI-MMT) were the adsorbents investigated in this study. Fe-MMT was produced through ion-exchange by replacing the sodium intercalated ions in montmorillonite with iron (III) ions. The iron (III) in Fe-MMT was later reduced to zero valent iron producing ZVI-MMT. Adsorption study was performed by batch technique. Obtained data were fitted to intra-particle diffusion, pseudo-first order, and pseudo-second-order models and the Elovich equation to determine the kinetics of adsorption. The adsorption of arsenic on Fe-MMT followed the intra-particle diffusion model with intra-particle rate constant of 0.27 mg/g-min0.5. Arsenic was found to be chemically bound on ZVI-MMT as suggested by the pseudo-second order and Elovich equation. The derived pseudo-second order rate constant was 0.0027 g/mg-min with initial adsorption rate computed from the Elovich equation was 113 mg/g-min.

Keywords: adsorption mechanism, arsenic, montmorillonite, zero valent iron

Procedia PDF Downloads 415
4530 Covid Medical Imaging Trial: Utilising Artificial Intelligence to Identify Changes on Chest X-Ray of COVID

Authors: Leonard Tiong, Sonit Singh, Kevin Ho Shon, Sarah Lewis

Abstract:

Investigation into the use of artificial intelligence in radiology continues to develop at a rapid rate. During the coronavirus pandemic, the combination of an exponential increase in chest x-rays and unpredictable staff shortages resulted in a huge strain on the department's workload. There is a World Health Organisation estimate that two-thirds of the global population does not have access to diagnostic radiology. Therefore, there could be demand for a program that could detect acute changes in imaging compatible with infection to assist with screening. We generated a conventional neural network and tested its efficacy in recognizing changes compatible with coronavirus infection. Following ethics approval, a deidentified set of 77 normal and 77 abnormal chest x-rays in patients with confirmed coronavirus infection were used to generate an algorithm that could train, validate and then test itself. DICOM and PNG image formats were selected due to their lossless file format. The model was trained with 100 images (50 positive, 50 negative), validated against 28 samples (14 positive, 14 negative), and tested against 26 samples (13 positive, 13 negative). The initial training of the model involved training a conventional neural network in what constituted a normal study and changes on the x-rays compatible with coronavirus infection. The weightings were then modified, and the model was executed again. The training samples were in batch sizes of 8 and underwent 25 epochs of training. The results trended towards an 85.71% true positive/true negative detection rate and an area under the curve trending towards 0.95, indicating approximately 95% accuracy in detecting changes on chest X-rays compatible with coronavirus infection. Study limitations include access to only a small dataset and no specificity in the diagnosis. Following a discussion with our programmer, there are areas where modifications in the weighting of the algorithm can be made in order to improve the detection rates. Given the high detection rate of the program, and the potential ease of implementation, this would be effective in assisting staff that is not trained in radiology in detecting otherwise subtle changes that might not be appreciated on imaging. Limitations include the lack of a differential diagnosis and application of the appropriate clinical history, although this may be less of a problem in day-to-day clinical practice. It is nonetheless our belief that implementing this program and widening its scope to detecting multiple pathologies such as lung masses will greatly assist both the radiology department and our colleagues in increasing workflow and detection rate.

Keywords: artificial intelligence, COVID, neural network, machine learning

Procedia PDF Downloads 94
4529 An Automatic Method for Building Learners’ Groups in Virtual Environment

Authors: O. Bourkoukou, Essaid El Bachari

Abstract:

The group composing is one of the key issue in collaborative learning to achieve a positive educational experience. The goal of this work is to propose for teachers and tutors a method to create effective collaborative learning groups in e-learning environment based on the learner profile. For this purpose, a new function was defined to rate implicitly learning objects used by the learner during his learning experience. This paper describes the proposed algorithm to build an adequate collaborative learning group. In order to verify the performance of the proposed algorithm, several experiments were conducted in real data set in virtual environment. Results show the effectiveness of the method for which it appears that the proposed approach may be promising to produce better outcomes.

Keywords: building groups, collaborative learning, e-learning, learning objects

Procedia PDF Downloads 299
4528 Effect of Rice Husk Ash on Properties of Cold Bituminous Emulsion Mix

Authors: Sampada Katekar, Namdeo Hedaoo

Abstract:

Cold Bituminous Emulsion Mixtures (CBEMs) are generally produced by mixing unheated aggregate, binder and filler at ambient temperature. Cold bituminous emulsion mixtures have several environmental and cost-effective benefits. But CBEMs offer poor early life properties too and they require long curing time to achieve maximum strength. The main focus of this study is to overcome inferiority of CBEMs by incorporating Rice Husk Ash (RHA) and Ordinary Portland Cement (OPC). In this study, RHA and OPC are substituted for conventional mineral filler in an increased percentage from 0 to 3% with an increment of 1%. Marshall stability, retained stability and tensile strength tests were conducted to evaluate the enhancement in performance of CBEMs. The experimental results have shown that Marshall stability and tensile strength of CBEMs increased significantly by replacing the conventional mineral filler with RHA and OPC. The addition of RHA and OPC in CBEMs result in a reduction in moisture induced damages. However, stability and tensile strength values of RHA modified CBEMs are higher than that of OPC modified CBEMs.

Keywords: cold bituminous emulsion mixtures, Marshall stability test, ordinary Portland cement, rice husk ash

Procedia PDF Downloads 168
4527 Artificial Bee Colony Optimization for SNR Maximization through Relay Selection in Underlay Cognitive Radio Networks

Authors: Babar Sultan, Kiran Sultan, Waseem Khan, Ijaz Mansoor Qureshi

Abstract:

In this paper, a novel idea for the performance enhancement of secondary network is proposed for Underlay Cognitive Radio Networks (CRNs). In Underlay CRNs, primary users (PUs) impose strict interference constraints on the secondary users (SUs). The proposed scheme is based on Artificial Bee Colony (ABC) optimization for relay selection and power allocation to handle the highlighted primary challenge of Underlay CRNs. ABC is a simple, population-based optimization algorithm which attains global optimum solution by combining local search methods (Employed and Onlooker Bees) and global search methods (Scout Bees). The proposed two-phase relay selection and power allocation algorithm aims to maximize the signal-to-noise ratio (SNR) at the destination while operating in an underlying mode. The proposed algorithm has less computational complexity and its performance is verified through simulation results for a different number of potential relays, different interference threshold levels and different transmit power thresholds for the selected relays.

Keywords: artificial bee colony, underlay spectrum sharing, cognitive radio networks, amplify-and-forward

Procedia PDF Downloads 583
4526 Effect of Modified Layered Silicate Nanoclay on the Dynamic Viscoelastic Properties of Thermoplastic Polymers Nanocomposites

Authors: Benalia Kouini, Aicha Serier

Abstract:

This work aims to investigate the structure–property relationship in ternary nanocomposites consisting of polypropylene as the matrix, polyamide 66 as the minor phase and treated nanoclay DELLITE 67G as the reinforcement. All PP/PA66/Nanoclay systems with polypropylene grafted maleic anhydride PP-g-MAH as a compatibilizer were prepared via melt compounding and characterized in terms of nanoclay content. Morphological structure was investigated by scanning electron microscopy. The rheological behavior of the nanocomposites was determined by various methods, viz melt flow index (MFI) and parallel plate rheological measurements. The PP/PP-g-MAH/PA66 nanocomposites showed a homogeneous morphology supporting the compatibility improvement between PP, PA66 and nanoclay. SEM results revealed the formation of nanocomposites as the nanoclay was intercalated and exfoliated. In the ternary nanocomposites, the rheological behavior showed that, the complex viscosity is increased with increasing the nanoclay content; however, at low frequencies this increase is governed by the content of nanofiller while at high frequencies it is mainly determined by talc content. A similar trend was also observed for the variations of storage modulus (G′) and loss modulus (G″) with frequency. The results showed that the use of nanoclay considerably affects the melt elasticity.

Keywords: nanocomposites, polypropylene, polyamide66, modified nanoclay, rheology

Procedia PDF Downloads 386
4525 Existence and Stability of Periodic Traveling Waves in a Bistable Excitable System

Authors: M. Osman Gani, M. Ferdows, Toshiyuki Ogawa

Abstract:

In this work, we proposed a modified FHN-type reaction-diffusion system for a bistable excitable system by adding a scaled function obtained from a given function. We study the existence and the stability of the periodic traveling waves (or wavetrains) for the FitzHugh-Nagumo (FHN) system and the modified one and compare the results. The stability results of the periodic traveling waves (PTWs) indicate that most of the solutions in the fast family of the PTWs are stable for the FitzHugh-Nagumo equations. The instability occurs only in the waves having smaller periods. However, the smaller period waves are always unstable. The fast family with sufficiently large periods is always stable in FHN model. We find that the oscillation of pulse widths is absent in the standard FHN model. That motivates us to study the PTWs in the proposed FHN-type reaction-diffusion system for the bistable excitable media. A good agreement is found between the solutions of the traveling wave ODEs and the corresponding whole PDE simulation.

Keywords: bistable system, Eckhaus bifurcation, excitable media, FitzHugh-Nagumo model, periodic traveling waves

Procedia PDF Downloads 187
4524 Relevance Feedback within CBIR Systems

Authors: Mawloud Mosbah, Bachir Boucheham

Abstract:

We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-Nearest Neighbours Algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing colour moments on the RGB space. This compact descriptor, Colour Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.

Keywords: CBIR, category search, relevance feedback, query point movement, standard Rocchio’s formula, adaptive shifting query, feature weighting, original KNN, incremental KNN

Procedia PDF Downloads 282
4523 Applying the Crystal Model Approach on Light Nuclei for Calculating Radii and Density Distribution

Authors: A. Amar

Abstract:

A new model, namely the crystal model, has been modified to calculate the radius and density distribution of light nuclei up to ⁸Be. The crystal model has been modified according to solid-state physics, which uses the analogy between nucleon distribution and atoms distribution in the crystal. The model has analytical analysis to calculate the radius where the density distribution of light nuclei has obtained from analogy of crystal lattice. The distribution of nucleons over crystal has been discussed in a general form. The equation that has been used to calculate binding energy was taken from the solid-state model of repulsive and attractive force. The numbers of the protons were taken to control repulsive force, where the atomic number was responsible for the attractive force. The parameter has been calculated from the crystal model was found to be proportional to the radius of the nucleus. The density distribution of light nuclei was taken as a summation of two clusters distribution as in ⁶Li=alpha+deuteron configuration. A test has been done on the data obtained for radius and density distribution using double folding for d+⁶,⁷Li with M3Y nucleon-nucleon interaction. Good agreement has been obtained for both the radius and density distribution of light nuclei. The model failed to calculate the radius of ⁹Be, so modifications should be done to overcome discrepancy.

Keywords: nuclear physics, nuclear lattice, study nucleus as crystal, light nuclei till to ⁸Be

Procedia PDF Downloads 177
4522 Diamond-Like Carbon-Based Structures as Functional Layers on Shape-Memory Alloy for Orthopedic Applications

Authors: Piotr Jablonski, Krzysztof Mars, Wiktor Niemiec, Agnieszka Kyziol, Marek Hebda, Halina Krawiec, Karol Kyziol

Abstract:

NiTi alloys, possessing unique mechanical properties such as pseudoelasticity and shape memory effect (SME), are suitable for many applications, including implanthology and biomedical devices. Additionally, these alloys have similar values of elastic modulus to those of human bones, what is very important in orthopedics. Unfortunately, the environment of physiological fluids in vivo causes unfavorable release of Ni ions, which in turn may lead to metalosis as well as allergic reactions and toxic effects in the body. For these reasons, the surface properties of NiTi alloys should be improved to increase corrosion resistance, taking into account biological properties, i.e. excellent biocompatibility. The prospective in this respect are layers based on DLC (Diamond-Like Carbon) structures, which are an attractive solution for many applications in implanthology. These coatings (DLC), usually obtained by PVD (Physical Vapour Deposition) and PA CVD (Plasma Activated Chemical Vapour Deposition) methods, can be also modified by doping with other elements like silicon, nitrogen, oxygen, fluorine, titanium and silver. These methods, in combination with a suitably designed structure of the layers, allow the possibility co-decide about physicochemical and biological properties of modified surfaces. Mentioned techniques provide specific physicochemical properties of substrates surface in a single technological process. In this work, the following types of layers based on DLC structures (incl. Si-DLC or Si/N-DLC) were proposed as prospective and attractive approach in surface functionalization of shape memory alloy. Nitinol substrates were modified in plasma conditions, using RF CVD (Radio Frequency Chemical Vapour Deposition). The influence of plasma treatment on the useful properties of modified substrates after deposition DLC layers doped with silica and/or nitrogen atoms, as well as only pre-treated in O2 NH3 plasma atmosphere in a RF reactor was determined. The microstructure and topography of the modified surfaces were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Furthermore, the atomic structure of coatings was characterized by IR and Raman spectroscopy. The research also included the evaluation of surface wettability, surface energy as well as the characteristics of selected mechanical and biological properties of the layers. In addition, the corrosion properties of alloys after and before modification in the physiological saline were also investigated. In order to determine the corrosion resistance of NiTi in the Ringer solution, the potentiodynamic polarization curves (LSV – Linear Sweep Voltamperometry) were plotted. Furthermore, the evolution of corrosion potential versus immersion time of TiNi alloy in Ringer solution was performed. Based on all carried out research, the usefullness of proposed modifications of nitinol for medical applications was assessed. It was shown, inter alia, that the obtained Si-DLC layers on the surface of NiTi alloy exhibit a characteristic complex microstructure, increased surface development, which is an important aspect in improving the osteointegration of an implant. Furthermore, the modified alloy exhibits biocompatibility, the transfer of the metal (Ni, Ti) to Ringer’s solution is clearly limited.

Keywords: bioactive coatings, corrosion resistance, doped DLC structure, NiTi alloy, RF CVD

Procedia PDF Downloads 237
4521 Normalizing Scientometric Indicators of Individual Publications Using Local Cluster Detection Methods on Citation Networks

Authors: Levente Varga, Dávid Deritei, Mária Ercsey-Ravasz, Răzvan Florian, Zsolt I. Lázár, István Papp, Ferenc Járai-Szabó

Abstract:

One of the major shortcomings of widely used scientometric indicators is that different disciplines cannot be compared with each other. The issue of cross-disciplinary normalization has been long discussed, but even the classification of publications into scientific domains poses problems. Structural properties of citation networks offer new possibilities, however, the large size and constant growth of these networks asks for precaution. Here we present a new tool that in order to perform cross-field normalization of scientometric indicators of individual publications relays on the structural properties of citation networks. Due to the large size of the networks, a systematic procedure for identifying scientific domains based on a local community detection algorithm is proposed. The algorithm is tested with different benchmark and real-world networks. Then, by the use of this algorithm, the mechanism of the scientometric indicator normalization process is shown for a few indicators like the citation number, P-index and a local version of the PageRank indicator. The fat-tail trend of the article indicator distribution enables us to successfully perform the indicator normalization process.

Keywords: citation networks, cross-field normalization, local cluster detection, scientometric indicators

Procedia PDF Downloads 205
4520 Novel GPU Approach in Predicting the Directional Trend of the S&P500

Authors: A. J. Regan, F. J. Lidgey, M. Betteridge, P. Georgiou, C. Toumazou, K. Hayatleh, J. R. Dibble

Abstract:

Our goal is development of an algorithm capable of predicting the directional trend of the Standard and Poor’s 500 index (S&P 500). Extensive research has been published attempting to predict different financial markets using historical data testing on an in-sample and trend basis, with many authors employing excessively complex mathematical techniques. In reviewing and evaluating these in-sample methodologies, it became evident that this approach was unable to achieve sufficiently reliable prediction performance for commercial exploitation. For these reasons, we moved to an out-of-sample strategy based on linear regression analysis of an extensive set of financial data correlated with historical closing prices of the S&P 500. We are pleased to report a directional trend accuracy of greater than 55% for tomorrow (t+1) in predicting the S&P 500.

Keywords: financial algorithm, GPU, S&P 500, stock market prediction

Procedia PDF Downloads 350
4519 Phasor Measurement Unit Based on Particle Filtering

Authors: Rithvik Reddy Adapa, Xin Wang

Abstract:

Phasor Measurement Units (PMUs) are very sophisticated measuring devices that find amplitude, phase and frequency of various voltages and currents in a power system. Particle filter is a state estimation technique that uses Bayesian inference. Particle filters are widely used in pose estimation and indoor navigation and are very reliable. This paper studies and compares four different particle filters as PMUs namely, generic particle filter (GPF), genetic algorithm particle filter (GAPF), particle swarm optimization particle filter (PSOPF) and adaptive particle filter (APF). Two different test signals are used to test the performance of the filters in terms of responsiveness and correctness of the estimates.

Keywords: phasor measurement unit, particle filter, genetic algorithm, particle swarm optimisation, state estimation

Procedia PDF Downloads 12
4518 Transmit Power Optimization for Cooperative Beamforming in Reverse-Link MIMO Ad-Hoc Networks

Authors: Younghyun Jeon, Seungjoo Maeng

Abstract:

In the Ad-hoc network, the great interests regarding MIMO scheme leads to their combination, which is also utilized into its applicable network. We manage the field of the problem into Reverse-link MIMO Ad-hoc Network (RMAN) and propose the methodology to maximize the data rate with its power consumption using Node-Cooperative beamforming technique. Based on the result of mathematical optimization formulation, we design the algorithm to construct optimal orthogonal weight vector according to channel feedback and control its transmission power according to QoS-pricing value level. In simulation results, we show the validity of the proposed mathematical optimization result and algorithm which mean that the sum-rate of each link is converged into some point.

Keywords: ad-hoc network, MIMO, cooperative beamforming, transmit power

Procedia PDF Downloads 399
4517 Preparation Nanocapsules of Chitosan Modified With Selenium Extracted From the Lactobacillus Acidophilus and Their Anticancer Properties

Authors: Akbar Esmaeili, Mahnoosh Aliahmadi

Abstract:

This study synthesized a modified imaging of gallium@deferoxamine/folic acid/chitosan/polyaniline/polyvinyl alcohol (Ga@DFA/FA/CS/PANI/PVA). It contains Morus nigra extract by selenium nanoparticles prepared from Lactobacillus acidophilus. Using the impregnation method, Se nanoparticles were then deposited on (Ga@DFA/FA/ CS/PANI/PVA). The modified contrast agents were mixed with M. nigra extract, and investigated their antibacterial activities by applying to L929 cell lines. The influence of variable factors, including 1. surfactant, 2. solvent, 3. aqueous phase, 4. pH, 5. buffer, 6. minimum Inhibitory concentration (MIC), 7. minimum bactericidal concentration (MBC), 8. cytotoxicity on cancer cells., 9. antibiotic, 10. antibiogram, 11. release and loading, 12. the emotional effect, 13. the concentration of nanoparticles, 14. olive oil, and 15. they have investigated thermotical methods. The structure and morphology of the synthesized contrast agents were characterized by zeta potential sizer analysis (ZPS), X-Ray diffraction (XRD), Fourier-transform infrared (FT-IR), energy dispersive X-ray (EDX), ultraviolet–visible (UV–Vis) spectra, and scanning electron microscope (SEM). The experimental section was conducted and monitored by response surface methods (RSM), MTT, MIC, MBC, and cancer cytotoxic conversion assay. Antibiogram testing of NCs on Pseudomonas aeruginosa bacteria was successful and obtained MIC = 2 factors with less harmful effect. All experimental sections confirmed that our synthesized particles have potent antioxidant properties. Antibiogram testing revealed that NPS could kill P. aeruginosa and P. aeruginosa. A variety of synthetic conditions were done by diffusion emulsion method by varying parameters, the optimum state of DFA release Ga@DFA/FA/CS/PANI/PVA NPs (6 ml) with pH = 5.5, time = 3 h, NCs and DFA (3 mg), and achieved buffer (20 ml). DFA in Ga@DFA/FA/ CS/PANI/PVA was released and showed an absorption peak at 378 nm by applying a 300-rpm magnetic rate. In this report, Ga decreased the harmful effect on the human body.

Keywords: nanocapsules, technolgy, biology, nano

Procedia PDF Downloads 41
4516 The Batch Method Approach for Adsorption Mechanism Processes of Some Selected Heavy Metal Ions and Methylene Blue by Using Chemically Modified Luffa Cylindrica

Authors: Akanimo Emene, Mark D. Ogden, Robert Edyvean

Abstract:

Adsorption is a low cost, efficient and economically viable wastewater treatment process. Utilization of this treatment process has not been fully applied due to the complex and not fully understood nature of the adsorption system. To optimize its process is to choose a sufficient adsorbent and to study further the experimental parameters that influence the adsorption design system. Chemically modified adsorbent, Luffa cylindrica, was used to adsorb heavy metal ions and an organic pollutant, methylene blue, from aqueous environmental solution at varying experimental conditions. Experimental factors, adsorption time, initial metal ion or organic pollutant concentration, ionic strength, and pH of solution were studied. The experimental data were analyzed with kinetic and isotherm models. The antagonistic effect of the methylene and some heavy metal ions were recorded. An understanding of the use of this treated Luffa cylindrica for the removal of these toxic substances will establish and improve the commercial application of the adsorption process in treatment of contaminated waters.

Keywords: adsorption, heavy metal ions, Luffa cylindrica, wastewater treatment

Procedia PDF Downloads 199
4515 Distributed Optical Fiber Vibration Sensing Using Phase Generated Carrier Demodulation Algorithm

Authors: Zhihua Yu, Qi Zhang, Mingyu Zhang, Haolong Dai

Abstract:

Distributed fiber-optic vibration sensors are gaining extensive attention, for the advantages of high sensitivity, accurate location, light weight, large-scale monitoring, good concealment, and etc. In this paper, a novel optical fiber distributed vibration sensing system is proposed, which is based on self-interference of Rayleigh backscattering with phase generated carrier (PGC) demodulation algorithm. Pulsed lights are sent into the sensing fiber and the Rayleigh backscattering light from a certain position along the sensing fiber would interfere through an unbalanced Michelson Interferometry (MI) to generate the interference light. An improved PGC demodulation algorithm is carried out to recover the phase information of the interference signal, which carries the sensing information. Three vibration events were applied simultaneously to different positions over 2000m sensing fiber and demodulated correctly. Experiments show that the spatial resolution of is 10 m, and the noise level of the Φ-OTDR system is about 10-3 rad/√Hz, and the signal to noise ratio (SNR) is about 30.34dB. This vibration measurement scheme can be applied at surface, seabed or downhole for vibration measurements or distributed acoustic sensing (DAS).

Keywords: fiber optics sensors, Michelson interferometry, MI, phase-sensitive optical time domain reflectometry, Φ-OTDR, phase generated carrier, PGC

Procedia PDF Downloads 190