Search results for: machine learning tools and techniques
15550 IP Management Tools, Strategies, Best Practices, and Business Models for Pharmaceutical Products
Authors: Nerella Srinivas
Abstract:
This study investigates the role of intellectual property (IP) management in pharmaceutical development, focusing on tools, strategies, and business models for leveraging IP effectively. Using a mixed-methods approach, we conducted case studies and qualitative analyses of IP management frameworks within the pharmaceutical sector. Our methodology included a review of IP tools tailored for pharmaceutical applications, strategic IP models for maximizing competitive advantages, and best practices for organizational efficiency. Findings emphasize the importance of understanding IP law and adopting adaptive strategies, illustrating how IP management can drive industry growth.Keywords: intellectual property management, pharmaceutical products, IP tools, IP strategies, best practices, business models, innovation
Procedia PDF Downloads 1415549 Applying Multiplicative Weight Update to Skin Cancer Classifiers
Authors: Animish Jain
Abstract:
This study deals with using Multiplicative Weight Update within artificial intelligence and machine learning to create models that can diagnose skin cancer using microscopic images of cancer samples. In this study, the multiplicative weight update method is used to take the predictions of multiple models to try and acquire more accurate results. Logistic Regression, Convolutional Neural Network (CNN), and Support Vector Machine Classifier (SVMC) models are employed within the Multiplicative Weight Update system. These models are trained on pictures of skin cancer from the ISIC-Archive, to look for patterns to label unseen scans as either benign or malignant. These models are utilized in a multiplicative weight update algorithm which takes into account the precision and accuracy of each model through each successive guess to apply weights to their guess. These guesses and weights are then analyzed together to try and obtain the correct predictions. The research hypothesis for this study stated that there would be a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The SVMC model had an accuracy of 77.88%. The CNN model had an accuracy of 85.30%. The Logistic Regression model had an accuracy of 79.09%. Using Multiplicative Weight Update, the algorithm received an accuracy of 72.27%. The final conclusion that was drawn was that there was a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The conclusion was made that using a CNN model would be the best option for this problem rather than a Multiplicative Weight Update system. This is due to the possibility that Multiplicative Weight Update is not effective in a binary setting where there are only two possible classifications. In a categorical setting with multiple classes and groupings, a Multiplicative Weight Update system might become more proficient as it takes into account the strengths of multiple different models to classify images into multiple categories rather than only two categories, as shown in this study. This experimentation and computer science project can help to create better algorithms and models for the future of artificial intelligence in the medical imaging field.Keywords: artificial intelligence, machine learning, multiplicative weight update, skin cancer
Procedia PDF Downloads 7915548 The Impact of Project-Based Learning under Representative Minorities Students
Authors: Shwadhin Sharma
Abstract:
As there has been increasing focus on the shorter attention span of the millennials students, there is a relative absence of instructional tools on behavioral assessments in learning information technology skills within the information systems field and textbooks. This study uses project-based learning in which students gain knowledge and skills related to information technology by working on an extended project that allows students to find a real business problem design information systems based on information collected from the company and develop an information system that solves the problem of the company. Eighty students from two sections of the same course engage in the project from the first week of the class till the sixteenth week of the class to deliver a small business information system that allows them to employ all the skills and knowledge that they learned in the class into the systems they are creating. Computer Information Systems related courses are often difficult to understand and process especially for the Under Representative Minorities students who have limited computer or information systems related (academic) experiences. Project-based learning demands constant attention of the students and forces them to apply knowledge learned in the class to a project that helps retaining knowledge. To make sure our assumption is correct, we started with a pre-test and post-test to test the students learning (of skills) based on the project. Our test showed that almost 90% of the students from the two sections scored higher in post-test as compared to pre-test. Based on this premise, we conducted a further survey that measured student’s job-search preparation, knowledge of data analysis, involved with the course, satisfaction with the course, student’s overall reaction the course and students' ability to meet the traditional learning goals related to the course.Keywords: project-based learning, job-search preparation, satisfaction with course, traditional learning goals
Procedia PDF Downloads 20615547 Evaluating the Effectiveness of Electronic Response Systems in Technology-Oriented Classes
Authors: Ahmad Salman
Abstract:
Electronic Response Systems such as Kahoot, Poll Everywhere, and Google Classroom are gaining a lot of popularity when surveying audiences in events, meetings, and classroom. The reason is mainly because of the ease of use and the convenience these tools bring since they provide mobile applications with a simple user interface. In this paper, we present a case study on the effectiveness of using Electronic Response Systems on student participation and learning experience in a classroom. We use a polling application for class exercises in two different technology-oriented classes. We evaluate the effectiveness of the usage of the polling applications through statistical analysis of the students performance in these two classes and compare them to the performances of students who took the same classes without using the polling application for class participation. Our results show an increase in the performances of the students who used the Electronic Response System when compared to those who did not by an average of 11%.Keywords: Interactive Learning, Classroom Technology, Electronic Response Systems, Polling Applications, Learning Evaluation
Procedia PDF Downloads 12915546 Effects of the Mathcing between Learning and Teaching Styles on Learning with Happiness of College Students
Authors: Tasanee Satthapong
Abstract:
The purpose of the study was to determine the relationship between learning style preferences, teaching style preferences, and learning with happiness of college students who were majors in five different academic areas at the Suansunandha Rajabhat University in Thailand. The selected participants were 729 students 1st year-5th year in Faculty of Education from Thai teaching, early childhood education, math and science teaching, and English teaching majors. The research instruments are the Grasha and Riechmann learning and teaching styles survey and the students’ happiness in learning survey, based on learning with happiness theory initiated by the Office of the National Education Commission. The results of this study: 1) The most students’ learning styles were participant style, followed by collaborative style, and independent style 2) Most students’ happiness in learning in all subjects areas were at the moderate level: Early Childhood Education subject had the highest scores, while Math subject was at the least scores. 3) No different of student’s happiness in learning were found between students who has learning styles that match and not match to teachers’ teaching styles.Keywords: learning style, teaching style, learning with happiness
Procedia PDF Downloads 69115545 On Exploring Search Heuristics for improving the efficiency in Web Information Extraction
Authors: Patricia Jiménez, Rafael Corchuelo
Abstract:
Nowadays the World Wide Web is the most popular source of information that relies on billions of on-line documents. Web mining is used to crawl through these documents, collect the information of interest and process it by applying data mining tools in order to use the gathered information in the best interest of a business, what enables companies to promote theirs. Unfortunately, it is not easy to extract the information a web site provides automatically when it lacks an API that allows to transform the user-friendly data provided in web documents into a structured format that is machine-readable. Rule-based information extractors are the tools intended to extract the information of interest automatically and offer it in a structured format that allow mining tools to process it. However, the performance of an information extractor strongly depends on the search heuristic employed since bad choices regarding how to learn a rule may easily result in loss of effectiveness and/or efficiency. Improving search heuristics regarding efficiency is of uttermost importance in the field of Web Information Extraction since typical datasets are very large. In this paper, we employ an information extractor based on a classical top-down algorithm that uses the so-called Information Gain heuristic introduced by Quinlan and Cameron-Jones. Unfortunately, the Information Gain relies on some well-known problems so we analyse an intuitive alternative, Termini, that is clearly more efficient; we also analyse other proposals in the literature and conclude that none of them outperforms the previous alternative.Keywords: information extraction, search heuristics, semi-structured documents, web mining.
Procedia PDF Downloads 33515544 Importance of Knowledge in the Interdisciplinary Production Processes of Innovative Medical Tools
Authors: Katarzyna Mleczko
Abstract:
Processes of production of innovative medical tools have interdisciplinary character. They consist of direct and indirect close cooperation of specialists of different scientific branches. The Knowledge they have seems to be important for undertaken design, construction and manufacturing processes. The Knowledge exchange between participants of these processes is therefore crucial for the final result, which are innovative medical products. The paper draws attention to the necessity of feedback from the end user to the designer / manufacturer of medical tools which will allow for more accurate understanding of user needs. The study describes prerequisites of production processes of innovative medical (surgical) tools including participants and category of knowledge resources occurring in these processes. They are the result of research in selected Polish organizations involved in the production of medical instruments and are the basis for further work on the development of knowledge sharing model in interdisciplinary teams geographically dispersed.Keywords: interdisciplinary production processes, knowledge exchange, knowledge sharing, medical tools
Procedia PDF Downloads 44215543 Impact of Social Distancing on the Correlation Between Adults’ Participation in Learning and Acceptance of Technology
Authors: Liu Yi Hui
Abstract:
The COVID-19 pandemic in 2020 has globally affected all aspects of life, with social distancing and quarantine orders causing turmoil and learning in community colleges being temporarily paused. In fact, this is the first time that adult education has faced such a severe challenge. It forces researchers to reflect on the impact of pandemics on adult education and ways to respond. Distance learning appears to be one of the pedagogical tools capable of dealing with interpersonal isolation and social distancing caused by the pandemic. This research aims to examine whether the impact of social distancing during COVID-19 will lead to increased acceptance of technology and, subsequently, an increase in adults ’ willingness to participate in distance learning. The hypothesis that social distancing and the desire to participate in distance learning affects learners’ tendency to accept technology is investigated. Teachers ’ participation in distance education and acceptance of technology are used as adjustment variables with the relationship to “social distancing,” “participation in distance learning,” and “acceptance of technology” of learners. A questionnaire survey was conducted over a period of twelve months for teachers and learners at all community colleges in Taiwan who enrolled in a basic unit course. Community colleges were separated using multi-stage cluster sampling, with their locations being metropolitan, non-urban, south, and east as criteria. Using the G*power software, 660 samples were selected and analyzed. The results show that through appropriate pedagogical strategies or teachers ’ own acceptance of technology, adult learners’ willingness to participate in distance learning could be influenced. A diverse model of participation can be developed, improving adult education institutions’ ability to plan curricula to be flexible to avoid the risk associated with epidemic diseases.Keywords: social distancing, adult learning, community colleges, technology acceptance model
Procedia PDF Downloads 14015542 Strategic Model of Implementing E-Learning Using Funnel Model
Authors: Mohamed Jama Madar, Oso Wilis
Abstract:
E-learning is the application of information technology in the teaching and learning process. This paper presents the Funnel model as a solution for the problems of implementation of e-learning in tertiary education institutions. While existing models such as TAM, theory-based e-learning and pedagogical model have been used over time, they have generally been found to be inadequate because of their tendencies to treat materials development, instructional design, technology, delivery and governance as separate and isolated entities. Yet it is matching components that bring framework of e-learning strategic implementation. The Funnel model enhances all these into one and applies synchronously and asynchronously to e-learning implementation where the only difference is modalities. Such a model for e-learning implementation has been lacking. The proposed Funnel model avoids ad-ad-hoc approach which has made other systems unused or inefficient, and compromised educational quality. Therefore, the proposed Funnel model should help tertiary education institutions adopt and develop effective and efficient e-learning system which meets users’ requirements.Keywords: e-learning, pedagogical, technology, strategy
Procedia PDF Downloads 45215541 Multimedia Design in Tactical Play Learning and Acquisition for Elite Gaelic Football Practitioners
Authors: Michael McMahon
Abstract:
The use of media (video/animation/graphics) has long been used by athletes, coaches, and sports scientists to analyse and improve performance in technical skills and team tactics. Sports educators are increasingly open to the use of technology to support coach and learner development. However, an overreliance is a concern., This paper is part of a larger Ph.D. study looking into these new challenges for Sports Educators. Most notably, how to exploit the deep-learning potential of Digital Media among expert learners, how to instruct sports educators to create effective media content that fosters deep learning, and finally, how to make the process manageable and cost-effective. Central to the study is Richard Mayers Cognitive Theory of Multimedia Learning. Mayers Multimedia Learning Theory proposes twelve principles that shape the design and organization of multimedia presentations to improve learning and reduce cognitive load. For example, the Prior Knowledge principle suggests and highlights different learning outcomes for Novice and Non-Novice learners, respectively. Little research, however, is available to support this principle in modified domains (e.g., sports tactics and strategy). As a foundation for further research, this paper compares and contrasts a range of contemporary multimedia sports coaching content and assesses how they perform as learning tools for Strategic and Tactical Play Acquisition among elite sports practitioners. The stress tests applied are guided by Mayers's twelve Multimedia Learning Principles. The focus is on the elite athletes and whether current coaching digital media content does foster improved sports learning among this cohort. The sport of Gaelic Football was selected as it has high strategic and tactical play content, a wide range of Practitioner skill levels (Novice to Elite), and also a significant volume of Multimedia Coaching Content available for analysis. It is hoped the resulting data will help identify and inform the future instructional content design and delivery for Sports Practitioners and help promote best design practices optimal for different levels of expertise.Keywords: multimedia learning, e-learning, design for learning, ICT
Procedia PDF Downloads 10315540 Status of the Laboratory Tools and Equipment of the Bachelor of Science in Hotel and Restaurant Technology Program of Eastern Visayas State University
Authors: Dale Daniel G. Bodo
Abstract:
This study investigated the status of the Laboratory Tools and Equipment of the BSHRT Program of Eastern Visayas State University, Tacloban City Campus. Descriptive-correlation method was used which Variables include profile age, gender, acquired NC II, competencies in HRT and the status of the laboratory facilities, tools, and equipment of the BSHRT program. The study also identified significant correlation between the profile of the respondents and the implementation of the BSHRT Program in terms of laboratory tools and equipment. A self-structured survey questionnaire was used to gather relevant data among eighty-seven (87) BSHRT-OJT students. To test the correlations of variables, Pearson Product Moment Coefficient Correlation or Pearson r was used. As a result, the study revealed very interesting results and various significant correlations among the paired variables and as to the implementation of the BSHRT Program. Hence, this study was done to update the status of laboratory tools and equipment of the program.Keywords: status, BSHRT Program, laboratory tools and equipment, descriptive-correlation
Procedia PDF Downloads 18715539 Internal Assessment of Satisfaction with the Quality of the Learning Process
Authors: Bulatbayeva A. A., Maxutova I. O., Ergalieva A. N.
Abstract:
This article presents a study of the practice of self-assessment of the quality of training cadets in a military higher specialized educational institution. The research was carried out by means of a questionnaire survey aimed at identifying the degree of satisfaction of cadets with the organization of the educational process, quality of teaching, the quality of the organization of independent work, and the system of their assessment. In general, the results of the study are of an intermediate nature. Proven tools will be incorporated into the planning and effective management of the learning process. The results of the study can be useful for the administrators and managers of the military education system for teachers of military higher educational institutions for adjusting the content and technologies of training future specialists. The publication was prepared as part of applied grant research for 2020-2022 by order of the Ministry of Education and Science of the Republic of Kazakhstan on the topic "Development of a comprehensive methodology for assessing the quality of education of graduates of military special educational institutions."Keywords: teaching quality, quality satisfaction, learning management, quality management, process approach, classroom learning, interactive technologies, teaching quality
Procedia PDF Downloads 12715538 Automatic Detection and Filtering of Negative Emotion-Bearing Contents from Social Media in Amharic Using Sentiment Analysis and Deep Learning Methods
Authors: Derejaw Lake Melie, Alemu Kumlachew Tegegne
Abstract:
The increasing prevalence of social media in Ethiopia has exacerbated societal challenges by fostering the proliferation of negative emotional posts and comments. Illicit use of social media has further exacerbated divisions among the population. Addressing these issues through manual identification and aggregation of emotions from millions of users for swift decision-making poses significant challenges, particularly given the rapid growth of Amharic language usage on social platforms. Consequently, there is a critical need to develop an intelligent system capable of automatically detecting and categorizing negative emotional content into social, religious, and political categories while also filtering out toxic online content. This paper aims to leverage sentiment analysis techniques to achieve automatic detection and filtering of negative emotional content from Amharic social media texts, employing a comparative study of deep learning algorithms. The study utilized a dataset comprising 29,962 comments collected from social media platforms using comment exporter software. Data pre-processing techniques were applied to enhance data quality, followed by the implementation of deep learning methods for training, testing, and evaluation. The results showed that CNN, GRU, LSTM, and Bi-LSTM classification models achieved accuracies of 83%, 50%, 84%, and 86%, respectively. Among these models, Bi-LSTM demonstrated the highest accuracy of 86% in the experiment.Keywords: negative emotion, emotion detection, social media filtering sentiment analysis, deep learning.
Procedia PDF Downloads 2315537 Overview of Resources and Tools to Bridge Language Barriers Provided by the European Union
Authors: Barbara Heinisch, Mikael Snaprud
Abstract:
A common, well understood language is crucial in critical situations like landing a plane. For e-Government solutions, a clear and common language is needed to allow users to successfully complete transactions online. Misunderstandings here may not risk a safe landing but can cause delays, resubmissions and drive costs. This holds also true for higher education, where misunderstandings can also arise due to inconsistent use of terminology. Thus, language barriers are a societal challenge that needs to be tackled. The major means to bridge language barriers is translation. However, achieving high-quality translation and making texts understandable and accessible require certain framework conditions. Therefore, the EU and individual projects take (strategic) actions. These actions include the identification, collection, processing, re-use and development of language resources. These language resources may be used for the development of machine translation systems and the provision of (public) services including higher education. This paper outlines some of the existing resources and indicate directions for further development to increase the quality and usage of these resources.Keywords: language resources, machine translation, terminology, translation
Procedia PDF Downloads 31915536 An Integrated Cloud Service of Application Delivery in Virtualized Environments
Authors: Shuen-Tai Wang, Yu-Ching Lin, Hsi-Ya Chang
Abstract:
Virtualization technologies are experiencing a renewed interest as a way to improve system reliability, and availability, reduce costs, and provide flexibility. This paper presents the development on leverage existing cloud infrastructure and virtualization tools. We adopted some virtualization technologies which improve portability, manageability and compatibility of applications by encapsulating them from the underlying operating system on which they are executed. Given the development of application virtualization, it allows shifting the user’s applications from the traditional PC environment to the virtualized environment, which is stored on a remote virtual machine rather than locally. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for online cloud service. Users no longer need to burden the platform maintenance and drastically reduces the overall cost of hardware and software licenses. Moreover, this flexible and web-based application virtualization service represent the next significant step to the mobile workplace, and it lets user executes their applications from virtually anywhere.Keywords: cloud service, application virtualization, virtual machine, elastic environment
Procedia PDF Downloads 28215535 Constructivism Learning Management in Mathematics Analysis Courses
Authors: Komon Paisal
Abstract:
The purposes of this research were (1) to create a learning activity for constructivism, (2) study the Mathematical Analysis courses learning achievement, and (3) study students’ attitude toward the learning activity for constructivism. The samples in this study were divided into 2 parts including 3 Mathematical Analysis courses instructors of Suan Sunandha Rajabhat University who provided basic information and attended the seminar and 17 Mathematical Analysis courses students who were studying in the academic and engaging in the learning activity for constructivism. The research instruments were lesson plans constructivism, subjective Mathematical Analysis courses achievement test with reliability index of 0.8119, and an attitude test concerning the students’ attitude toward the Mathematical Analysis courses learning activity for constructivism. The result of the research show that the efficiency of the Mathematical Analysis courses learning activity for constructivism is 73.05/72.16, which is more than expected criteria of 70/70. The research additionally find that the average score of learning achievement of students who engaged in the learning activities for constructivism are equal to 70% and the students’ attitude toward the learning activity for constructivism are at the medium level.Keywords: constructivism, learning management, mathematics analysis courses, learning activity
Procedia PDF Downloads 53315534 Synergizing Additive Manufacturing and Artificial Intelligence: Analyzing and Predicting the Mechanical Behavior of 3D-Printed CF-PETG Composites
Authors: Sirine Sayed, Mostapha Tarfaoui, Abdelmalek Toumi, Youssef Qarssis, Mohamed Daly, Chokri Bouraoui
Abstract:
This paper delves into the combination of additive manufacturing (AM) and artificial intelligence (AI) to solve challenges related to the mechanical behavior of AM-produced parts. The article highlights the fundamentals and benefits of additive manufacturing, including creating complex geometries, optimizing material use, and streamlining manufacturing processes. The paper also addresses the challenges associated with additive manufacturing, such as ensuring stable mechanical performance and material properties. The role of AI in improving the static behavior of AM-produced parts, including machine learning, especially the neural network, is to make regression models to analyze the large amounts of data generated during experimental tests. It investigates the potential synergies between AM and AI to achieve enhanced functions and personalized mechanical properties. The mechanical behavior of parts produced using additive manufacturing methods can be further improved using design optimization, structural analysis, and AI-based adaptive manufacturing. The article concludes by emphasizing the importance of integrating AM and AI to enhance mechanical operations, increase reliability, and perform advanced functions, paving the way for innovative applications in different fields.Keywords: additive manufacturing, mechanical behavior, artificial intelligence, machine learning, neural networks, reliability, advanced functionalities
Procedia PDF Downloads 1015533 A Comprehensive Study and Evaluation on Image Fashion Features Extraction
Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen
Abstract:
Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.Keywords: convolutional neural network, feature representation, image processing, machine modelling
Procedia PDF Downloads 13915532 Design and Development of an Autonomous Beach Cleaning Vehicle
Authors: Mahdi Allaoua Seklab, Süleyman BaşTürk
Abstract:
In the quest to enhance coastal environmental health, this study introduces a fully autonomous beach cleaning machine, a breakthrough in leveraging green energy and advanced artificial intelligence for ecological preservation. Designed to operate independently, the machine is propelled by a solar-powered system, underscoring a commitment to sustainability and the use of renewable energy in autonomous robotics. The vehicle's autonomous navigation is achieved through a sophisticated integration of LIDAR and a camera system, utilizing an SSD MobileNet V2 object detection model for accurate and real-time trash identification. The SSD framework, renowned for its efficiency in detecting objects in various scenarios, is coupled with the lightweight and precise highly MobileNet V2 architecture, making it particularly suited for the computational constraints of on-board processing in mobile robotics. Training of the SSD MobileNet V2 model was conducted on Google Colab, harnessing cloud-based GPU resources to facilitate a rapid and cost-effective learning process. The model was refined with an extensive dataset of annotated beach debris, optimizing the parameters using the Adam optimizer and a cross-entropy loss function to achieve high-precision trash detection. This capability allows the machine to intelligently categorize and target waste, leading to more effective cleaning operations. This paper details the design and functionality of the beach cleaning machine, emphasizing its autonomous operational capabilities and the novel application of AI in environmental robotics. The results showcase the potential of such technology to fill existing gaps in beach maintenance, offering a scalable and eco-friendly solution to the growing problem of coastal pollution. The deployment of this machine represents a significant advancement in the field, setting a new standard for the integration of autonomous systems in the service of environmental stewardship.Keywords: autonomous beach cleaning machine, renewable energy systems, coastal management, environmental robotics
Procedia PDF Downloads 2715531 Measuring E-Learning Effectiveness Using a Three-Way Comparison
Authors: Matthew Montebello
Abstract:
The way e-learning effectiveness has been notoriously measured within an academic setting is by comparing the e-learning medium to the traditional face-to-face teaching methodology. In this paper, a simple yet innovative comparison methodology is introduced, whereby the effectiveness of next generation e-learning systems are assessed in contrast not only to the face-to-face mode, but also to the classical e-learning modality. Ethical and logistical issues are also discussed, as this three-way approach to compare teaching methodologies was applied and documented in a real empirical study within a higher education institution.Keywords: e-learning effectiveness, higher education, teaching modality comparison
Procedia PDF Downloads 38715530 Application of Optimization Techniques in Overcurrent Relay Coordination: A Review
Authors: Syed Auon Raza, Tahir Mahmood, Syed Basit Ali Bukhari
Abstract:
In power system properly coordinated protection scheme is designed to make sure that only the faulty part of the system will be isolated when abnormal operating condition of the system will reach. The complexity of the system as well as the increased user demand and the deregulated environment enforce the utilities to improve system reliability by using a properly coordinated protection scheme. This paper presents overview of over current relay coordination techniques. Different techniques such as Deterministic Techniques, Meta Heuristic Optimization techniques, Hybrid Optimization Techniques, and Trial and Error Optimization Techniques have been reviewed in terms of method of their implementation, operation modes, nature of distribution system, and finally their advantages as well as the disadvantages.Keywords: distribution system, relay coordination, optimization, Plug Setting Multiplier (PSM)
Procedia PDF Downloads 39915529 The Adoption of Mobile Learning in Saudi Women Faculty in King Abdulaziz University
Authors: Leena Alfarani
Abstract:
Although mobile devices are ubiquitous on university campuses, teacher-readiness for mobile learning has yet to be fully explored in the non-western nations. This study shows that two main factors affect the adoption and use of m-learning among female teachers within a university in Saudi Arabia—resistance to change and perceived social culture. These determinants of the current use and intention to use of m-learning were revealed through the analysis of an online questionnaire completed by 165 female faculty members. This study reveals several important issues for m-learning research and practice. The results further extend the body of knowledge in the field of m-learning, with the findings revealing that resistance to change and perceived social culture are significant determinants of the current use of and the intention to use m-learning.Keywords: blended learning, mobile learning, technology adoption, devices
Procedia PDF Downloads 46415528 A Systematic Review on Lifelong Learning Programs for Community-Dwelling Older Adults
Authors: Xi Vivien Wu, Emily Neo Kim Ang, Yi Jung Tung, Wenru Wang
Abstract:
Background and Objective: The increase in life expectancy and emphasis on self-reliance for the older adults are global phenomena. As such, lifelong learning in the community is considered a viable means of promoting successful and active aging. This systematic review aims to examine various lifelong learning programs for community-dwelling older adults and to synthesize the contents and outcomes of these lifelong learning programs. Methods: A systematic search was conducted in July to December 2016. Two reviewers were engaged in the process to ensure creditability of the selection process. Narrative description and analysis were applied with the support of a tabulation of key data including study design, interventions, and outcomes. Results: Eleven articles, which consisted of five randomized controlled trials and six quasi-experimental studies, were included in this review. Interventions included e-health literacy programs with the aid of computers and the Internet (n=4), computer and Internet training (n=3), physical fitness programs (n=2), music program (n=1), and intergenerational program (n=1). All studies used objective measurement tools to evaluate the outcomes of the study. Conclusion: The systematic review indicated lifelong learning programs resulted in positive outcomes in terms of physical health, mental health, social behavior, social support, self-efficacy and confidence in computer usage, and increased e-health literacy efficacy. However, the lifelong learning programs face challenges such as funding shortages, program cuts, and increasing costs. A comprehensive lifelong learning program could be developed to enhance the well-being of the older adults at a more holistic level. Empirical research can be done to explore the effectiveness of this comprehensive lifelong learning program.Keywords: community-dwelling older adults, e-health literacy program, lifelong learning program, the wellbeing of the older adults
Procedia PDF Downloads 16415527 Taxonomic Classification for Living Organisms Using Convolutional Neural Networks
Authors: Saed Khawaldeh, Mohamed Elsharnouby, Alaa Eddin Alchalabi, Usama Pervaiz, Tajwar Aleef, Vu Hoang Minh
Abstract:
Taxonomic classification has a wide-range of applications such as finding out more about the evolutionary history of organisms that can be done by making a comparison between species living now and species that lived in the past. This comparison can be made using different kinds of extracted species’ data which include DNA sequences. Compared to the estimated number of the organisms that nature harbours, humanity does not have a thorough comprehension of which specific species they all belong to, in spite of the significant development of science and scientific knowledge over many years. One of the methods that can be applied to extract information out of the study of organisms in this regard is to use the DNA sequence of a living organism as a marker, thus making it available to classify it into a taxonomy. The classification of living organisms can be done in many machine learning techniques including Neural Networks (NNs). In this study, DNA sequences classification is performed using Convolutional Neural Networks (CNNs) which is a special type of NNs.Keywords: deep networks, convolutional neural networks, taxonomic classification, DNA sequences classification
Procedia PDF Downloads 44215526 Semantic Differences between Bug Labeling of Different Repositories via Machine Learning
Authors: Pooja Khanal, Huaming Zhang
Abstract:
Labeling of issues/bugs, also known as bug classification, plays a vital role in software engineering. Some known labels/classes of bugs are 'User Interface', 'Security', and 'API'. Most of the time, when a reporter reports a bug, they try to assign some predefined label to it. Those issues are reported for a project, and each project is a repository in GitHub/GitLab, which contains multiple issues. There are many software project repositories -ranging from individual projects to commercial projects. The labels assigned for different repositories may be dependent on various factors like human instinct, generalization of labels, label assignment policy followed by the reporter, etc. While the reporter of the issue may instinctively give that issue a label, another person reporting the same issue may label it differently. This way, it is not known mathematically if a label in one repository is similar or different to the label in another repository. Hence, the primary goal of this research is to find the semantic differences between bug labeling of different repositories via machine learning. Independent optimal classifiers for individual repositories are built first using the text features from the reported issues. The optimal classifiers may include a combination of multiple classifiers stacked together. Then, those classifiers are used to cross-test other repositories which leads the result to be deduced mathematically. The produce of this ongoing research includes a formalized open-source GitHub issues database that is used to deduce the similarity of the labels pertaining to the different repositories.Keywords: bug classification, bug labels, GitHub issues, semantic differences
Procedia PDF Downloads 20115525 Augmented Reality Sandbox and Constructivist Approach for Geoscience Teaching and Learning
Authors: Muhammad Nawaz, Sandeep N. Kundu, Farha Sattar
Abstract:
Augmented reality sandbox adds new dimensions to education and learning process. It can be a core component of geoscience teaching and learning to understand the geographic contexts and landform processes. Augmented reality sandbox is a useful tool not only to create an interactive learning environment through spatial visualization but also it can provide an active learning experience to students and enhances the cognition process of learning. Augmented reality sandbox can be used as an interactive learning tool to teach geomorphic and landform processes. This article explains the augmented reality sandbox and the constructivism approach for geoscience teaching and learning, and endeavours to explore the ways to teach the geographic processes using the three-dimensional digital environment for the deep learning of the geoscience concepts interactively.Keywords: augmented reality sandbox, constructivism, deep learning, geoscience
Procedia PDF Downloads 40215524 Research Progress on Patient Perception Assessment Tools for Patient Safety
Authors: Yirui Wang
Abstract:
In the past few decades, patient safety has been the focus of much attention in the global medical and health field. As medical standards continue to improve and develop, the demand for patient safety is also growing. As one of the important dimensions in assessing patient safety, the Patient Perception Patient Safety Assessment Tool provides unique and valuable information from the patient's own perspective and plays an important role in promoting patient safety. This article aims to summarize and analyze the assessment content, assessment methods and applications of currently commonly used patient-perceived patient safety assessment tools at home and abroad, with a view to providing a reference for medical staff to select appropriate patient-perceived patient safety assessment tools.Keywords: patients, patient safety, perception, assessment tools, review
Procedia PDF Downloads 8815523 Machine Learning in Gravity Models: An Application to International Recycling Trade Flow
Authors: Shan Zhang, Peter Suechting
Abstract:
Predicting trade patterns is critical to decision-making in public and private domains, especially in the current context of trade disputes among major economies. In the past, U.S. recycling has relied heavily on strong demand for recyclable materials overseas. However, starting in 2017, a series of new recycling policies (bans and higher inspection standards) was enacted by multiple countries that were the primary importers of recyclables from the U.S. prior to that point. As the global trade flow of recycling shifts, some new importers, mostly developing countries in South and Southeast Asia, have been overwhelmed by the sheer quantities of scrap materials they have received. As the leading exporter of recyclable materials, the U.S. now has a pressing need to build its recycling industry domestically. With respect to the global trade in scrap materials used for recycling, the interest in this paper is (1) predicting how the export of recyclable materials from the U.S. might vary over time, and (2) predicting how international trade flows for recyclables might change in the future. Focusing on three major recyclable materials with a history of trade, this study uses data-driven and machine learning (ML) algorithms---supervised (shrinkage and tree methods) and unsupervised (neural network method)---to decipher the international trade pattern of recycling. Forecasting the potential trade values of recyclables in the future could help importing countries, to which those materials will shift next, to prepare related trade policies. Such policies can assist policymakers in minimizing negative environmental externalities and in finding the optimal amount of recyclables needed by each country. Such forecasts can also help exporting countries, like the U.S understand the importance of healthy domestic recycling industry. The preliminary result suggests that gravity models---in addition to particular selection macroeconomic predictor variables--are appropriate predictors of the total export value of recyclables. With the inclusion of variables measuring aspects of the political conditions (trade tariffs and bans), predictions show that recyclable materials are shifting from more policy-restricted countries to less policy-restricted countries in international recycling trade. Those countries also tend to have high manufacturing activities as a percentage of their GDP.Keywords: environmental economics, machine learning, recycling, international trade
Procedia PDF Downloads 16815522 Evolving Convolutional Filter Using Genetic Algorithm for Image Classification
Authors: Rujia Chen, Ajit Narayanan
Abstract:
Convolutional neural networks (CNN), as typically applied in deep learning, use layer-wise backpropagation (BP) to construct filters and kernels for feature extraction. Such filters are 2D or 3D groups of weights for constructing feature maps at subsequent layers of the CNN and are shared across the entire input. BP as a gradient descent algorithm has well-known problems of getting stuck at local optima. The use of genetic algorithms (GAs) for evolving weights between layers of standard artificial neural networks (ANNs) is a well-established area of neuroevolution. In particular, the use of crossover techniques when optimizing weights can help to overcome problems of local optima. However, the application of GAs for evolving the weights of filters and kernels in CNNs is not yet an established area of neuroevolution. In this paper, a GA-based filter development algorithm is proposed. The results of the proof-of-concept experiments described in this paper show the proposed GA algorithm can find filter weights through evolutionary techniques rather than BP learning. For some simple classification tasks like geometric shape recognition, the proposed algorithm can achieve 100% accuracy. The results for MNIST classification, while not as good as possible through standard filter learning through BP, show that filter and kernel evolution warrants further investigation as a new subarea of neuroevolution for deep architectures.Keywords: neuroevolution, convolutional neural network, genetic algorithm, filters, kernels
Procedia PDF Downloads 18615521 Project and Module Based Teaching and Learning
Authors: Jingyu Hou
Abstract:
This paper proposes a new teaching and learning approach-project and Module Based Teaching and Learning (PMBTL). The PMBTL approach incorporates the merits of project/problem based and module based learning methods, and overcomes the limitations of these methods. The correlation between teaching, learning, practice, and assessment is emphasized in this approach, and new methods have been proposed accordingly. The distinct features of these new methods differentiate the PMBTL approach from conventional teaching approaches. Evaluation of this approach on practical teaching and learning activities demonstrates the effectiveness and stability of the approach in improving the performance and quality of teaching and learning. The approach proposed in this paper is also intuitive to the design of other teaching units.Keywords: computer science education, project and module based, software engineering, module based teaching and learning
Procedia PDF Downloads 493