Search results for: limbal stem cell deficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4480

Search results for: limbal stem cell deficiency

3130 Assessment of Platelet and Lymphocyte Interaction in Autoimmune Hyperthyroidism

Authors: Małgorzata Tomczyńska, Joanna Saluk-Bijak

Abstract:

Background: Graves’ disease is a frequent organ-specific autoimmune thyroid disease, which characterized by the presence of different kind autoantibodies, that, in most cases, act as agonists of the thyrotropin receptor, leading to hyperthyroidism. Role of platelets and lymphocytes can be modulated in the pathophysiology of thyroid autoimmune diseases. Interference in the physiology of platelets can lead to enhanced activity of these cells. Activated platelets can bind to circulating lymphocytes and to affect lymphocyte adhesion. Platelets and lymphocytes can regulate mutual functions. Therefore, the activation of T lymphocytes, as well as blood platelets, is associated with the development of inflammation and oxidative stress within the target tissue. The present study was performed to investigate a platelet-lymphocyte relation by assessing the degree of their mutual aggregation in whole blood of patients with Graves’ disease. Also, the purpose of this study was to examine the impact of platelet interaction on lymphocyte migration capacity. Methods: 30 patients with Graves’ disease were recruited in the study. The matched 30 healthy subjects were served as the control group. Immunophenotyping of lymphocytes was carried out by flow cytometry method. A CytoSelect™ Cell Migration Assay Kit was used to evaluate lymphocyte migration and adhesion to blood platelets. Visual assessment of lymphocyte-platelet aggregate morphology was done using confocal microscope after magnetic cell isolation by Miltenyi Biotec. Results: The migration and functional responses of lymphocytes to blood platelets were greater in the group of Graves’ disease patients compared with healthy controls. The group of Graves’ disease patients exhibited a reduced T lymphocyte and a higher B cell count compared with controls. Based on microscopic analysis, more platelet-lymphocyte aggregates were found in patients than in control. Conclusions: Studies have shown that in Graves' disease, lymphocytes show increased platelet affinity, more strongly migrating toward them, and forming mutual cellular conglomerates. This may be due to the increased activation of blood platelets in this disease.

Keywords: blood platelets, cell migration, Graves’ disease, lymphocytes, lymphocyte-platelet aggregates

Procedia PDF Downloads 211
3129 Antioxidant Activity of Friedelin, Eudesmic Acid and Methyl-3,4,5-Trimethoxybenzoate from Tapinanthus bangwensis (Engl., and K. Krause) [Loranthaceae] Grown in Nigeria

Authors: Odunayo Christy Atewolara-Odule, Olapeju O. Aiyelaagbe

Abstract:

The search for new natural anti-oxidants has grown tremendously over the years because reactive oxygen species (ROS) production and oxidative stress have been linked to a large number of human degenerative diseases, such as cancer, cardiovascular diseases, inflammation, and diabetes. Tapinanthus bangwensis, a parasitic plant commonly known as mistletoe belonging to the Loranthaceae family, is mostly employed traditionally to treat inflammation, cancer, diabetes, and hypertension to mention a few. In this study, air-dried pulverized leaves and stem of Tapinanthus bangwensis were successively extracted with n-hexane, ethyl acetate, and methanol to give the corresponding crude extracts. The extracts were purified by column chromatography and high-performance liquid chromatography to give the isolated compounds. Structural elucidation was done using mass spectrometry, Fourier transform infra-red, 1D and 2D NMR spectroscopy. The antioxidant activity of the compounds was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ascorbic acid as standard. Three compounds; Friedelin, Eudesmic acid (3,4,5-trimethoxybenzoic) and Methyl-3,4,5-trimethoxybenzoate were isolated from the extracts of Tapinanthus bangwensis. Friedelin was isolated from the ethyl acetate extract of the stem while the two other compounds were isolated from the methanol extract of the leaves. The percentages of free radical scavenging activities of the compounds are as follows: Friedelin, 73.69%, methyl-3,4,5-trimethoxybenzoate, 79.33% and eudesmic, 87.68% anti-oxidant activity which were quite comparable to 93.96% given by ascorbic acid. We are reporting, to our best knowledge, for the first time the occurrence of friedelin and eudesmic acid in Tapinanthus bangwensis. The high anti-oxidant activity of these compounds supports the use of this plant in the management of diabetes and hypertension as they will be useful in combating complications arising from the disease.

Keywords: column chromatography, eudesmic acid, friedelin, Tapinanthus bangwensis

Procedia PDF Downloads 228
3128 Zingiberaceous Plants as a Source of Anti-Bacterial Activity: Targeting Bacterial Cell Division Protein (FtsZ)

Authors: S. Reshma Reghu, Shiburaj Sugathan, T. G. Nandu, K. B. Ramesh Kumar, Mathew Dan

Abstract:

Bacterial diseases are considered to be one of the most prevalent health hazards in the developing world and many bacteria are becoming resistant to existing antibiotics making the treatment ineffective. Thus, it is necessary to find novel targets and develop new antibacterial drugs with a novel mechanism of action. The process of bacterial cell division is a novel and attractive target for new antibacterial drug discovery. FtsZ, a homolog of eukaryotic tubulin, is the major protein of the bacterial cell division machinery and is considered as an important antibacterial drug target. Zingiberaceae, the Ginger family consists of aromatic herbs with creeping rhizomes. Many of these plants have antimicrobial properties.This study aimed to determine the anti-bacterial activity of selected Zingiberaceous plants by targeting bacterial cell division protein, FtsZ. Essential oils and methanol extracts of Amomum ghaticum, Alpinia galanga, Kaempferia galanga, K. rotunda, and Zingiber officinale were tested to find its antibacterial efficiency using disc diffusion method against authentic bacterial strains obtained from MTCC (India). Essential oil isolated from A.galanga and Z.officinale were further assayed for FtsZ inhibition assay following non-radioactive malachite green-phosphomolybdate assay using E. coli FtsZ protein obtained from Cytoskelton Inc., USA. Z.officinale essential oil possess FtsZ inhibitory property. A molecular docking study was conducted with the known bioactive compounds of Z. officinale as ligands with the E. coli FtsZ protein homology model. Some of the major constituents of this plant like catechin, epicatechin, and gingerol possess agreeable docking scores. The results of this study revealed that several chemical constituents in Ginger plants can be utilised as potential source of antibacterial activity and it can warrant further investigation through drug discovery studies.

Keywords: antibacterial, FtsZ, zingiberaceae, docking

Procedia PDF Downloads 457
3127 Isolation, Characterization and Quantitation of Anticancer Constituent from Chloroform Extract of N. arbortristis L. Leaves

Authors: Parul Grover, K. A. Suri, Raj Kumar, Gulshan Bansal

Abstract:

Background: Nyctanthes arbortristis Linn is traditionally used as anticancer herb in Indian system of medicine, but its introduction into modern system of medicine is still awaited due to lack of systematic scientific studies. Objective: The objective of the present study was to isolate and characterize anticancer phytoconstituents from N. arbortristis L. leaves based on bioactivity guided fractionation. Method: Different extracts of the leaves of the plant were prepared by Soxhlet extractor. Each extract was evaluated for anticancer activity against HL-60 cell lines. Chloroform and HA extract showed potent anticancer activity and hence were selected for fractionation. Fraction C1 from chloroform extract was found to be most potent amongst all when tested against three cell lines (HL-60, A-549, and HCT-116) and thus was selected for further fractionation and a pure compound CP-01 was isolated. RP-HPLC method has been developed for quantification of isolated compound by using Kinetex C-18 column with gradient elution at 0.7 mL/min using mobile phase containing potassium dihydrogen phosphate (0.01 M, pH 3.0) with acetonitrile. The wavelength of maximum absorption (λₘₐₓ) selected was 210 nm. Results: The structure of potent anticancer CP-01 was determined on the basis spectroscopic methods like IR, 1H-NMR, ¹³C-NMR and Mass Spectrometry and it was characterized as 1,1,2-tris(2’,4’-di-tert-butylbenzene)-4,4-dimethyl-pent-1-ene. The content of CP-01 was found to be 0.88 %w/w of chloroform extract and 0.08 %w/w of N.arbortristis leaves. Conclusion: The study supports the traditional use of N. arbortristis as anticancer herb & the identified compound CP-01 can serve as an excellent lead to develop potent and safe anticancer drugs.

Keywords: anticancer, HL-60 cell lines, Nyctanthes arbor-tristis, RP-HPLC

Procedia PDF Downloads 131
3126 Risk of Mortality and Spectrum of Second Primary Malignancies in Mantle Cell Lymphoma before and after Ibrutinib Approval: A Population-Based Study

Authors: Karthik Chamari, Vasudha Rudraraju, Gaurav Chaudhari

Abstract:

Background: Mantle cell lymphoma (MCL) is one of the mature B cell non-Hodgkin lymphomas (NHL). The course of MCL is moderately aggressive and variable, and it has median overall survival of 8 to 10 years. Ibrutinib, a Bruton’s tyrosine kinase inhibitor, was approved by the United States (US) Food and Drug Administration in November of 2013 for the treatment of MCL patients who have received at least one prior therapy. In this study, we aimed to evaluate whether there has been a change in survival and patterns of second primary malignancies (SPMs) among the MCL population in the US after ibrutinib approval. Methods: Using the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER)-18, we conducted a retrospective study with patients diagnosed with MCL (ICD-0-3 code 9673/3) between 2007 and 2018. We divided patients into two six-year cohorts, pre-ibrutinib approval (2007-2012) and post-ibrutinib approval (2013-2018), and compared relative survival rates (RSRs) and standardized incidence ratios (SIRs) of SPMs between cohorts. Results: We included 9,257 patients diagnosed with MCL between 2007 and 2018 in the SEER-18 survival and SIR registries. Of these, 4,205 (45%) patients were included in the pre-ibrutinib cohort, and 5052 (55%) patients were included in the post-ibrutinib cohort. The median follow-up duration for the pre-ibrutinib cohort was 54 months (range 0 to 143 months), and the post-ibrutinib cohort was 20 months (range 0 to 71 months). There was a significant difference in the five-year RSRs between pre-ibrutinib and post-ibrutinib cohorts (57.5% vs. 62.6%, p < 0.005). Out of the 9,257 patients diagnosed with MCL, 920 developed SPMs. A higher proportion of SPMs occurred in the post-ibrutinib cohort (63%) when compared with the pre-ibrutinib cohort (37%). Non-hematological malignancies comprised most of all SPMs. A higher incidence of non-hematological malignancies occurred in the post-ibrutinib cohort (SIR 1.42, 95% CI 1.29 to 1.56) when compared with the pre-ibrutinib cohort (SIR 1.14, 95% CI 1 to 1.3). There was a statistically significant increase in the incidence of cancers of the respiratory tract (SIR 1.77, 95% CI 1.43 to 2.18), urinary tract (SIR 1.61, 95% CI 1.23 to 2.06) when compared with other non-hematological malignancies in post-ibrutinib cohort. Conclusions: Our study results suggest the relative survival rates have increased since the approval of ibrutinib for mantle cell lymphoma patients. Additionally, for some unclear reasons, the incidence of SPM’s (non-hematological malignancies), mainly cancers of the respiratory tract, urinary tract, have increased in the six years following the approval of ibrutinib. Further studies should be conducted to determine the cause of these findings.

Keywords: mantle cell lymphoma, Ibrutinib, relative survival analysis, secondary primary cancers

Procedia PDF Downloads 173
3125 A Framework for Automated Nuclear Waste Classification

Authors: Seonaid Hume, Gordon Dobie, Graeme West

Abstract:

Detecting and localizing radioactive sources is a necessity for safe and secure decommissioning of nuclear facilities. An important aspect for the management of the sort-and-segregation process is establishing the spatial distributions and quantities of the waste radionuclides, their type, corresponding activity, and ultimately classification for disposal. The data received from surveys directly informs decommissioning plans, on-site incident management strategies, the approach needed for a new cell, as well as protecting the workforce and the public. Manual classification of nuclear waste from a nuclear cell is time-consuming, expensive, and requires significant expertise to make the classification judgment call. Also, in-cell decommissioning is still in its relative infancy, and few techniques are well-developed. As with any repetitive and routine tasks, there is the opportunity to improve the task of classifying nuclear waste using autonomous systems. Hence, this paper proposes a new framework for the automatic classification of nuclear waste. This framework consists of five main stages; 3D spatial mapping and object detection, object classification, radiological mapping, source localisation based on gathered evidence and finally, waste classification. The first stage of the framework, 3D visual mapping, involves object detection from point cloud data. A review of related applications in other industries is provided, and recommendations for approaches for waste classification are made. Object detection focusses initially on cylindrical objects since pipework is significant in nuclear cells and indeed any industrial site. The approach can be extended to other commonly occurring primitives such as spheres and cubes. This is in preparation of stage two, characterizing the point cloud data and estimating the dimensions, material, degradation, and mass of the objects detected in order to feature match them to an inventory of possible items found in that nuclear cell. Many items in nuclear cells are one-offs, have limited or poor drawings available, or have been modified since installation, and have complex interiors, which often and inadvertently pose difficulties when accessing certain zones and identifying waste remotely. Hence, this may require expert input to feature match objects. The third stage, radiological mapping, is similar in order to facilitate the characterization of the nuclear cell in terms of radiation fields, including the type of radiation, activity, and location within the nuclear cell. The fourth stage of the framework takes the visual map for stage 1, the object characterization from stage 2, and radiation map from stage 3 and fuses them together, providing a more detailed scene of the nuclear cell by identifying the location of radioactive materials in three dimensions. The last stage involves combining the evidence from the fused data sets to reveal the classification of the waste in Bq/kg, thus enabling better decision making and monitoring for in-cell decommissioning. The presentation of the framework is supported by representative case study data drawn from an application in decommissioning from a UK nuclear facility. This framework utilises recent advancements of the detection and mapping capabilities of complex radiation fields in three dimensions to make the process of classifying nuclear waste faster, more reliable, cost-effective and safer.

Keywords: nuclear decommissioning, radiation detection, object detection, waste classification

Procedia PDF Downloads 185
3124 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment

Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali

Abstract:

This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.

Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis

Procedia PDF Downloads 417
3123 Calculation of Lattice Constants and Band Gaps for Generalized Quasicrystals of InGaN Alloy: A First Principle Study

Authors: Rohin Sharma, Sumantu Chaulagain

Abstract:

This paper presents calculations of total energy of InGaN alloy carried out in a disordered quasirandom structure for a triclinic super cell. This structure replicates the disorder and composition effect in the alloy. First principle calculations within the density functional theory with the local density approximation approach is employed to accurately determine total energy of the system. Lattice constants and band gaps associated with the ground states are then estimated for different concentration ratios of the alloy. We provide precise results of quasirandom structures of the alloy and their lattice constants with the total energy and band gap energy of the system for the range of seven different composition ratios and their respective lattice parameters.

Keywords: DFT, ground state, LDA, quasicrystal, triclinic super cell

Procedia PDF Downloads 172
3122 Synthesis and Characterizations of Sulfonated Poly (Ether Ether Ketone) Speek Nanofiber Membrane

Authors: N. Hasbullah, K. A. Sekak

Abstract:

The sulfonated poly (ether ether ketone) SPEEK nanofiber membrane were successfully electrospun for Polymer Electrolyte Membrane (PEM) in Proton Exchange Membrane Fuel Cell (PEMFC) and their nanosized properties were investigated. The poly (ether ether ketone) PEEK victrex® grade 90p was sulfonated with concentrated sulfuric acid (95-98% w/w) at room temperature for 60 hours sulfonation times. The degree sulfonation of SPEEK are 70% was determined by H1 NMR and the functional groups of the SPEEK were characterize using FTIR. Then, the SPEEK nanofiber membrane were prepared via electrospinning method using DMAC as a solvent. The SPEEK sample were successfully electrospun using predetermine set up. FESEM show the electrospun fiber mat surface and confirmed the nanostructure membrane cell.

Keywords: polymer electrolyte membrane (PEM), sulfonated poly (ether ether ketone) (SPEEK), degree sulfonation, Electrospinning, Nanofibers

Procedia PDF Downloads 291
3121 Micromechanics Modeling of 3D Network Smart Orthotropic Structures

Authors: E. M. Hassan, A. L. Kalamkarov

Abstract:

Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unit-cell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.

Keywords: asymptotic homogenization method, finite element analysis, effective piezothermoelastic coefficients, 3D smart network composite structures

Procedia PDF Downloads 383
3120 The Effects of Root Zone Supply of Aluminium on Vegetative Growth of 15 Groundnut Cultivars Grown in Solution Culture

Authors: Mosima M. Mabitsela

Abstract:

Groundnut is preferably grown on light textured soils. Most of these light textured soils tend to be highly weathered and characterized by high soil acidity and low nutrient status. One major soil factor associated with infertility of acidic soils that can negatively depress groundnut yield is aluminium (Al) toxicity. In plants Al toxicity damages root cells, leading to inhibition of root growth as a result of the suppression of cell division, cell elongation and cell expansion in the apical meristem cells of the root. The end result is that roots become stunted and brittle, root hair development is poor, and the root apices become swollen. This study was conducted to determine the effects of aluminium (Al) toxicity on a range of groundnut varieties. Fifteen cultivars were tested in incremental aluminum (Al) supply in an ebb and flow solution culture laid out in a randomized complete block design. There were six aluminium (Al) treatments viz. 0 µM, 1 µM, 5.7 µM, 14.14 µM, 53.18 µM, and 200 µM. At 1 µM there was no inhibitory effect on the growth of groundnut. The inhibition of groundnut growth was noticeable from 5.7 µM to 200 µM, where the severe effect of aluminium (Al) stress was observed at 200 µM. The cultivars varied in their response to aluminium (Al) supply in solution culture. Groundnuts are one of the most important food crops in the world, and its supply is on a decline due to the light-textured soils that they thrive under as these soils are acidic and can easily solubilize aluminium (Al) to its toxic form. Consequently, there is a need to develop groundnut cultivars with high tolerance to soil acidity.

Keywords: aluminium toxicity, cultivars, reduction, root growth

Procedia PDF Downloads 133
3119 Single Cell Analysis of Circulating Monocytes in Prostate Cancer Patients

Authors: Leander Van Neste, Kirk Wojno

Abstract:

The innate immune system reacts to foreign insult in several unique ways, one of which is phagocytosis of perceived threats such as cancer, bacteria, and viruses. The goal of this study was to look for evidence of phagocytosed RNA from tumor cells in circulating monocytes. While all monocytes possess phagocytic capabilities, the non-classical CD14+/FCGR3A+ monocytes and the intermediate CD14++/FCGR3A+ monocytes most actively remove threatening ‘external’ cellular materials. Purified CD14-positive monocyte samples from fourteen patients recently diagnosed with clinically localized prostate cancer (PCa) were investigated by single-cell RNA sequencing using the 10X Genomics protocol followed by paired-end sequencing on Illumina’s NovaSeq. Similarly, samples were processed and used as controls, i.e., one patient underwent biopsy but was found not to harbor prostate cancer (benign), three young, healthy men, and three men previously diagnosed with prostate cancer that recently underwent (curative) radical prostatectomy (post-RP). Sequencing data were mapped using 10X Genomics’ CellRanger software and viable cells were subsequently identified using CellBender, removing technical artifacts such as doublets and non-cellular RNA. Next, data analysis was performed in R, using the Seurat package. Because the main goal was to identify differences between PCa patients and ‘control’ patients, rather than exploring differences between individual subjects, the individual Seurat objects of all 21 patients were merged into one Seurat object per Seurat’s recommendation. Finally, the single-cell dataset was normalized as a whole prior to further analysis. Cell identity was assessed using the SingleR and cell dex packages. The Monaco Immune Data was selected as the reference dataset, consisting of bulk RNA-seq data of sorted human immune cells. The Monaco classification was supplemented with normalized PCa data obtained from The Cancer Genome Atlas (TCGA), which consists of bulk RNA sequencing data from 499 prostate tumor tissues (including 1 metastatic) and 52 (adjacent) normal prostate tissues. SingleR was subsequently run on the combined immune cell and PCa datasets. As expected, the vast majority of cells were labeled as having a monocytic origin (~90%), with the most noticeable difference being the larger number of intermediate monocytes in the PCa patients (13.6% versus 7.1%; p<.001). In men harboring PCa, 0.60% of all purified monocytes were classified as harboring PCa signals when the TCGA data were included. This was 3-fold, 7.5-fold, and 4-fold higher compared to post-RP, benign, and young men, respectively (all p<.001). In addition, with 7.91%, the number of unclassified cells, i.e., cells with pruned labels due to high uncertainty of the assigned label, was also highest in men with PCa, compared to 3.51%, 2.67%, and 5.51% of cells in post-RP, benign, and young men, respectively (all p<.001). It can be postulated that actively phagocytosing cells are hardest to classify due to their dual immune cell and foreign cell nature. Hence, the higher number of unclassified cells and intermediate monocytes in PCa patients might reflect higher phagocytic activity due to tumor burden. This also illustrates that small numbers (~1%) of circulating peripheral blood monocytes that have interacted with tumor cells might still possess detectable phagocytosed tumor RNA.

Keywords: circulating monocytes, phagocytic cells, prostate cancer, tumor immune response

Procedia PDF Downloads 151
3118 Self-Assembled Laser-Activated Plasmonic Substrates for High-Throughput, High-Efficiency Intracellular Delivery

Authors: Marinna Madrid, Nabiha Saklayen, Marinus Huber, Nicolas Vogel, Christos Boutopoulos, Michel Meunier, Eric Mazur

Abstract:

Delivering material into cells is important for a diverse range of biological applications, including gene therapy, cellular engineering and imaging. We present a plasmonic substrate for delivering membrane-impermeable material into cells at high throughput and high efficiency while maintaining cell viability. The substrate fabrication is based on an affordable and fast colloidal self-assembly process. When illuminated with a femtosecond laser, the light interacts with the electrons at the surface of the metal substrate, creating localized surface plasmons that form bubbles via energy dissipation in the surrounding medium. These bubbles come into close contact with the cell membrane to form transient pores and enable entry of membrane-impermeable material via diffusion. We use fluorescence microscopy and flow cytometry to verify delivery of membrane-impermeable material into HeLa CCL-2 cells. We show delivery efficiency and cell viability data for a range of membrane-impermeable cargo, including dyes and biologically relevant material such as siRNA. We estimate the effective pore size by determining delivery efficiency for hard fluorescent spheres with diameters ranging from 20 nm to 2 um. To provide insight to the cell poration mechanism, we relate the poration data to pump-probe measurements of micro- and nano-bubble formation on the plasmonic substrate. Finally, we investigate substrate stability and reusability by using scanning electron microscopy (SEM) to inspect for damage on the substrate after laser treatment. SEM images show no visible damage. Our findings indicate that self-assembled plasmonic substrates are an affordable tool for high-throughput, high-efficiency delivery of material into mammalian cells.

Keywords: femtosecond laser, intracellular delivery, plasmonic, self-assembly

Procedia PDF Downloads 515
3117 Microfluidic Device for Real-Time Electrical Impedance Measurements of Biological Cells

Authors: Anil Koklu, Amin Mansoorifar, Ali Beskok

Abstract:

Dielectric spectroscopy (DS) is a noninvasive, label free technique for a long term real-time measurements of the impedance spectra of biological cells. DS enables characterization of cellular dielectric properties such as membrane capacitance and cytoplasmic conductivity. We have developed a lab-on-a-chip device that uses an electro-activated microwells array for loading, DS measurements, and unloading of biological cells. We utilized from dielectrophoresis (DEP) to capture target cells inside the wells and release them after DS measurement. DEP is a label-free technique that exploits differences among dielectric properties of the particles. In detail, DEP is the motion of polarizable particles suspended in an ionic solution and subjected to a spatially non-uniform external electric field. To the best of our knowledge, this is the first microfluidic chip that combines DEP and DS to analyze biological cells using electro-activated wells. Device performance is tested using two different cell lines of prostate cancer cells (RV122, PC-3). Impedance measurements were conducted at 0.2 V in the 10 kHz to 40 MHz range with 6 s time resolution. An equivalent circuit model was developed to extract the cell membrane capacitance and cell cytoplasmic conductivity from the impedance spectra. We report the time course of the variations in dielectric properties of PC-3 and RV122 cells suspended in low conductivity medium (LCB), which enhances dielectrophoretic and impedance responses, and their response to sudden pH change from a pH of 7.3 to a pH of 5.8. It is shown that microfluidic chip allowed online measurements of dielectric properties of prostate cancer cells and the assessment of the cellular level variations under external stimuli such as different buffer conductivity and pH. Based on these data, we intend to deploy the current device for single cell measurements by fabricating separately addressable N × N electrode platforms. Such a device will allow time-dependent dielectric response measurements for individual cells with the ability of selectively releasing them using negative-DEP and pressure driven flow.

Keywords: microfluidic, microfabrication, lab on a chip, AC electrokinetics, dielectric spectroscopy

Procedia PDF Downloads 134
3116 Cellular Targeting to Dual Gaseous Microenvironments by Polydimethylsiloxane Microchip

Authors: Samineh Barmaki, Ville Jokinen, Esko Kankuri

Abstract:

We report a microfluidic chip that can be used to modify the gaseous microenvironment of a cell-culture in ambient atmospheric conditions. The aim of the study is to show the cellular response to nitric oxide (NO) under hypoxic (oxygen < 5%) condition. Simultaneously targeting to hypoxic and nitric oxide will provide an opportunity for NO‑based therapeutics. Studies on cellular responses to lowered oxygen concentration or to gaseous mediators are usually carried out under a specific macro environment, such as hypoxia chambers, or with specific NO donor molecules that may have additional toxic effects. In our study, the chip consists of a microfluidic layer and a cell culture well, separated by a thin gas permeable polydimethylsiloxane (PDMS) membrane. The main design goal is to separate the gas oxygen scavenger and NO donor solutions, which are often toxic, from the cell media. Two different types of gas exchangers, titled 'pool' and 'meander' were tested. We find that the pool design allows us to reach a higher level of oxygen depletion than meander (24.32 ± 19.82 %vs -3.21 ± 8.81). Our microchip design can make the cells culture more simple and makes it easy to adapt existing cell culture protocols. Our first application is utilizing the chip to create hypoxic conditions on targeted areas of cell culture. In this study, oxygen scavenger sodium sulfite generates hypoxia and its effect on human embryonic kidney cells (HEK-293). The PDMS membrane was coated with fibronectin before initiating cell cultures, and the cells were grown for 48h on the chips before initiating the gas control experiments. The hypoxia experiments were performed by pumping of O₂-depleted H₂O into the microfluidic channel with a flow-rate of 0.5 ml/h. Image-iT® reagent as an oxygen level responser was mixed with HEK-293 cells. The fluorescent signal appears on cells stained with Image-iT® hypoxia reagent (after 6h of pumping oxygen-depleted H₂O through the microfluidic channel in pool area). The exposure to different levels of O₂ can be controlled by varying the thickness of the PDMS membrane. Recently, we improved the design of the microfluidic chip, which can control the microenvironment of two different gases at the same time. The hypoxic response was also improved from the new design of microchip. The cells were grown on the thin PDMS membrane for 30 hours, and with a flowrate of 0.1 ml/h; the oxygen scavenger was pumped into the microfluidic channel. We also show that by pumping sodium nitroprusside (SNP) as a nitric oxide donor activated under light and can generate nitric oxide on top of PDMS membrane. We are aiming to show cellular microenvironment response of HEK-293 cells to both nitric oxide (by pumping SNP) and hypoxia (by pumping oxygen scavenger solution) in separated channels in one microfluidic chip.

Keywords: hypoxia, nitric oxide, microenvironment, microfluidic chip, sodium nitroprusside, SNP

Procedia PDF Downloads 121
3115 Coronin 1C and miR-128A as Potential Diagnostic Biomarkers for Glioblastoma Multiform

Authors: Denis Mustafov, Emmanouil Karteris, Maria Braoudaki

Abstract:

Glioblastoma multiform (GBM) is a heterogenous primary brain tumour that kills most affected patients. To the authors best knowledge, despite all research efforts there is no early diagnostic biomarker for GBM. MicroRNAs (miRNAs) are short non-coding RNA molecules which are deregulated in many cancers. The aim of this research was to determine miRNAs with a diagnostic impact and to potentially identify promising therapeutic targets for glioblastoma multiform. In silico analysis was performed to identify deregulated miRNAs with diagnostic relevance for glioblastoma. The expression profiles of the chosen miRNAs were then validated in vitro in the human glioblastoma cell lines A172 and U-87MG. Briefly, RNA extraction was carried out using the Trizol method, whilst miRNA extraction was performed using the mirVANA miRNA isolation kit. Quantitative Real-Time Polymerase Chain Reaction was performed to verify their expression. The presence of five target proteins within the A172 cell line was evaluated by Western blotting. The expression of the CORO1C protein within 32 GBM cases was examined via immunohistochemistry. The miRNAs identified in silico included miR-21-5p, miR-34a and miR-128a. These miRNAs were shown to target deregulated GBM genes, such as CDK6, E2F3, BMI1, JAG1, and CORO1C. miR-34a and miR-128a showed low expression profiles in comparison to a control miR-RNU-44 in both GBM cell lines suggesting tumour suppressor properties. Opposing, miR-21-5p demonstrated greater expression indicating that it could potentially function as an oncomiR. Western blotting revealed expression of all five proteins within the A172 cell line. In silico analysis also suggested that CORO1C is a target of miR-128a and miR-34a. Immunohistochemistry demonstrated that 75% of the GBM cases showed moderate to high expression of CORO1C protein. Greater understanding of the deregulated expression of miR-128a and the upregulation of CORO1C in GBM could potentially lead to the identification of a promising diagnostic biomarker signature for glioblastomas.

Keywords: non-coding RNAs, gene expression, brain tumours, immunohistochemistry

Procedia PDF Downloads 72
3114 Histopathological Features of Basal Cell Carcinoma: A Ten Year Retrospective Statistical Study in Egypt

Authors: Hala M. El-hanbuli, Mohammed F. Darweesh

Abstract:

The incidence rates of any tumor vary hugely with geographical location. Basal Cell Carcinoma (BCC) is one of the most common skin cancer that has many histopathologic subtypes. Objective: The aim was to study the histopathological features of BCC cases that were received in the Pathology Department, Kasr El-Aini hospital, Cairo University, Egypt during the period from Jan 2004 to Dec 2013 and to evaluate the clinical characters through the patient data available in the request sheets. Methods: Slides and data of BCC cases were collected from the archives of the pathology department, Kasr El-Aini hospital. Revision of all available slides and histological classification of BCC according to WHO (2006) was done. Results: A total number of 310 cases of BCC representing about 65% from the total number of malignant skin tumors examined during the 10-years duration in the department. The age ranged from 8 to 84 years, the mean age was (55.7 ± 15.5). Most of the patients (85%) were above the age of 40 years. There was a slight male predominance (55%). Ulcerated BCC was the most common gross picture (60%), followed by nodular lesion (30%) and finally the ulcerated nodule (10%). Most of the lesions situated in the high-risk sites (77%) where the nose was the most common site (35%) followed by the periocular area (22%), then periauricular (15%) and finally perioral (5%). No lesion was reported outside the head. The tumor size was less than 2 centimeters in 65% of cases, and from 2-5 centimeters in the lesions' greatest dimension in the rest of cases. Histopathological reclassification revealed that the nodular BCC was the most common (68%) followed by the pigmented nodular (18.75%). The histologic high-risk groups represented (7.5%) about half of them (3.75%) being basosquamous carcinoma. The total incidence for multiple BCC and 2nd primary was 12%. Recurrent BCC represented 8%. All of the recurrent lesions of BCC belonged to the histologic high-risk group. Conclusion: Basal Cell Carcinoma is the most common skin cancer in the 10-year survey. Histopathological diagnosis and classification of BCC cases are essential for the determination of the tumor type and its biological behavior.

Keywords: basal cell carcinoma, high risk, histopathological features, statistical analysis

Procedia PDF Downloads 138
3113 Estimation of Soil Erosion and Sediment Yield for ONG River Using GIS

Authors: Sanjay Kumar Behera, Kanhu Charan Patra

Abstract:

A GIS-based method has been applied for the determination of soil erosion and sediment yield in a small watershed in Ong River basin, Odisha, India. The method involves spatial disintegration of the catchment into homogenous grid cells to capture the catchment heterogeneity. The gross soil erosion in each cell was calculated using Universal Soil Loss Equation (USLE) by carefully determining its various parameters. The concept of sediment delivery ratio is used to route surface erosion from each of the discretized cells to the catchment outlet. The process of sediment delivery from grid cells to the catchment outlet is represented by the topographical characteristics of the cells. The effect of DEM resolution on sediment yield is analyzed using two different resolutions of DEM. The spatial discretization of the catchment and derivation of the physical parameters related to erosion in the cell are performed through GIS techniques.

Keywords: DEM, GIS, sediment delivery ratio, sediment yield, soil erosion

Procedia PDF Downloads 432
3112 Microbial Fuel Cells and Their Applications in Electricity Generating and Wastewater Treatment

Authors: Shima Fasahat

Abstract:

This research is an experimental research which was done about microbial fuel cells in order to study them for electricity generating and wastewater treatment. These days, it is very important to find new, clean and sustainable ways for energy supplying. Because of this reason there are many researchers around the world who are studying about new and sustainable energies. There are different ways to produce these kind of energies like: solar cells, wind turbines, geothermal energy, fuel cells and many other ways. Fuel cells have different types one of these types is microbial fuel cell. In this research, an MFC was built in order to study how it can be used for electricity generating and wastewater treatment. The microbial fuel cell which was used in this research is a reactor that has two tanks with a catalyst solution. The chemical reaction in microbial fuel cells is a redox reaction. The microbial fuel cell in this research is a two chamber MFC. Anode chamber is an anaerobic one (ABR reactor) and the other chamber is a cathode chamber. Anode chamber consists of stabilized sludge which is the source of microorganisms that do redox reaction. The main microorganisms here are: Propionibacterium and Clostridium. The electrodes of anode chamber are graphite pages. Cathode chamber consists of graphite page electrodes and catalysts like: O2, KMnO4 and C6N6FeK4. The membrane which separates the chambers is Nafion117. The reason of choosing this membrane is explained in the complete paper. The main goal of this research is to generate electricity and treating wastewater. It was found that when you use electron receptor compounds like: O2, MnO4, C6N6FeK4 the velocity of electron receiving speeds up and in a less time more current will be achieved. It was found that the best compounds for this purpose are compounds which have iron in their chemical formula. It is also important to pay attention to the amount of nutrients which enters to bacteria chamber. By adding extra nutrients in some cases the result will be reverse.  By using ABR the amount of chemical oxidation demand reduces per day till it arrives to a stable amount.

Keywords: anaerobic baffled reactor, bioenergy, electrode, energy efficient, microbial fuel cell, renewable chemicals, sustainable

Procedia PDF Downloads 209
3111 Induction of Callus and Expression of Compounds in Capsicum Frutescens Supplemented with of 2, 4-D

Authors: Jamilah Syafawati Yaacob, Muhammad Aiman Ramli

Abstract:

Cili padi or Capsicum frutescens is one of capsicum species from nightshade family, Solanaceae. It is famous in Malaysia and is widely used as a food ingredient. Capsicum frutescens also possess vast medicinal properties. The objectives of this study are to determine the most optimum 2,4-D hormone concentration for callus induction from stem explants C. frutescens and the effects of different 2,4-D concentrations on expression of compounds from C. frutescens. Seeds were cultured on MS media without hormones (MS basal media) to yield aseptic seedlings of this species, which were then used to supply explant source for subsequent tissue culture experiments. Stem explants were excised from aseptic seedlings and cultured on MS media supplemented with various concentrations (0.1, 0.3 and 0.5 mg/L) of 2,4-D to induce formation of callus. Fresh weight, dry weight and callus growth percentage in all samples were recorded. The highest mean of dry weight was observed in MS media supplemented with 0.5 mg/L 2,4-D, where 0.4499 ± 0.106 g of callus was produced. The highest percentage of callus growth (16.4%) was also observed in cultures supplemented with 0.5 mg/L 2,4-D. The callus samples were also subjected to HPLC-MS to evaluate the effect of hormone concentration on expression of bio active compounds in different samples. Results showed that caffeoylferuloylquinic acids were present in all samples, but was most abundant in callus cells supplemented with 0.3 & 0.5 mg/L 2,4-D. Interestingly, there was an unknown compound observed to be highly expressed in callus cells supplemented with 0.1 mg/L 2,4-D, but its presence was less significant in callus cells supplemented with 0.3 and 0.5 mg/L 2,4-D. Furthermore, there was also a compound identified as octadecadienoic acid, which was uniquely expressed in callus supplemented with 0.5 mg/L 2,4-D, but absent in callus cells supplemented with 0.1 and 0.3 mg/L 2,4-D. The results obtained in this study indicated that plant growth regulators played a role in expression of secondary metabolites in plants. The increase or decrease of these growth regulators may have triggered a change in the secondary metabolite biosynthesis pathways, thus causing differential expression of compounds in this plant.

Keywords: callus, in vitro, secondary metabolite, 2, 4-Dichlorophenoxyacetic acid

Procedia PDF Downloads 361
3110 Evaluation of Anti-Cancer Activities of Formononetin in Lung Cancer by in vitro Methods

Authors: Vishnu Varthan Vaithiyalingam Jagannathan, Lakshmi Karunanidhi Santhanalakshmi, Srividya Ammayappan Rajam

Abstract:

Formononetin is the O-Methoxy Flavonol that has many pharmacological activities, which belongs to the flavonoid family. In the current study, activity of this molecule was evaluated in lung cancer cell lines. In general, flavonoids possess certain anticancer mechanism. Being a flavonoid subfamily, this molecule was subjected to evaluate cytotoxicity assay by MTT ((3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide)) stain, mode of cell death assay stained by acridine orange and ethidium bromide and Evaluation of Apoptosis pathway (extrinsic or intrinsic) by Caspase 3/7 stain and Rhodamine-123 stain. From the results, we could able to confirm that the investigatory molecule formononetin has anticancer activity and in future, the study will propose to evaluate the formononetin action against genetic changes occurs during lung cancer progression.

Keywords: Caspase 3/7, formononetin, lung cancer, Rhodamine-123

Procedia PDF Downloads 199
3109 Synthesis, Characterization and Bioactivity of Methotrexate Conjugated Fluorescent Carbon Nanoparticles in vitro Model System Using Human Lung Carcinoma Cell Lines

Authors: Abdul Matin, Muhammad Ajmal, Uzma Yunus, Noaman-ul Haq, Hafiz M. Shohaib, Ambreen G. Muazzam

Abstract:

Carbon nanoparticles (CNPs) have unique properties that are useful for the diagnosis and treatment of cancer due to their precise properties like small size (ideal for delivery within the body) stability in solvent and tunable surface chemistry for targeted delivery. Here, highly fluorescent, monodispersed and water-soluble CNPs were synthesized directly from a suitable carbohydrate source (glucose and sucrose) by one-step acid assisted ultrasonic treatment at 35 KHz for 4 hours. This method is green, simple, rapid and economical and can be used for large scale production and applications. The average particle sizes of CNPs are less than 10nm and they emit bright and colorful green-blue fluorescence under the irradiation of UV-light at 365nm. The CNPs were characterized by scanning electron microscopy, fluorescent spectrophotometry, Fourier transform infrared spectrophotometry, ultraviolet-visible spectrophotometry and TGA analysis. Fluorescent CNPs were used as fluorescent probe and nano-carriers for anticancer drug. Functionalized CNPs (with ethylene diamine) were attached with anticancer drug-Methotrexate. In vitro bioactivity and biocompatibility of CNPs-drug conjugates was evaluated by LDH assay and Sulforhodamine B assay using human lung carcinoma cell lines (H157). Our results reveled that CNPs showed biocompatibility and CNPs-anticancer drug conjugates have shown potent cytotoxic effects and high antitumor activities in lung cancer cell lines. CNPs are proved to be excellent substitute for conventional drug delivery cargo systems and anticancer therapeutics in vitro. Our future studies will be more focused on using the same nanoparticles in vivo model system.

Keywords: carbon nanoparticles, carbon nanoparticles-methotrexate conjugates, human lung carcinoma cell lines, lactate dehydrogenase, methotrexate

Procedia PDF Downloads 292
3108 Synthesis and in-vitro Evaluation of Quinozolines as Potent EGFR Inhibitor

Authors: Vinaya Kambappa, Chinnadurai Mani, Komaraiah Palle

Abstract:

Non-small cell-lung cancer (NSCLC) cells have increased expression of EGFR, which makes them a potential target for cancer therapy. Based on molecular docking and previous reports, we designed and synthesized quinazoline derivatives as potent EGFR inhibitors. Among the derivatives, three compounds showed good antiproliferative activity against A-549 and H-1299 cells. Furthermore, these compounds inhibited EGFR signaling exhibiting diminishing p-EGFR and its downstream proteins like p-Akt, p-Erk1/2, and p-mTOR; however, it did not alter the levels of EGFR, Akt, Erk1/2 and mTOR proteins. Flow cytometric analysis indicated the accumulation of cells at G1 phase suggesting induction of apoptosis, which was further confirmed by annexin V/propidium iodide staining. Our study suggested that quinazoline scaffold can be developed as novel EGFR kinase inhibitors for cancer therapy.

Keywords: apoptosis, non-small cell-lung cancer cells, EGFR, quinazoline

Procedia PDF Downloads 171
3107 Exploiting Non-Uniform Utility of Computing: A Case Study

Authors: Arnab Sarkar, Michael Huang, Chuang Ren, Jun Li

Abstract:

The increasing importance of computing in modern society has brought substantial growth in the demand for more computational power. In some problem domains such as scientific simulations, available computational power still sets a limit on what can be practically explored in computation. For many types of code, there is non-uniformity in the utility of computation. That is not every piece of computation contributes equally to the quality of the result. If this non-uniformity is understood well and exploited effectively, we can much more effectively utilize available computing power. In this paper, we discuss a case study of exploring such non-uniformity in a particle-in-cell simulation platform. We find both the existence of significant non-uniformity and that it is generally straightforward to exploit it. We show the potential of order-of-magnitude effective performance gain while keeping the comparable quality of output. We also discuss some challenges in both the practical application of the idea and evaluation of its impact.

Keywords: approximate computing, landau damping, non uniform utility computing, particle-in-cell

Procedia PDF Downloads 240
3106 A Bioinspired Anti-Fouling Coating for Implantable Medical Devices

Authors: Natalie Riley, Anita Quigley, Robert M. I. Kapsa, George W. Greene

Abstract:

As the fields of medicine and bionics grow rapidly in technological advancement, the future and success of it depends on the ability to effectively interface between the artificial and the biological worlds. The biggest obstacle when it comes to implantable, electronic medical devices, is maintaining a ‘clean’, low noise electrical connection that allows for efficient sharing of electrical information between the artificial and biological systems. Implant fouling occurs with the adhesion and accumulation of proteins and various cell types as a result of the immune response to protect itself from the foreign object, essentially forming an electrical insulation barrier that often leads to implant failure over time. Lubricin (LUB) functions as a major boundary lubricant in articular joints, a unique glycoprotein with impressive anti-adhesive properties that self-assembles to virtually any substrate to form a highly ordered, ‘telechelic’ polymer brush. LUB does not passivate electroactive surfaces which makes it ideal, along with its innate biocompatibility, as a coating for implantable bionic electrodes. It is the aim of the study to investigate LUB’s anti-fouling properties and its potential as a safe, bioinspired material for coating applications to enhance the performance and longevity of implantable medical devices as well as reducing the frequency of implant replacement surgeries. Native, bovine-derived LUB (N-LUB) and recombinant LUB (R-LUB) were applied to gold-coated mylar surfaces. Fibroblast, chondrocyte and neural cell types were cultured and grown on the coatings under both passive and electrically stimulated conditions to test the stability and anti-adhesive property of the LUB coating in the presence of an electric field. Lactate dehydrogenase (LDH) assays were conducted as a directly proportional cell population count on each surface along with immunofluorescent microscopy to visualize cells. One-way analysis of variance (ANOVA) with post-hoc Tukey’s test was used to test for statistical significance. Under both passive and electrically stimulated conditions, LUB significantly reduced cell attachment compared to bare gold. Comparing the two coating types, R-LUB reduced cell attachment significantly compared to its native counterpart. Immunofluorescent micrographs visually confirmed LUB’s antiadhesive property, R-LUB consistently demonstrating significantly less attached cells for both fibroblasts and chondrocytes. Preliminary results investigating neural cells have so far demonstrated that R-LUB has little effect on reducing neural cell attachment; the study is ongoing. Recombinant LUB coatings demonstrated impressive anti-adhesive properties, reducing cell attachment in fibroblasts and chondrocytes. These findings and the availability of recombinant LUB brings into question the results of previous experiments conducted using native-derived LUB, its potential not adequately represented nor realized due to unknown factors and impurities that warrant further study. R-LUB is stable and maintains its anti-fouling property under electrical stimulation, making it suitable for electroactive surfaces.

Keywords: anti-fouling, bioinspired, cell attachment, lubricin

Procedia PDF Downloads 109
3105 Environmental Implications of Groundwater Quality in Irrigated Agriculture in Kebbi State, Nigeria

Authors: O. I. Ojo, W. B. R. Graham, I. W. Pishiria

Abstract:

The quality of groundwater used for irrigation in Kebbi State, northwestern Nigeria was evaluated. Open-well, tube-well and borehole water samples were collected from various locations in the State. The water samples analyzed had pH values below the normal range for irrigation water and very low to moderate salinity (electrical conductivity 0.05-0.82 dS.m-1). The adjusted sodium adsorption ratio values in all the samples were also very low (<0.2), indicating very low sodicity hazards. However, irrigation water of very low salinity (<0.2dS.m-1) and low SAR can lead to problems of infiltration into soils. The Ca: Mg ratio (<1) in most of the samples may lead to Ca deficiency in soils after long term use. The nitrate concentration in most of the samples was high ranging from 4.5 to >50mg/L.

Keywords: ground water quality, irrigation, characteristics, soil drainage, salinity, Fadama

Procedia PDF Downloads 271
3104 Thiourea Modified Cadmium Sulfide Film for Solar Cell Application

Authors: Rupali Mane

Abstract:

Cadmium sulfide (Cds) thin films were chemically deposited at room temperature, from aqueous ammonia solution using CdCl₂ (Cadmium chloride) as a Cd²⁺ and CS(NH₂)₂ (Thiourea) as S² ion sources. ‘as-deposited’ films were uniform, well adherent to the glass substrate, secularly reflective and yellowish in color. The ‘as-deposited ’Cds layers grew with nano-crystalline in nature and exhibit cubic structure, with blue-shift in optical band gap. The films were annealed in air atmosphere for two hours at different temperatures and further characterized for compositional, structural, morphological and optical properties. The XRD and SEM studies clearly revealed the systematic changes in morphological and structural form of Cds films with an improvement in the crystal quality. The annealed films showed ‘red-shift’ in the optical spectra after thermal treatment. The Thiourea modified CdS film could be good to provide solar cell application.

Keywords: cadmium sulfide, thin films, nano-crystalline, XRD

Procedia PDF Downloads 335
3103 Pattern Recognition Approach Based on Metabolite Profiling Using In vitro Cancer Cell Line

Authors: Amanina Iymia Jeffree, Reena Thriumani, Mohammad Iqbal Omar, Ammar Zakaria, Yumi Zuhanis Has-Yun Hashim, Ali Yeon Md Shakaff

Abstract:

Metabolite profiling is a strategy to be approached in the pattern recognition method focused on three types of cancer cell line that driving the most to death specifically lung, breast, and colon cancer. The purpose of this study was to discriminate the VOCs pattern among cancerous and control group based on metabolite profiling. The sampling was executed utilizing the cell culture technique. All culture flasks were incubated till 72 hours and data collection started after 24 hours. Every running sample took 24 minutes to be completed accordingly. The comparative metabolite patterns were identified by the implementation of headspace-solid phase micro-extraction (HS-SPME) sampling coupled with gas chromatography-mass spectrometry (GCMS). The optimizations of the main experimental variables such as oven temperature and time were evaluated by response surface methodology (RSM) to get the optimal condition. Volatiles were acknowledged through the National Institute of Standards and Technology (NIST) mass spectral database and retention time libraries. To improve the reliability of significance, it is of crucial importance to eliminate background noise which data from 3rd minutes to 17th minutes were selected for statistical analysis. Targeted metabolites, of which were annotated as known compounds with the peak area greater than 0.5 percent were highlighted and subsequently treated statistically. Volatiles produced contain hundreds to thousands of compounds; therefore, it will be optimized by chemometric analysis, such as principal component analysis (PCA) as a preliminary analysis before subjected to a pattern classifier for identification of VOC samples. The volatile organic compound profiling has shown to be significantly distinguished among cancerous and control group based on metabolite profiling.

Keywords: in vitro cancer cell line, metabolite profiling, pattern recognition, volatile organic compounds

Procedia PDF Downloads 352
3102 Performance and Lifetime of Tandem Organic Solar Cells

Authors: Guillaume Schuchardt, Solenn Berson, Gerard Perrier

Abstract:

Multi-junction solar cell configurations, where two sub-cells with complementary absorption are stacked and connected in series, offer an exciting approach to tackle the single junction limitations of organic solar cells and improve their power conversion efficiency. However, the augmentation of the number of layers has, as a consequence, to increase the risk of reducing the lifetime of the cell due to the ageing phenomena present at the interfaces. In this work, we study the intrinsic degradation mechanisms, under continuous illumination AM1.5G, inert atmosphere and room temperature, in single and tandem organic solar cells using Impedance Spectroscopy, IV Curves, External Quantum Efficiency, Steady-State Photocarrier Grating, Scanning Kelvin Probe and UV-Visible light.

Keywords: single and tandem organic solar cells, intrinsic degradation mechanisms, characterization: SKP, EQE, SSPG, UV-Visible, Impedance Spectroscopy, optical simulation

Procedia PDF Downloads 349
3101 Assessment of the Impact of Trawling Activities on Marine Bottoms of Moroccan Atlantic

Authors: Rachida Houssa, Hassan Rhinane, Fadoumo Ali Malouw, Amina Oulmaalem

Abstract:

Since the early 70s, the Moroccan Atlantic sea was subjected to the pressure of the bottom trawling, one of the most destructive techniques seabed that cause havoc on fishing catch, nonselective, and responsible for more than half of all releases of fish around the world. The present paper aims to map and assess the impact of the activity of the bottom trawling of the Moroccan Atlantic coast. For this purpose, a dataset of thirty years, between 1962 and 1999, from foreign fishing vessels using bottom trawling, has been used and integrated in a GIS. To estimate the extent and the importance of the geographical distribution of the trawling effort, the Moroccan Atlantic area was divided into a grid of cells of 25 km2 (5x5 km). This grid was joined to the effort trawling data, creating a new entity with a table containing spatial overlay grid with the polygon of swept surfaces. This mapping model allowed to quantify the used fishing effort versus time and to generate the trace indicative of trawling efforts on the seabed. Indeed, for a given year, a grid cell may have a swept area equal to 0 (never been touched by the trawl) or 25 km2 (the trawled area is similar to the cell size) or may be 100 km2 indicating that for this year, the scanned surface is four times the cell area. The results show that the total cumulative sum of trawled area is approximately 28,738,326 km2, scattered throughout the Atlantic coast. 95% of the overall trawling effort is located in the southern zone, between 29°N and 20°30'N. Nearly 5% of the trawling effort is located in the northern coastal region, north of 33°N. The center area between 33°N and 29°N is the least swept by Russian commercial vessels because in this region the majority of the area is rocky, and non trawlable.

Keywords: GIS, Moroccan Atlantic Ocean, seabed, trawling

Procedia PDF Downloads 317