Search results for: clinical decision support systems
19647 Internal and External Factors Affecting Teachers’ Adoption of Formative Assessment to Support Learning
Authors: Kemal Izci
Abstract:
Assessment forms an important part of instruction. Assessment that aims to support learning is known as formative assessment and it contributes student’s learning gain and motivation. However, teachers rarely use assessment formatively to aid their students’ learning. Thus, reviewing the factors that limit or support teachers’ practices of formative assessment will be crucial for guiding educators to support prospective teachers in using formative assessment and also eliminate limiting factors to let practicing teachers to engage in formative assessment practices during their instruction. The study, by using teacher’s change environment framework, reviews literature on formative assessment and presents a tentative model that illustrates the factors impacting teachers’ adoption of formative assessment in their teaching. The results showed that there are four main factors consisting personal, contextual, resource-related and external factors that influence teachers’ practices of formative assessment.Keywords: assessment practices, formative assessment, teacher education, factors for use of formative assessment
Procedia PDF Downloads 37719646 Fathers' Knowledge and Attitude towards Breastfeeding: A Cross Sectional Study
Authors: Jacqueline R. Llamas, Agnes Regal
Abstract:
Objective: To determine the breastfeeding knowledge and attitudes of fathers seen at the University of Santo Tomas Hospital. Design: Cross-sectional design. Setting: University of Santo Tomas Hospital (USTH). Participants: 156 fathers who were accompanying their wives/children at the USTH. Findings: Outcome of the Iowa Infant Feeding Attitude Scale showed fathers to be generally unbiased whether their child be fed breast milk or milk formula. About 85% agreed that breast milk is the ideal food for babies, 79% believed that breastfed babies are healthier than formula fed and 55% of them do not believe that breast milk lacks iron. About 80% agreed that it is easily digested, 87% are aware of the economical value and 57% agreed of its convenience. Breastfeeding support was noted when 55% of the fathers would encourage mothers to breastfeed so as not to miss the joys of motherhood, 91% believed that breastfeeding increased mother-infant bonding. About 57% do not feel left out whenever the mothers breastfeed. However, 46.6% support the decision of their wives to switch to formula feeding once they go back to work, 42% only find breastfeeding in public to be acceptable and 57% will not allow breast feeding to mothers who drink alcohol. Conclusion: In the study, although fathers’ attitude toward breastfeeding is unbiased towards breastfeeding or formula feeding, the majority of the fathers appreciate breastfeeding and its benefits. Also, how the father’s level of education, age, profession, household income and number of children had an effect on their attitude towards breastfeeding.Keywords: father, breastfeeding, breast milk, knowledge
Procedia PDF Downloads 42619645 Strategic Thinking to Enhance Critical Transport Infrastructure and Build Resilience
Authors: Jayantha Withanaarachchi, Sujeeva Setunge, Sara Moridpour
Abstract:
Gaps in strategic thinking and planning lead to critical transport infrastructure resilience. These gaps in strategic transport and land use development planning have an impact on communities and cities. Natural and man-induced disasters can be catastrophic to communities. After a disaster, many types of critical infrastructure, including transport infrastructure gets un-usable or gets damaged. This paper examines strategic thinking behind the resilience and protection of Critical Transport Infrastructure (CI) within transport networks by investigating the impact of disasters such as bushfires, hurricanes and earthquakes. A detailed analysis of three case studies have been conducted to identify the gaps in strategic transport planning and strategic decision making processes required to mitigate the impacts of disasters. Case studies will be analysed to identify existing gaps in road design, transport planning and decision making. This paper examines the effect of road designing, transport corridors and decision making during transport planning stages and how it impacts transport infrastructure as well as community resilience. A set of recommendations to overcome the shortcomings of existing strategic planning and designing process are presented. This research paper reviews transport infrastructure planning issues and presents the common approach suitable for future strategic thinking and planning which could be adopted in practices.Keywords: community resilience, decision making , infrastructure resilience, strategic transport planning, transport infrastructure
Procedia PDF Downloads 29319644 Terrorism Is a Crime under International Law
Authors: Miguel Manero De Lemos
Abstract:
The ‘innovative and creative’ seminal decision of the Special Tribunal for Lebanon (STL) was not welcomed by academic opinion. The court recognized that terrorism is a crime under international law in times of peace. Scholars widely – and sometimes aggressively – criticize this conclusion. This article asserts that, while some aspects of the decision of the STL might be defective, the basic premise, that it is indeed such a crime, is sound. This article delves into the method that the court used to attain such an outcome and explains why the conclusion of the court is correct, albeit the use of a different method is to be preferred. It also argues that subsequent developments leave little room to keep arguing that there is no international crime of terrorism.Keywords: terrorism, STL, crime, international criminal law
Procedia PDF Downloads 33219643 The Use of Respiratory Index of Severity in Children (RISC) for Predicting Clinical Outcomes for 3 Months-59 Months Old Patients Hospitalized with Community-Acquired Pneumonia in Visayas Community Medical Center, Cebu City from January 2013 - June 2
Authors: Karl Owen L. Suan, Juliet Marie S. Lambayan, Floramay P. Salo-Curato
Abstract:
Objective: To predict the outcome among patients admitted with community-acquired pneumonia (ages 3 months to 59 months old) admitted in Visayas Community Medical Center using the Respiratory Index of Severity in Children (RISC). Design: A cross-sectional study design was used. Setting: The study was done in Visayas Community Medical Center, which is a private tertiary level in Cebu City from January-June 2013. Patients/Participants: A total of 72 patients were initially enrolled in the study. However, 1 patient transferred to another institution, thus 71 patients were included in this study. Within 24 hours from admission, patients were assigned a RISC score. Statistical Analysis: Cohen’s kappa coefficient was used for inter-rater agreement for categorical data. This study used frequency and percentage distribution for qualitative data. Mean, standard deviation and range were used for quantitative data. To determine the relationship of each RISC score parameter and the total RISC score with the outcome, a Mann Whitney U Test and 2x2 Fischer Exact test for testing associations were used. A p value less of than 0.05 alpha was considered significant. Results: There was a statistical significance between RISC score and clinical outcome. RISC score of greater than 4 was correlated with intubation and/or mortality. Conclusion: The RISC scoring system is a simple combination of clinical parameters and a reliable tool that will help stratify patients aged 3 months to 59 months in predicting clinical outcome.Keywords: RISC, clinical outcome, community-acquired pneumonia, patients
Procedia PDF Downloads 30219642 Thai Tourists’ Satisfaction and Tourist’s Decision Making Process in Southern of Thailand
Authors: Rewadee Waiyawassana
Abstract:
The objectives of the research on Thai tourists’ satisfaction of visiting Southern of Thailand are i) to study the Thai tourists’ satisfaction who select southern of Thailand as their destinations ii) to study their tourist’s decision making process in Southern of Thailand. The samples of the study are 619 Thai visitors at Southern of Thailand by accidental sampling technic and focus group interview for 12 key informant by purposive sampling. The data analysis includes Percentage, Frequency and One-way ANOVA. The findings from the research are the satisfaction of Thai visitors on southern of Thailand ranks from the resources of the destination, transportation, convenience, security, and promotion and public relations; with the high level of satisfaction on all the factors the government or responsible agencies should also modernize the marketing and public relation with increasing public relations, the potential visitors shall be updated with new information and alternative tourist destination also.Keywords: public relations, Southern of Thailand, Thai Tourists’ satisfaction, Tourist’s decision making process
Procedia PDF Downloads 32819641 The Ecosystem of Food Allergy Clinical Trials: A Systematic Review
Authors: Eimar Yadir Quintero Tapias
Abstract:
Background: Science is not generally self-correcting; many clinical studies end with the same conclusion "more research is needed." This study hypothesizes that first, we need a better appraisal of the available (and unavailable) evidence instead of creating more of the same false inquiries. Methods: Systematic review of ClinicalTrials.gov study records using the following Boolean operators: (food OR nut OR milk OR egg OR shellfish OR wheat OR peanuts) AND (allergy OR allergies OR hypersensitivity OR hypersensitivities). Variables included the status of the study (e g., active and completed), availability of results, sponsor type, sample size, among others. To determine the rates of non-publication in journals indexed by PubMed, an advanced search query using the specific Number of Clinical Trials (e.g., NCT000001 OR NCT000002 OR...) was performed. As a prophylactic measure to prevent P-hacking, data analyses only included descriptive statistics and not inferential approaches. Results: A total of 2092 study records matched the search query described above (date: September 13, 2019). Most studies were interventional (n = 1770; 84.6%) and the remainder observational (n = 322; 15.4%). Universities, hospitals, and research centers sponsored over half of these investigations (n = 1208; 57.7%), 308 studies (14.7%) were industry-funded, and 147 received NIH grants; the remaining studies got mixed sponsorship. Regarding completed studies (n = 1156; 55.2%), 248 (21.5%) have results available at the registry site, and 417 (36.1%) matched NCT numbers of journal papers indexed by PubMed. Conclusions: The internal and external validity of human research is critical for the appraisal of medical evidence. It is imperative to analyze the entire dataset of clinical studies, preferably at a patient-level anonymized raw data, before rushing to conclusions with insufficient and inadequate information. Publication bias and non-registration of clinical trials limit the evaluation of the evidence concerning therapeutic interventions for food allergy, such as oral and sublingual immunotherapy, as well as any other medical condition. Over half of the food allergy human research remains unpublished.Keywords: allergy, clinical trials, immunology, systematic reviews
Procedia PDF Downloads 13819640 Determination of Identification and Antibiotic Resistance Rates of Pseudomonas aeruginosa Strains from Various Clinical Specimens in a University Hospital for Two Years, 2013-2015
Authors: Recep Kesli, Gulsah Asik, Cengiz Demir, Onur Turkyilmaz
Abstract:
Objective: Pseudomonas aeruginosa (P. aeruginosa) is an important nosocomial pathogen which causes serious hospital infections and is resistant to many commonly used antibiotics. P. aeruginosa can develop resistance during therapy and also it is very resistant to disinfectant chemicals. It may be found in respiratory support devices in hospitals. In this study, the antibiotic resistance of P. aeruginosa strains isolated from bronchial aspiration samples was evaluated retrospectively. Methods: Between October 2013 and September 2015, a total of 318 P. aeruginosa were isolated from clinical samples obtained from various intensive care units and inpatient patients hospitalized at Afyon Kocatepe University, ANS Practice and Research Hospital. Isolated bacteria identified by using both the conventional methods and automated identification system-VITEK 2 (bioMerieux, Marcy l’etoile France). Antibacterial resistance tests were performed by using Kirby-Bauer disc (Oxoid, Hampshire, England) diffusion method following the recommendations of CLSI. Results: Antibiotic resistance rates of identified 318 P. aeruginosa strains were found as follows for tested antibiotics; 32 % amikacin, 42% gentamicin, 43% imipenem, 43% meropenem, 50% ciprofloxacin, 57% levofloxacin, 38% cefepime, 63% ceftazidime, and 85% piperacillin/tazobactam. Conclusion: Resistance profiles change according to years and provinces for P. aeruginosa, so these findings should be considered empirical treatment choices. In this study, the highest and lowest resistance rates found against piperacillin/tazobactam % 85, and amikacin %32.Keywords: Pseudomonas aeruginosa, antibiotic resistance rates, intensive care unit, Pseudomonas spp.
Procedia PDF Downloads 29019639 Interventions and Supervision in Mental Health Services: Experiences of a Working Group in Brazil
Authors: Sonia Alberti
Abstract:
The Regional Conference to Restructure Psychiatric Care in Latin America, convened by the Pan American Health Organization (PAHO) in 1990, oriented the Brazilian Federal Act in 2001 that stipulated the psychiatric reform which requires deinstitutionalization and community-based treatment. Since then, the 15 years’ experience of different working teams in mental health led an academic working group – supervisors from personal practices, professors and researchers – to discuss certain clinical issues, as well as supervisions, and to organize colloquia in different cities as a methodology. These colloquia count on the participation of different working teams from the cities in which they are held, with team members with different levels of educational degrees and prior experiences, in order to increase dialogue right where it does not always appear to be possible. The principal aim of these colloquia is to gain interlocution between practitioners and academics. Working with the theory of case constructions, this methodology revealed itself helpful in unfolding new solutions. The paper also observes that there is not always harmony between what the psychiatric reform demands and clinical ethics.Keywords: mental health, supervision, clinical cases, Brazilian experience
Procedia PDF Downloads 27519638 Differences in Patient Satisfaction Observed between Female Japanese Breast Cancer Patients Who Receive Breast-Conserving Surgery or Total Mastectomy
Authors: Keiko Yamauchi, Motoyuki Nakao, Yoko Ishihara
Abstract:
The increase in the number of women with breast cancer in Japan has required hospitals to provide a higher quality of medicine so that patients are satisfied with the treatment they receive. However, patients’ satisfaction following breast cancer treatment has not been sufficiently studied. Hence, we investigated the factors influencing patient satisfaction following breast cancer treatment among Japanese women. These women underwent either breast-conserving surgery (BCS) (n = 380) or total mastectomy (TM) (n = 247). In March 2016, we conducted a cross-sectional internet survey of Japanese women with breast cancer in Japan. We assessed the following factors: socioeconomic status, cancer-related information, the role of medical decision-making, the degree of satisfaction regarding the treatments received, and the regret arising from the medical decision-making processes. We performed logistic regression analyses with the following dependent variables: extreme satisfaction with the treatments received, and regret regarding the medical decision-making process. For both types of surgery, the odds ratio (OR) of being extremely satisfied with the cancer treatment was significantly higher among patients who did not have any regrets compared to patients who had. Also, the OR tended to be higher among patients who chose to play a wanted role in the medical decision-making process, compared with patients who did not. In the BCS group, the OR of being extremely satisfied with the treatment was higher if, at diagnosis, the patient’s youngest child was older than 19 years, compared with patients with no children. The OR was also higher if patient considered the stage and characteristics of their cancer significant. The OR of being extremely satisfied with the treatments was lower among patients who were not employed on full-time basis, and among patients who considered the second medical opinions and medical expenses to be significant. These associations were not observed in the TM group. The OR of having regrets regarding the medical decision-making process was higher among patients who chose to play a role in the decision-making process as they preferred, and was also higher in patients who were employed on either a part-time or contractual basis. For both types of surgery, the OR was higher among patients who considered a second medical opinion to be significant. Regardless of surgical type, regret regarding the medical decision-making process decreases treatment satisfaction. Patients who received breast-conserving surgery were more likely to have regrets concerning the medical decision-making process if they could not play a role in the process as they preferred. In addition, factors associated with the satisfaction with treatment in BCS group but not TM group included the second medical opinion, medical expenses, employment status, and age of the youngest child at diagnosis.Keywords: medical decision making, breast-conserving surgery, total mastectomy, Japanese
Procedia PDF Downloads 14919637 An Augmented Reality Based Self-Learning Support System for Skills Training
Authors: Chinlun Lai, Yu-Mei Chang
Abstract:
In this paper, an augmented reality learning support system is proposed to replace the traditional teaching tool thus to help students improve their learning motivation, effectiveness, and efficiency. The system can not only reduce the exhaust of educational hardware and realistic material, but also provide an eco-friendly and self-learning practical environment in any time and anywhere with immediate practical experiences feedback. To achieve this, an interactive self-training methodology which containing step by step operation directions is designed using virtual 3D scenario and wearable device platforms. The course of nasogastric tube care of nursing skills is selected as the test example for self-learning and online test. From the experimental results, it is observed that the support system can not only increase the student’s learning interest but also improve the learning performance than the traditional teaching methods. Thus, it fulfills the strategy of learning by practice while reducing the related cost and effort significantly and is practical in various fields.Keywords: augmented reality technology, learning support system, self-learning, simulation learning method
Procedia PDF Downloads 16919636 Modelling Mode Choice Behaviour Using Cloud Theory
Authors: Leah Wright, Trevor Townsend
Abstract:
Mode choice models are crucial instruments in the analysis of travel behaviour. These models show the relationship between an individual’s choice of transportation mode for a given O-D pair and the individual’s socioeconomic characteristics such as household size and income level, age and/or gender, and the features of the transportation system. The most popular functional forms of these models are based on Utility-Based Choice Theory, which addresses the uncertainty in the decision-making process with the use of an error term. However, with the development of artificial intelligence, many researchers have started to take a different approach to travel demand modelling. In recent times, researchers have looked at using neural networks, fuzzy logic and rough set theory to develop improved mode choice formulas. The concept of cloud theory has recently been introduced to model decision-making under uncertainty. Unlike the previously mentioned theories, cloud theory recognises a relationship between randomness and fuzziness, two of the most common types of uncertainty. This research aims to investigate the use of cloud theory in mode choice models. This paper highlights the conceptual framework of the mode choice model using cloud theory. Merging decision-making under uncertainty and mode choice models is state of the art. The cloud theory model is expected to address the issues and concerns with the nested logit and improve the design of mode choice models and their use in travel demand.Keywords: Cloud theory, decision-making, mode choice models, travel behaviour, uncertainty
Procedia PDF Downloads 38919635 Conception of a Regulated, Dynamic and Intelligent Sewerage in Ostrevent
Authors: Rabaa Tlili Yaakoubi, Hind Nakouri, Olivier Blanpain
Abstract:
The current tools for real time management of sewer systems are based on two software tools: the software of weather forecast and the software of hydraulic simulation. The use of the first ones is an important cause of imprecision and uncertainty, the use of the second requires temporal important steps of decision because of their need in times of calculation. This way of proceeding fact that the obtained results are generally different from those waited. The major idea of the CARDIO project is to change the basic paradigm by approaching the problem by the "automatic" face rather than by that "hydrology". The objective is to make possible the realization of a large number of simulations at very short times (a few seconds) allowing to take place weather forecasts by using directly the real time meditative pluviometric data. The aim is to reach a system where the decision-making is realized from reliable data and where the correction of the error is permanent. A first model of control laws was realized and tested with different return-period rainfalls. The gains obtained in rejecting volume vary from 40 to 100%. The development of a new algorithm was then used to optimize calculation time and thus to overcome the subsequent combinatorial problem in our first approach. Finally, this new algorithm was tested with 16- year-rainfall series. The obtained gains are 60% of total volume rejected to the natural environment and of 80 % in the number of discharges.Keywords: RTC, paradigm, optimization, automation
Procedia PDF Downloads 28419634 Assessing Perinatal Mental Illness during the COVID-19 Pandemic: A Review of Measurement Tools
Authors: Mya Achike
Abstract:
Background and Significance: Perinatal mental illness covers a wide range of conditions and has a huge influence on maternal-child health. Issues and challenges with perinatal mental health have been associated with poor pregnancy, birth, and postpartum outcomes. It is estimated that one out of five new and expectant mothers experience some degree of perinatal mental illness, which makes this a hugely significant health outcome. Certain factors increase the maternal risk for mental illness. Challenges related to poverty, migration, extreme stress, exposure to violence, emergency and conflict situations, natural disasters, and pandemics can exacerbate mental health disorders. It is widely expected that perinatal mental health is being negatively affected during the present COVID-19 pandemic. Methods: A review of studies that reported a measurement tool to assess perinatal mental health outcomes during the COVID-19 pandemic was conducted following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. PubMed, CINAHL, and Google Scholar were used to search for peer-reviewed studies published after late 2019, in accordance with the emergence of the virus. The search resulted in the inclusion of ten studies. Approach to measure health outcome: The main approach to measure perinatal mental illness is the use of self-administered, validated questionnaires, usually in the clinical setting. Summary: Widespread use of these tools has afforded the clinical and research communities the ability to identify and support women who may be suffering from mental illness disorders during a pandemic. More research is needed to validate tools in other vulnerable, perinatal populations.Keywords: mental health during covid, perinatal mental health, perinatal mental health measurement tools, perinatal mental health tools
Procedia PDF Downloads 13519633 Self-Organizing Maps for Credit Card Fraud Detection
Authors: ChunYi Peng, Wei Hsuan CHeng, Shyh Kuang Ueng
Abstract:
This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies
Procedia PDF Downloads 6019632 Hybrid Weighted Multiple Attribute Decision Making Handover Method for Heterogeneous Networks
Authors: Mohanad Alhabo, Li Zhang, Naveed Nawaz
Abstract:
Small cell deployment in 5G networks is a promising technology to enhance capacity and coverage. However, unplanned deployment may cause high interference levels and high number of unnecessary handovers, which in turn will result in an increase in the signalling overhead. To guarantee service continuity, minimize unnecessary handovers, and reduce signalling overhead in heterogeneous networks, it is essential to properly model the handover decision problem. In this paper, we model the handover decision according to Multiple Attribute Decision Making (MADM) method, specifically Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). In this paper, we propose a hybrid TOPSIS method to control the handover in heterogeneous network. The proposed method adopts a hybrid weighting, which is a combination of entropy and standard deviation. A hybrid weighting control parameter is introduced to balance the impact of the standard deviation and entropy weighting on the network selection process and the overall performance. Our proposed method shows better performance, in terms of the number of frequent handovers and the mean user throughput, compared to the existing methods.Keywords: handover, HetNets, interference, MADM, small cells, TOPSIS, weight
Procedia PDF Downloads 15019631 Good Practices for Model Structure Development and Managing Structural Uncertainty in Decision Making
Authors: Hossein Afzali
Abstract:
Increasingly, decision analytic models are used to inform decisions about whether or not to publicly fund new health technologies. It is well noted that the accuracy of model predictions is strongly influenced by the appropriateness of model structuring. However, there is relatively inadequate methodological guidance surrounding this issue in guidelines developed by national funding bodies such as the Australian Pharmaceutical Benefits Advisory Committee (PBAC) and The National Institute for Health and Care Excellence (NICE) in the UK. This presentation aims to discuss issues around model structuring within decision making with a focus on (1) the need for a transparent and evidence-based model structuring process to inform the most appropriate set of structural aspects as the base case analysis; (2) the need to characterise structural uncertainty (If there exist alternative plausible structural assumptions (or judgements), there is a need to appropriately characterise the related structural uncertainty). The presentation will provide an opportunity to share ideas and experiences on how the guidelines developed by national funding bodies address the above issues and identify areas for further improvements. First, a review and analysis of the literature and guidelines developed by PBAC and NICE will be provided. Then, it will be discussed how the issues around model structuring (including structural uncertainty) are not handled and justified in a systematic way within the decision-making process, its potential impact on the quality of public funding decisions, and how it should be presented in submissions to national funding bodies. This presentation represents a contribution to the good modelling practice within the decision-making process. Although the presentation focuses on the PBAC and NICE guidelines, the discussion can be applied more widely to many other national funding bodies that use economic evaluation to inform funding decisions but do not transparently address model structuring issues e.g. the Medical Services Advisory Committee (MSAC) in Australia or the Canadian Agency for Drugs and Technologies in Health.Keywords: decision-making process, economic evaluation, good modelling practice, structural uncertainty
Procedia PDF Downloads 18719630 Second-Order Complex Systems: Case Studies of Autonomy and Free Will
Authors: Eric Sanchis
Abstract:
Although there does not exist a definitive consensus on a precise definition of a complex system, it is generally considered that a system is complex by nature. The presented work illustrates a different point of view: a system becomes complex only with regard to the question posed to it, i.e., with regard to the problem which has to be solved. A complex system is a couple (question, object). Because the number of questions posed to a given object can be potentially substantial, complexity does not present a uniform face. Two types of complex systems are clearly identified: first-order complex systems and second-order complex systems. First-order complex systems physically exist. They are well-known because they have been studied by the scientific community for a long time. In second-order complex systems, complexity results from the system composition and its articulation that are partially unknown. For some of these systems, there is no evidence of their existence. Vagueness is the keyword characterizing this kind of systems. Autonomy and free will, two mental productions of the human cognitive system, can be identified as second-order complex systems. A classification based on the properties structure makes it possible to discriminate complex properties from the others and to model this kind of second order complex systems. The final outcome is an implementable synthetic property that distinguishes the solid aspects of the actual property from those that are uncertain.Keywords: autonomy, free will, synthetic property, vaporous complex systems
Procedia PDF Downloads 20519629 Addressing Challenging Behaviours of Individuals with Positive Behaviour Support
Authors: Divi Sharma
Abstract:
The emergence of positive behaviour support (PBS) is directly linked to applied behaviour analysis that incorporates evidence-based approaches to addressing ethical challenges and improving autonomy, participation, and the overall quality of life of people living and learning in complex social environments. Its features include lifestyle improvement, collaboration with general caregivers, tracking progress with sound steps, comprehensive performance-based interventions, striving for contextual equality, and ensuring entry and implementation. This document aims to summarize its features with the support of case examples such as involving caregivers to play an active role in behavioural interventions, creating effective interventions within natural practices. Additionally, dealing with lifestyle changes, as well as a wide variety of behavioural changes, develop strong strategies which reduce professional dependence.Keywords: positive behaviour support, quality of life, performance-based interventions, behavioural changes, participation
Procedia PDF Downloads 17219628 Clinical Validation of an Automated Natural Language Processing Algorithm for Finding COVID-19 Symptoms and Complications in Patient Notes
Authors: Karolina Wieczorek, Sophie Wiliams
Abstract:
Introduction: Patient data is often collected in Electronic Health Record Systems (EHR) for purposes such as providing care as well as reporting data. This information can be re-used to validate data models in clinical trials or in epidemiological studies. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. Mentioning a disease in a discharge letter does not necessarily mean that a patient suffers from this disease. Many of them discuss a diagnostic process, different tests, or discuss whether a patient has a certain disease. The COVID-19 dataset in this study used natural language processing (NLP), an automated algorithm which extracts information related to COVID-19 symptoms, complications, and medications prescribed within the hospital. Free-text patient clinical patient notes are rich sources of information which contain patient data not captured in a structured form, hence the use of named entity recognition (NER) to capture additional information. Methods: Patient data (discharge summary letters) were exported and screened by an algorithm to pick up relevant terms related to COVID-19. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. A list of 124 Systematized Nomenclature of Medicine (SNOMED) Clinical Terms has been provided in Excel with corresponding IDs. Two independent medical student researchers were provided with a dictionary of SNOMED list of terms to refer to when screening the notes. They worked on two separate datasets called "A” and "B”, respectively. Notes were screened to check if the correct term had been picked-up by the algorithm to ensure that negated terms were not picked up. Results: Its implementation in the hospital began on March 31, 2020, and the first EHR-derived extract was generated for use in an audit study on June 04, 2020. The dataset has contributed to large, priority clinical trials (including International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) by bulk upload to REDcap research databases) and local research and audit studies. Successful sharing of EHR-extracted datasets requires communicating the provenance and quality, including completeness and accuracy of this data. The results of the validation of the algorithm were the following: precision (0.907), recall (0.416), and F-score test (0.570). Percentage enhancement with NLP extracted terms compared to regular data extraction alone was low (0.3%) for relatively well-documented data such as previous medical history but higher (16.6%, 29.53%, 30.3%, 45.1%) for complications, presenting illness, chronic procedures, acute procedures respectively. Conclusions: This automated NLP algorithm is shown to be useful in facilitating patient data analysis and has the potential to be used in more large-scale clinical trials to assess potential study exclusion criteria for participants in the development of vaccines.Keywords: automated, algorithm, NLP, COVID-19
Procedia PDF Downloads 10219627 Potential Positive Impacts of Online Communities on Mental Health of Women Who Have Experienced Miscarriage
Authors: Mahtab Talafian
Abstract:
With the advent of technology over the last decades, participation in online communities and discussion forums has become increasingly popular. Many studies have been done on the negative role of the online world on human beings’ psychological well-being and mental health, while relatively less attention has been given to the potentially positive role of technology in promoting mental health. Miscarriage is a common and emotionally challenging experience for women, and online communities seem to be a potential source of support for them. This study aimed to firstly find the most common types of support communicated in online communities of women who have miscarried and, secondly, investigate if there is a relationship between participation in online communities and mental health outcomes after miscarriage. In this study, three research methodologies, including content analysis, survey and interview, were employed to answer the research questions. With the analysis of 158 messages, including postings and comments in the online community of Mumsnet, it can be concluded that informational support and emotional support are the most prevalent types of support women share in the online community. Analysis of data gathered from the survey of 19 women who had experienced a miscarriage during the last year showed that participation in online communities makes a significant improvement in their mental health. Interviews also highlighted the helpful role of the online community in relieving emotional disorders, such as trauma, hopelessness, loneliness, stress, depression and anxiety about miscarriage.Keywords: mental health, miscarriage, online community, support
Procedia PDF Downloads 7419626 Collective Intelligence-Based Early Warning Management for Agriculture
Authors: Jarbas Lopes Cardoso Jr., Frederic Andres, Alexandre Guitton, Asanee Kawtrakul, Silvio E. Barbin
Abstract:
The important objective of the CyberBrain Mass Agriculture Alarm Acquisition and Analysis (CBMa4) project is to minimize the impacts of diseases and disasters on rice cultivation. For example, early detection of insects will reduce the volume of insecticides that is applied to the rice fields through the use of CBMa4 platform. In order to reach this goal, two major factors need to be considered: (1) the social network of smart farmers; and (2) the warning data alarm acquisition and analysis component. This paper outlines the process for collecting the warning and improving the decision-making result to the warning. It involves two sub-processes: the warning collection and the understanding enrichment. Human sensors combine basic suitable data processing techniques in order to extract warning related semantic according to collective intelligence. We identify each warning by a semantic content called 'warncons' with multimedia metaphors and metadata related to these metaphors. It is important to describe the metric to measuring the relation among warncons. With this knowledge, a collective intelligence-based decision-making approach determines the action(s) to be launched regarding one or a set of warncons.Keywords: agricultural engineering, warning systems, social network services, context awareness
Procedia PDF Downloads 38419625 Neural Network and Support Vector Machine for Prediction of Foot Disorders Based on Foot Analysis
Authors: Monireh Ahmadi Bani, Adel Khorramrouz, Lalenoor Morvarid, Bagheri Mahtab
Abstract:
Background:- Foot disorders are common in musculoskeletal problems. Plantar pressure distribution measurement is one the most important part of foot disorders diagnosis for quantitative analysis. However, the association of plantar pressure and foot disorders is not clear. With the growth of dataset and machine learning methods, the relationship between foot disorders and plantar pressures can be detected. Significance of the study:- The purpose of this study was to predict the probability of common foot disorders based on peak plantar pressure distribution and center of pressure during walking. Methodologies:- 2323 participants were assessed in a foot therapy clinic between 2015 and 2021. Foot disorders were diagnosed by an experienced physician and then they were asked to walk on a force plate scanner. After the data preprocessing, due to the difference in walking time and foot size, we normalized the samples based on time and foot size. Some of force plate variables were selected as input to a deep neural network (DNN), and the probability of any each foot disorder was measured. In next step, we used support vector machine (SVM) and run dataset for each foot disorder (classification of yes or no). We compared DNN and SVM for foot disorders prediction based on plantar pressure distributions and center of pressure. Findings:- The results demonstrated that the accuracy of deep learning architecture is sufficient for most clinical and research applications in the study population. In addition, the SVM approach has more accuracy for predictions, enabling applications for foot disorders diagnosis. The detection accuracy was 71% by the deep learning algorithm and 78% by the SVM algorithm. Moreover, when we worked with peak plantar pressure distribution, it was more accurate than center of pressure dataset. Conclusion:- Both algorithms- deep learning and SVM will help therapist and patients to improve the data pool and enhance foot disorders prediction with less expense and error after removing some restrictions properly.Keywords: deep neural network, foot disorder, plantar pressure, support vector machine
Procedia PDF Downloads 35919624 Big Data Applications for Transportation Planning
Authors: Antonella Falanga, Armando Cartenì
Abstract:
"Big data" refers to extremely vast and complex sets of data, encompassing extraordinarily large and intricate datasets that require specific tools for meaningful analysis and processing. These datasets can stem from diverse origins like sensors, mobile devices, online transactions, social media platforms, and more. The utilization of big data is pivotal, offering the chance to leverage vast information for substantial advantages across diverse fields, thereby enhancing comprehension, decision-making, efficiency, and fostering innovation in various domains. Big data, distinguished by its remarkable attributes of enormous volume, high velocity, diverse variety, and significant value, represent a transformative force reshaping the industry worldwide. Their pervasive impact continues to unlock new possibilities, driving innovation and advancements in technology, decision-making processes, and societal progress in an increasingly data-centric world. The use of these technologies is becoming more widespread, facilitating and accelerating operations that were once much more complicated. In particular, big data impacts across multiple sectors such as business and commerce, healthcare and science, finance, education, geography, agriculture, media and entertainment and also mobility and logistics. Within the transportation sector, which is the focus of this study, big data applications encompass a wide variety, spanning across optimization in vehicle routing, real-time traffic management and monitoring, logistics efficiency, reduction of travel times and congestion, enhancement of the overall transportation systems, but also mitigation of pollutant emissions contributing to environmental sustainability. Meanwhile, in public administration and the development of smart cities, big data aids in improving public services, urban planning, and decision-making processes, leading to more efficient and sustainable urban environments. Access to vast data reservoirs enables deeper insights, revealing hidden patterns and facilitating more precise and timely decision-making. Additionally, advancements in cloud computing and artificial intelligence (AI) have further amplified the potential of big data, enabling more sophisticated and comprehensive analyses. Certainly, utilizing big data presents various advantages but also entails several challenges regarding data privacy and security, ensuring data quality, managing and storing large volumes of data effectively, integrating data from diverse sources, the need for specialized skills to interpret analysis results, ethical considerations in data use, and evaluating costs against benefits. Addressing these difficulties requires well-structured strategies and policies to balance the benefits of big data with privacy, security, and efficient data management concerns. Building upon these premises, the current research investigates the efficacy and influence of big data by conducting an overview of the primary and recent implementations of big data in transportation systems. Overall, this research allows us to conclude that big data better provide to enhance rational decision-making for mobility choices and is imperative for adeptly planning and allocating investments in transportation infrastructures and services.Keywords: big data, public transport, sustainable mobility, transport demand, transportation planning
Procedia PDF Downloads 6119623 The Women Entrepreneur Support Fund in Bangladesh: Challenges and Prospects
Authors: Chowdhury Dilruba Shoma
Abstract:
Gender is about equal rights that both males and females having access to responsibilities and opportunities in decision making is a fundamental human right. It is also a precondition for, and a mark of, sustainable people-oriented development. In Bangladesh, women have fewer opportunities than men do to access credit from banks and financial institutions. Entrenched patriarchal attitudes, unequal inheritance rights, and male-dominated hierarchies in the financial system, plus high interest rates and a lack of security/collateral, make it harder for women to obtain bank loans. Limited access to institutional credit is a serious restraint on the productivity and income of women entrepreneurs, (and the wider economy). These gender-biased and structural barriers inhibit women’s access to fundamental economic rights. Using a liberal feminist theoretical lens, this study provides some useful insights into the relationship between gender inequality and entrepreneurship, leading to a better understanding of women’s entrepreneurship development in Bangladesh. Recently, the Bangladesh Government, the United Nations Capital Development Fund, and Bangladesh Bank opened up the Women Entrepreneur Support Fund (WESF) ‒ Credit Guarantee Scheme (CGS) pilot project to cover collateral shortfalls for women entrepreneurs in the small and medium enterprise sector. The aim is to improve gender equality and advance women’s rights in relation to receiving credit. This article examines the challenges and prospects of the WESF-CGS, and suggests that implementation of measures in WESF-CGS policymaking, coupled with a combination of legislatory and regulatory reforms that implement the fundamental tenets of liberal feminism, can lead to a comprehensive and effective credit policy to boost women’s agency and economic empowerment. This may ultimately lead to more sustainable development in Bangladesh.Keywords: Bangladesh, credit guarantee scheme, liberal feminist theory, women entrepreneur support fund
Procedia PDF Downloads 14319622 Challenges and Recommendations for Medical Device Tracking and Traceability in Singapore: A Focus on Nursing Practices
Authors: Zhuang Yiwen
Abstract:
The paper examines the challenges facing the Singapore healthcare system related to the tracking and traceability of medical devices. One of the major challenges identified is the lack of a standard coding system for medical devices, which makes it difficult to track them effectively. The paper suggests the use of the Unique Device Identifier (UDI) as a single standard for medical devices to improve tracking and reduce errors. The paper also explores the use of barcoding and image recognition to identify and document medical devices in nursing practices. In nursing practices, the use of barcodes for identifying medical devices is common. However, the information contained in these barcodes is often inconsistent, making it challenging to identify which segment contains the model identifier. Moreover, the use of barcodes may be improved with the use of UDI, but many subsidized accessories may still lack barcodes. The paper suggests that the readiness for UDI and barcode standardization requires standardized information, fields, and logic in electronic medical record (EMR), operating theatre (OT), and billing systems, as well as barcode scanners that can read various formats and selectively parse barcode segments. Nursing workflow and data flow also need to be taken into account. The paper also explores the use of image recognition, specifically the Tesseract OCR engine, to identify and document implants in public hospitals due to limitations in barcode scanning. The study found that the solution requires an implant information database and checking output against the database. The solution also requires customization of the algorithm, cropping out objects affecting text recognition, and applying adjustments. The solution requires additional resources and costs for a mobile/hardware device, which may pose space constraints and require maintenance of sterile criteria. The integration with EMR is also necessary, and the solution require changes in the user's workflow. The paper suggests that the long-term use of Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) as a supporting terminology to improve clinical documentation and data exchange in healthcare. SNOMED CT provides a standardized way of documenting and sharing clinical information with respect to procedure, patient and device documentation, which can facilitate interoperability and data exchange. In conclusion, the paper highlights the challenges facing the Singapore healthcare system related to the tracking and traceability of medical devices. The paper suggests the use of UDI and barcode standardization to improve tracking and reduce errors. It also explores the use of image recognition to identify and document medical devices in nursing practices. The paper emphasizes the importance of standardized information, fields, and logic in EMR, OT, and billing systems, as well as barcode scanners that can read various formats and selectively parse barcode segments. These recommendations could help the Singapore healthcare system to improve tracking and traceability of medical devices and ultimately enhance patient safety.Keywords: medical device tracking, unique device identifier, barcoding and image recognition, systematized nomenclature of medicine clinical terms
Procedia PDF Downloads 7919621 Women, Quality of Life, and Infertility: The Mediating Role of Social Support and Hope
Authors: Saeideh Lotfi Nikoo, Azadeh Ghaheri, Reza Omani Samani
Abstract:
Context: In most cultures around the globe, infertility is recognized as a crisis and exposed infertile couples are under psychosocial pressure. Indeed, the quality of life (QoL) for infertile women is lower in comparison with fertile control. Objective, The purpose of this study, was to investigate the impact of social support and hope on QoL in women undergoing infertility treatment. Methods: A cross-sectional study. Patient(s): In this cross-sectional study, 350 infertile women were recruited who were referred to an infertility clinic for the first time and had no history of Assisted Reproductive Techniques (ART) failure. Intervention(s): Questionnaires on the Fertility Quality of Life (FertiQoL), Multi-dimensional Scale of Perceived Social Support (family and friends), and Snyder Hope Scale (pathway and agency) were used to collect data. Data analysis was done by univariate and multivariate analysis. P value <0.05 was considered statistically significant. Result(s): Multivariate analysis indicated that infertile women with a higher score of social support (by family & friends) (b= 0.59 (CI 95%: 0.03, 1.15) (P = 0.040), b= 0.61 (CI 95%: 0.17, 1.04) (P = 0.006)) and hope (pathway & agency) (b= 0.94 (CI 95%: 0.29, 1.59) (P = 0.005), b= 1.13 (CI 95%: 0.45, 1.82) (P = 0.001) respectively) have significantly better Core FertiQoL. The result revealed that social support and hope are significantly and positively associated with other subscales of FertiQoL as well. Conclusions: According to the results, lifestyle interventions such as receiving social support, building a sound family with effective communication, and providing appropriate health education are of crucial importance to address psychological distress and improve the fertility QoL of women experiencing fertility problems.Keywords: inertility, social support, infertile women, hope
Procedia PDF Downloads 9519620 Implementation of a Web-Based Clinical Outcomes Monitoring and Reporting Platform across the Fortis Network
Authors: Narottam Puri, Bishnu Panigrahi, Narayan Pendse
Abstract:
Background: Clinical Outcomes are the globally agreed upon, evidence-based measurable changes in health or quality of life resulting from the patient care. Reporting of outcomes and its continuous monitoring provides an opportunity for both assessing and improving the quality of patient care. In 2012, International Consortium Of HealthCare Outcome Measurement (ICHOM) was founded which has defined global Standard Sets for measuring the outcome of various treatments. Method: Monitoring of Clinical Outcomes was identified as a pillar of Fortis’ core value of Patient Centricity. The project was started as an in-house developed Clinical Outcomes Reporting Portal by the Fortis Medical IT team. Standard sets of Outcome measurement developed by ICHOM were used. A pilot was run at Fortis Escorts Heart Institute from Aug’13 – Dec’13.Starting Jan’14, it was implemented across 11 hospitals of the group. The scope was hospital-wide and major clinical specialties: Cardiac Sciences, Orthopedics & Joint Replacement were covered. The internally developed portal had its limitations of report generation and also capturing of Patient related outcomes was restricted. A year later, the company provisioned for an ICHOM Certified Software product which could provide a platform for data capturing and reporting to ensure compliance with all ICHOM requirements. Post a year of the launch of the software; Fortis Healthcare has become the 1st Healthcare Provider in Asia to publish Clinical Outcomes data for the Coronary Artery Disease Standard Set comprising of Coronary Artery Bypass Graft and Percutaneous Coronary Interventions) in the public domain. (Jan 2016). Results: This project has helped in firmly establishing a culture of monitoring and reporting Clinical Outcomes across Fortis Hospitals. Given the diverse nature of the healthcare delivery model at Fortis Network, which comprises of hospitals of varying size and specialty-mix and practically covering the entire span of the country, standardization of data collection and reporting methodology is a huge achievement in itself. 95% case reporting was achieved with more than 90% data completion at the end of Phase 1 (March 2016). Post implementation the group now has one year of data from its own hospitals. This has helped identify the gaps and plan towards ways to bridge them and also establish internal benchmarks for continual improvement. Besides the value created for the group includes: 1. Entire Fortis community has been sensitized on the importance of Clinical Outcomes monitoring for patient centric care. Initial skepticism and cynicism has been countered by effective stakeholder engagement and automation of processes. 2. Measuring quality is the first step in improving quality. Data analysis has helped compare clinical results with best-in-class hospitals and identify improvement opportunities. 3. Clinical fraternity is extremely pleased to be part of this initiative and has taken ownership of the project. Conclusion: Fortis Healthcare is the pioneer in the monitoring of Clinical Outcomes. Implementation of ICHOM standards has helped Fortis Clinical Excellence Program in improving patient engagement and strengthening its commitment to its core value of Patient Centricity. Validation and certification of the Clinical Outcomes data by an ICHOM Certified Supplier adds confidence to its claim of being leaders in this space.Keywords: clinical outcomes, healthcare delivery, patient centricity, ICHOM
Procedia PDF Downloads 23919619 Self-Organizing Maps for Credit Card Fraud Detection and Visualization
Authors: Peng Chun-Yi, Chen Wei-Hsuan, Ueng Shyh-Kuang
Abstract:
This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies
Procedia PDF Downloads 6019618 Understanding Cruise Passengers’ On-board Experience throughout the Customer Decision Journey
Authors: Sabina Akter, Osiris Valdez Banda, Pentti Kujala, Jani Romanoff
Abstract:
This paper examines the relationship between on-board environmental factors and customer overall satisfaction in the context of the cruise on-board experience. The on-board environmental factors considered are ambient, layout/design, social, product/service and on-board enjoyment factors. The study presents a data-driven framework and model for the on-board cruise experience. The data are collected from 893 respondents in an application of a self-administered online questionnaire of their cruise experience. This study reveals the cruise passengers’ on-board experience through the customer decision journey based on the publicly available data. Pearson correlation and regression analysis have been applied, and the results show a positive and a significant relationship between the environmental factors and on-board experience. These data help understand the cruise passengers’ on-board experience, which will be used for the ultimate decision-making process in cruise ship design.Keywords: cruise behavior, customer activities, on-board environmental factors, on-board experience, user or customer satisfaction
Procedia PDF Downloads 169