Search results for: bod (biological oxygen demand)
5269 Ways of Innovative Sustainable Agriculture in India
Authors: Shailja Thakur
Abstract:
In this paper it is shown that how farmers are suffering from all sides including vagaries of weather then price fluctuations, demand supply constraints, poor soil health etc. Also the ICT can prove to be of great help if incorporated rightly into Indian agriculture. Some innovative ways to reward farmers and distribution of subsidies to them can improve the current scenario.Keywords: cost of farming, information and communication technology, innovative steps, roof gardening, vermicomposting
Procedia PDF Downloads 3095268 Temperature Dependent Tribological Properties of Graphite
Authors: Pankaj Kumar Das, Niranjan Kumar, Prasun Chakraborti
Abstract:
Temperature dependent tribologiocal properties of nuclear grade turbostatic graphite were studied using 100Cr6 steel counterbody. High value of friction coefficient (0.25) and high wear loss was observed at room temperature and this value decreased to 0.1 at 150oC. Consequently, wear loss is also decreased. Such behavior is explained by oxidation/vaporization of graphite and water molecules. At room temperature, the adsorbed water in graphite does not decompose and effect of passivation mechanism does not work. However, at 150oC, the water decomposed into OH, atomic hydrogen and oxygen which efficiently passivates the carbon dangling bonds. This effect is known to decrease the energy of the contact and protect against abrasive wear.Keywords: high temperature tribology, oxidation, turbostratic graphite, wear
Procedia PDF Downloads 5175267 Government Final Consumption Expenditure Financial Deepening and Household Consumption Expenditure NPISHs in Nigeria
Authors: Usman A. Usman
Abstract:
Undeniably, unlike the Classical side, the Keynesian perspective of the aggregate demand side indeed has a significant position in the policy, growth, and welfare of Nigeria due to government involvement and ineffective demand of the population living with poor per capita income. This study seeks to investigate the effect of Government Final Consumption Expenditure, Financial Deepening on Households, and NPISHs Final consumption expenditure using data on Nigeria from 1981 to 2019. This study employed the ADF stationarity test, Johansen Cointegration test, and Vector Error Correction Model. The results of the study revealed that the coefficient of Government final consumption expenditure has a positive effect on household consumption expenditure in the long run. There is a long-run and short-run relationship between gross fixed capital formation and household consumption expenditure. The coefficients cpsgdp financial deepening and gross fixed capital formation posit a negative impact on household final consumption expenditure. The coefficients money supply lm2gdp, which is another proxy for financial deepening, and the coefficient FDI have a positive effect on household final consumption expenditure in the long run. Therefore, this study recommends that Gross fixed capital formation stimulates household consumption expenditure; a legal framework to support investment is a panacea to increasing hoodmold income and consumption and reducing poverty in Nigeria. Therefore, this should be a key central component of policy.Keywords: household, government expenditures, vector error correction model, johansen test
Procedia PDF Downloads 615266 Heritage Buildings an Inspiration for Energy Conservation under Solar Control – a Case Study of Hadoti Region of India.
Authors: Abhinav Chaturvedi, Joohi Chaturvedi, Renu Chaturvedi
Abstract:
With rapid urbanization and growth of population, more buildings are require to be constructed to meet the increasing demand of the shelter. 80 % of the world population is living in developing countries, but the adequate energy supplied to only 30% of it. In India situation get little more difficult as majority of the villages of India are still deprived of energy. 1/3 of the Indian household does not have energy supply. So there is big gap between energy demand and supply. Moreover India is producing around 65 % of the energy from Non – Renewable sources and 25 % of the Energy is imported in the form of oil and gas and only 10% of the total, is generated from other sources like solar power, wind power etc. Present modern structures are big energy consumers as they are consuming 40 % of the total energy in providing comfort conditions to the users, in from of heating and cooling,5 % in Building Construction, 20 % in transportation and 20 % in industrial process and 10 % in other processes. If we minimize this Heating and Cooling and lighting load of the building we can conserve huge amount of energy for the future. In history, buildings do not have artificial systems of cooling or heating. These buildings, especially in Hadoti Region which have Semi Arid Climatic conditions, are provided with Solar Passive Design Techniques that is the reason of comfort inside the buildings. So if we use some appropriate elements of these heritage structures, in our present age building design we can find some certain solution to energy crises. Present paper describes Various Solar Passive design techniques used in past, and the same could be used in present to reduce the consumption of energy.Keywords: energy conservation, Hadoti region, solar passive design techniques , semi - arid climatic condition
Procedia PDF Downloads 4755265 One Step Green Synthesis of Silver Nanoparticles and Their Biological Activity
Authors: Samy M. Shaban, Ismail Aiad, Mohamed M. El-Sukkary, E. A. Soliman, Moshira Y. El-Awady
Abstract:
In situ and green synthesis of cubic and spherical silver nanoparticles were developed using sun light as reducing agent in the presence of newly prepared cationic surfactant which acting as capping agents. The morphology of prepared silver nanoparticle was estimated by transmission electron microscope (TEM) and the size distribution determined by dynamic light scattering (DLS). The hydrophobic chain length of the prepared surfactant effect on the stability of the prepared silver nanoparticles as clear from zeta-potential values. Also by increasing chain length of the used capping agent the amount of formed nanoparticle increase as indicated by increasing the absorbance. Both prepared surfactants and surfactants capping silver nanoparticles showed high antimicrobial activity against gram positive and gram-negative bacteria.Keywords: photosynthesis, hexaonal shapes, zetapotential, biological activity
Procedia PDF Downloads 4605264 Transport Mode Selection under Lead Time Variability and Emissions Constraint
Authors: Chiranjit Das, Sanjay Jharkharia
Abstract:
This study is focused on transport mode selection under lead time variability and emissions constraint. In order to reduce the carbon emissions generation due to transportation, organization has often faced a dilemmatic choice of transport mode selection since logistic cost and emissions reduction are complementary with each other. Another important aspect of transportation decision is lead-time variability which is least considered in transport mode selection problem. Thus, in this study, we provide a comprehensive mathematical based analytical model to decide transport mode selection under emissions constraint. We also extend our work through analysing the effect of lead time variability in the transport mode selection by a sensitivity analysis. In order to account lead time variability into the model, two identically normally distributed random variables are incorporated in this study including unit lead time variability and lead time demand variability. Therefore, in this study, we are addressing following questions: How the decisions of transport mode selection will be affected by lead time variability? How lead time variability will impact on total supply chain cost under carbon emissions? To accomplish these objectives, a total transportation cost function is developed including unit purchasing cost, unit transportation cost, emissions cost, holding cost during lead time, and penalty cost for stock out due to lead time variability. A set of modes is available to transport each node, in this paper, we consider only four transport modes such as air, road, rail, and water. Transportation cost, distance, emissions level for each transport mode is considered as deterministic and static in this paper. Each mode is having different emissions level depending on the distance and product characteristics. Emissions cost is indirectly affected by the lead time variability if there is any switching of transport mode from lower emissions prone transport mode to higher emissions prone transport mode in order to reduce penalty cost. We provide a numerical analysis in order to study the effectiveness of the mathematical model. We found that chances of stock out during lead time will be higher due to the higher variability of lead time and lad time demand. Numerical results show that penalty cost of air transport mode is negative that means chances of stock out zero, but, having higher holding and emissions cost. Therefore, air transport mode is only selected when there is any emergency order to reduce penalty cost, otherwise, rail and road transport is the most preferred mode of transportation. Thus, this paper is contributing to the literature by a novel approach to decide transport mode under emissions cost and lead time variability. This model can be extended by studying the effect of lead time variability under some other strategic transportation issues such as modal split option, full truck load strategy, and demand consolidation strategy etc.Keywords: carbon emissions, inventory theoretic model, lead time variability, transport mode selection
Procedia PDF Downloads 4365263 Possibilities and Challenges for District Heating
Authors: Louise Ödlund, Danica Djuric Ilic
Abstract:
From a system perspective, there are several benefits of DH. A possibility to utilize the excess heat from waste incineration and biomass-based combined heat and power (CHP) production (e.g. possibility to utilize the excess heat from electricity production) are two examples. However, in a future sustainable society, the benefits of DH may be less obvious. Due to the climate changes and increased energy efficiency of buildings, the demand for space heating is expected to decrease. Due to the society´s development towards circular economy, a larger amount of the waste will be material recycled, and the possibility for DH production by the energy recovery through waste incineration will be reduced. Furthermore, the benefits of biomass-based CHP production will be less obvious since the marginal electricity production will no longer be linked to high greenhouse gas emissions due to an increased share of renewable electricity capacity in the electricity system. The purpose of the study is (1) to provide an overview of the possible development of other sectors which may influence the DH in the future and (2) to detect new business strategies which would enable for DH to adapt to the future conditions and remain competitive to alternative heat production in the future. A system approach was applied where DH is seen as a part of an integrated system which consists of other sectors as well. The possible future development of other sectors and the possible business strategies for DH producers were searched through a systematic literature review In order to remain competitive to the alternative heat production in the future, DH producers need to develop new business strategies. While the demand for space heating is expected to decrease, the space cooling demand will probably increase due to the climate changes, but also due to the better insulation of buildings in the cases where the home appliances are the heat sources. This opens up a possibility for applying DH-driven absorption cooling, which would increase the annual capacity utilization of the DH plants. The benefits of the DH related to the energy recovery from the waste incineration will exist in the future since there will always be a need to take care of materials and waste that cannot be recycled (e.g. waste containing organic toxins, bacteria, such as diapers and hospital waste). Furthermore, by operating central controlled heat pumps, CHP plants, and heat storage depending on the intermittent electricity production variation, the DH companies may enable an increased share of intermittent electricity production in the national electricity grid. DH producers can also enable development of local biofuel supply chains and reduce biofuel production costs by integrating biofuel and DH production in local DH systems.Keywords: district heating, sustainable business strategies, sustainable development, system approach
Procedia PDF Downloads 855262 Implementing a Strategy of Reliability Centred Maintenance (RCM) in the Libyan Cement Industry
Authors: Khalid M. Albarkoly, Kenneth S. Park
Abstract:
The substantial development of the construction industry has forced the cement industry, its major support, to focus on achieving maximum productivity to meet the growing demand for this material. Statistics indicate that the demand for cement rose from 1.6 billion metric tons (bmt) in 2000 to 4bmt in 2013. This means that the reliability of a production system needs to be at the highest level that can be achieved by good maintenance. This paper studies the extent to which the implementation of RCM is needed as a strategy for increasing the reliability of the production systems component can be increased, thus ensuring continuous productivity. In a case study of four Libyan cement factories, 80 employees were surveyed and 12 top and middle managers interviewed. It is evident that these factories usually breakdown more often than once per month which has led to a decline in productivity, they cannot produce more than 50% of their designed capacity. This has resulted from the poor reliability of their production systems as a result of poor or insufficient maintenance. It has been found that most of the factories’ employees misunderstand maintenance and its importance. The main cause of this problem is the lack of qualified and trained staff, but in addition, it has been found that most employees are not found to be motivated as a result of a lack of management support and interest. In response to these findings, it has been suggested that the RCM strategy should be implemented in the four factories. The paper shows the importance of considering the development of maintenance strategies through the implementation of RCM in these factories. The purpose of it would be to overcome the problems that could reduce the level of reliability of the production systems. This study could be a useful source of information for academic researchers and the industrial organisations which are still experiencing problems in maintenance practices.Keywords: Libyan cement industry, reliability centred maintenance, maintenance, production, reliability
Procedia PDF Downloads 3905261 Psychophysiological Adaptive Automation Based on Fuzzy Controller
Authors: Liliana Villavicencio, Yohn Garcia, Pallavi Singh, Luis Fernando Cruz, Wilfrido Moreno
Abstract:
Psychophysiological adaptive automation is a concept that combines human physiological data and computer algorithms to create personalized interfaces and experiences for users. This approach aims to enhance human learning by adapting to individual needs and preferences and optimizing the interaction between humans and machines. According to neurosciences, the working memory demand during the student learning process is modified when the student is learning a new subject or topic, managing and/or fulfilling a specific task goal. A sudden increase in working memory demand modifies the level of students’ attention, engagement, and cognitive load. The proposed psychophysiological adaptive automation system will adapt the task requirements to optimize cognitive load, the process output variable, by monitoring the student's brain activity. Cognitive load changes according to the student’s previous knowledge, the type of task, the difficulty level of the task, and the overall psychophysiological state of the student. Scaling the measured cognitive load as low, medium, or high; the system will assign a task difficulty level to the next task according to the ratio between the previous-task difficulty level and student stress. For instance, if a student becomes stressed or overwhelmed during a particular task, the system detects this through signal measurements such as brain waves, heart rate variability, or any other psychophysiological variables analyzed to adjust the task difficulty level. The control of engagement and stress are considered internal variables for the hypermedia system which selects between three different types of instructional material. This work assesses the feasibility of a fuzzy controller to track a student's physiological responses and adjust the learning content and pace accordingly. Using an industrial automation approach, the proposed fuzzy logic controller is based on linguistic rules that complement the instrumentation of the system to monitor and control the delivery of instructional material to the students. From the test results, it can be proved that the implemented fuzzy controller can satisfactorily regulate the delivery of academic content based on the working memory demand without compromising students’ health. This work has a potential application in the instructional design of virtual reality environments for training and education.Keywords: fuzzy logic controller, hypermedia control system, personalized education, psychophysiological adaptive automation
Procedia PDF Downloads 825260 Potential for Biological Control of Postharvest Fungal Rot of White Yam (Dioscorea rotundata Poir) Tubers in Storage with Trichoderma harzianum
Authors: Victor Iorungwa Gwa, Ebenezer Jonathan Ekefan
Abstract:
Potential of Trichoderma harzianum for biological control of postharvest fungal rot of white yam (Dioscorea rotundata Poir) tubers in storage was studied. Pathogenicity test revealed the susceptibility of healthy looking yam tubers to Aspergillus niger, Botryodiplodia theobromae, and Fusarium oxysporum f. sp. melonganae after fourteen days of inoculation. Treatments comprising A. niger, B. theobromae, and F. oxysporum each paired with T. harzianum and were arranged in completely randomized design and stored for five months. Experiments were conducted between December 2015 and April 2016 and December 2016 and April 2017. Results showed that tubers treated with the pathogenic fungi alone caused mean percentage rot of between 6.67 % (F. oxysporum) and 22.22 % (A. niger) while the paired treatments produced only between 2.22 % (T. harzianum by F. oxysporum) and 6.67 % (T. harzianum by A. niger). In the second year of storage, mean percentage rot was found to be between 13.33 % (F. oxysporum) and 28.89 % (A. niger) while in the paired treatment rot was only between 6.67 % (F. oxysporum) and 8.89% (A. niger). Tubers treated with antagonist alone produced 0.00 % and 2.22 % in the first and second year, respectively. Result revealed that there was a significant difference (P ≤ 0.05) in mean percentage rot between the first year and the second year except where B. theobromae was inoculated alone, A. niger and T. harzianum paired and B. theobromae and T. harzianum paired. The most antagonised fungus in paired treatment for both years was F. oxysporum f. sp. melonganae, while the least antagonised, was A. niger and B. theobromae. It is, therefore, concluded that T. harzianum has potentials to control rot causing pathogens of yam tubers in storage. This can compliment or provide better alternative ways of reducing rot in yam tubers than by the use of chemical fungicides which are not environmentally friendly.Keywords: biological control, fungal rot, postharvest, Trichoderma harzianum, white yam
Procedia PDF Downloads 1635259 Assessment of Soil Quality Indicators in Rice Soils Under Rainfed Ecosystem
Authors: R. Kaleeswari
Abstract:
An investigation was carried out to assess the soil biological quality parameters in rice soils under rainfed and to compare soil quality indexing methods viz., Principal component analysis, Minimum data set and Indicator scoring method and to develop soil quality indices for formulating soil and crop management strategies.Soil samples were collected and analyzed for soil biological properties by adopting standard procedure. Biological indicators were determined for soil quality assessment, viz., microbial biomass carbon and nitrogen (MBC and MBN), potentially mineralizable nitrogen (PMN) and soil respiration and dehydrogenease activity. Among the methods of rice cultivation, Organic nutrition, Integrated Nutrient Management (INM) and System of Rice Intensification (SRI ), rice cultivation registered higher values of MBC, MBN and PMN. Mechanical and conventional rice cultivation registered lower values of biological quality indicators. Organic nutrient management and INM enhanced the soil respiration rate. SRI and aerobic rice cultivation methods increased the rate of soil respiration, while conventional and mechanical rice farming lowered the soil respiration rate. Dehydrogenase activity (DHA) was registered to be higher in soils under organic nutrition and Integrated Nutrient Management INM. System of Rice Intensification SRI and aerobic rice cultivation enhanced the DHA; while conventional and mechanical rice cultivation methods reduced DHA. The microbial biomass carbon (MBC) of the rice soils varied from 65 to 244 mg kg-1. Among the nutrient management practices, INM registered the highest available microbial biomass carbon of 285 mg kg-1.Potentially mineralizable N content of the rice soils varied from 20.3 to 56.8 mg kg-1. Aerobic rice farming registered the highest potentially mineralizable N of 78.9 mg kg-1..The soil respiration rate of the rice soils varied from 60 to 125 µgCO2 g-1. Nutrient management practices ofINM practice registered the highest. soil respiration rate of 129 µgCO2 g-1.The dehydrogenase activity of the rice soils varied from 38.3 to 135.3µgTPFg-1 day-1. SRI method of rice cultivation registered the highest dehydrogenase activity of 160.2 µgTPFg-1 day-1. Soil variables from each PC were considered for minimum soil data set (MDS). Principal component analysis (PCA) was used to select the representative soil quality indicators. In intensive rice cultivating regions, soil quality indicators were selected based on factor loading value and contribution percentage value using principal component analysis (PCA).Variables having significant difference within production systems were used for the preparation of minimum data set (MDS).Keywords: soil quality, rice, biological properties, PCA analysis
Procedia PDF Downloads 1105258 The Importance of Psychiatric Nursing in the Care of Mental Health in Transex Patient in Brazil
Authors: Aline Giardin, Ana Fontoura, Thomas Anderson
Abstract:
Transsexuality is a condition that requires the work of professionals from various fields for diagnosis and treatment. The correct diagnosis is very important because the surgery is irreversible. Diagnostic elements are essentially clinical and an observation period of two years prior to surgery is recommended. In this review article, we discuss the importance of psychiatric nursing for the care of transgender patients, as well as their mental health. Transsexuality is a phenomenon that contrasts our common understandings of sexuality, but it is not a sexual issue. Also called gender dysphoria is a mismatch between the anatomical sex of an individual and their gender identity. In relation to mental health, among transsexuals, we find variations ranging from psychoses to total normality. As the etiology is still controversial, there is no biological marker and only the clinical criteria can be used. Portaria nº 2803, of November 19, 2013, Brazil, regulates the surgical reassignment of sex by the SUS and the nurse started to work also in operational groups (transsexuals who wish to perform surgery and other procedures of reassignment of sex). Health and education, establishes links and guides the care that female and male transsexual patients will have to have before and after surgery. It is also important to say that the work of health education is not only concerned with aspects related to the sexual reassignment surgery, but also with the mental health of its patients and with the family. One of the main complaints of patients is the impression that professionals seem to find them strange and feel extremely uncomfortable when they talk about their desire to undergo sex-change surgery: Investigate the role of nursing in the process of change sexual. Our methodology was a review of articles produced between 1994 and 2015. It was concluded that nursing should specialize for this new demand, which is growing more and more in our health services. We believe that nursing is specializing to enter this context and the expectations are good for the professionals and for the reception of the transsexual patient.Keywords: transex, nursing, importance, patient
Procedia PDF Downloads 2715257 Content Analysis of ‘Junk Food’ Content in Children’s TV Programmes: A Comparison of UK Broadcast TV and Video-On-Demand Services
Authors: Shreesh Sinha, Alexander B. Barker, Megan Parkin, Emma Wilson, Rachael L. Murray
Abstract:
Background and Objectives: Exposure to HFSS imagery is associated with the consumption of foods high in fat, sugar or salt (HFSS), and subsequently obesity, among young people. We report and compare the results of two content analyses, one of two popular terrestrial children's television channels in the UK and the other of a selection of children's programmes available on video-on-demand (VOD) streaming sites. Methods: Content analysis of three days' worth of programmes (including advertisements) on two popular children's television channels broadcast on UK television (CBeebies and Milkshake) as well as a sample of 40 highest-rated children's programmes available on the VOD platforms, Netflix and Amazon Prime, using 1-minute interval coding. Results: HFSS content was seen in 181 broadcasts (36%) and in 417 intervals (13%) on terrestrial television, 'Milkshake' had a significantly higher proportion of programmes/adverts which contained HFSS content than 'CBeebies'. In VOD platforms, HFSS content was seen in 82 episodes (72% of the total number of episodes), across 459 intervals (19% of the total number of intervals), with no significant difference in the proportion of programmes containing HFSS content between Netflix and Amazon Prime. Conclusions: This study demonstrates that HFSS content is common in both popular UK children's television channels and children's programmes on VOD services. Since previous research has shown that HFSS content in the media has an effect on HFSS consumption, children's television programmes broadcast either on TV or VOD services are likely to have an effect on HFSS consumption in children, and legislative opportunities to prevent this exposure are being missed.Keywords: public health, junk food, children's TV, HFSS
Procedia PDF Downloads 1045256 Quantifying Meaning in Biological Systems
Authors: Richard L. Summers
Abstract:
The advanced computational analysis of biological systems is becoming increasingly dependent upon an understanding of the information-theoretic structure of the materials, energy and interactive processes that comprise those systems. The stability and survival of these living systems are fundamentally contingent upon their ability to acquire and process the meaning of information concerning the physical state of its biological continuum (biocontinuum). The drive for adaptive system reconciliation of a divergence from steady-state within this biocontinuum can be described by an information metric-based formulation of the process for actionable knowledge acquisition that incorporates the axiomatic inference of Kullback-Leibler information minimization driven by survival replicator dynamics. If the mathematical expression of this process is the Lagrangian integrand for any change within the biocontinuum then it can also be considered as an action functional for the living system. In the direct method of Lyapunov, such a summarizing mathematical formulation of global system behavior based on the driving forces of energy currents and constraints within the system can serve as a platform for the analysis of stability. As the system evolves in time in response to biocontinuum perturbations, the summarizing function then conveys information about its overall stability. This stability information portends survival and therefore has absolute existential meaning for the living system. The first derivative of the Lyapunov energy information function will have a negative trajectory toward a system's steady state if the driving force is dissipating. By contrast, system instability leading to system dissolution will have a positive trajectory. The direction and magnitude of the vector for the trajectory then serves as a quantifiable signature of the meaning associated with the living system’s stability information, homeostasis and survival potential.Keywords: meaning, information, Lyapunov, living systems
Procedia PDF Downloads 1315255 Groundwater Quality Monitoring in the Shoush Suburbs, Khouzestan Province, Iran
Authors: Mohammad Tahsin Karimi Nezhad, Zaynab Shadbahr, Ali Gholami
Abstract:
In recent years many attempts have been made to assess groundwater contamination by nitrates worldwide. The assessment of spatial and temporal variations of physico-chemical parameters of water is necessary to mange water quality. The objectives of the study were to evaluate spatial variability and temporal changes of hydrochemical factors by water sampling from 24 wells in the Shoush City suburb. The analysis was conducted for the whole area and for different land use and geological classes. In addition, nitrate concentration variability with descriptive parameters such as sampling depth, dissolved oxygen, and on ground nitrogen loadings was also investigated The results showed that nitrate concentrations did not exceed the standard limit (50 mg/l). EC of water samples, ranged from 900 to 1200 µs/cm, TDS from 775 to 830 mg/l and pH from 5.6 to 9.Keywords: groundwater, GIS, water quality, Iran
Procedia PDF Downloads 4315254 Assessment of Airtightness Through a Standardized Procedure in a Nearly-Zero Energy Demand House
Authors: Mar Cañada Soriano, Rafael Royo-Pastor, Carolina Aparicio-Fernández, Jose-Luis Vivancos
Abstract:
The lack of insulation, along with the existence of air leakages, constitute a meaningful impact on the energy performance of buildings. Both of them lead to increases in the energy demand through additional heating and/or cooling loads. Additionally, they cause thermal discomfort. In order to quantify these uncontrolled air currents, pressurization and depressurization tests can be performed. Among them, the Blower Door test is a standardized procedure to determine the airtightness of a space which characterizes the rate of air leakages through the envelope surface, calculating to this purpose an air flow rate indicator. In this sense, the low-energy buildings complying with the Passive House design criteria are required to achieve high levels of airtightness. Due to the invisible nature of air leakages, additional tools are often considered to identify where the infiltrations take place. Among them, the infrared thermography entails a valuable technique to this purpose since it enables their detection. The aim of this study is to assess the airtightness of a typical Mediterranean dwelling house located in the Valencian orchad (Spain) restored under the Passive House standard using to this purpose the blower-door test. Moreover, the building energy performance modelling tools TRNSYS (TRaNsient System Simulation program) and TRNFlow (TRaNsient Flow) have been used to determine its energy performance, and the infiltrations’ identification was carried out by means of infrared thermography. The low levels of infiltrations obtained suggest that this house may comply with the Passive House standard.Keywords: airtightness, blower door, trnflow, infrared thermography
Procedia PDF Downloads 1245253 The Effect of Female Access to Healthcare and Educational Attainment on Nigerian Agricultural Productivity Level
Authors: Esther M. Folarin, Evans Osabuohien, Ademola Onabote
Abstract:
Agriculture constitutes an important part of development and poverty mitigation in lower-middle-income countries, like Nigeria. The level of agricultural productivity in the Nigerian economy in line with the level of demand necessary to meet the desired expectation of the Nigerian populace is threatening to meeting the standard of the United Nations (UN) Sustainable Development Goals (SDGs); This includes the SDG-2 (achieve food security through agricultural productivity). The overall objective of the study is to reveal the performance of the interaction variable in the model among other factors that help in the achievement of greater Nigerian agricultural productivity. The study makes use of Wave 4 (2018/2019) of the Living Standard Measurement Studies, Integrated Survey on Agriculture (LSMS-ISA). Qualitative analysis of the information was also used to provide complimentary answers to the quantitative analysis done in the study. The study employed human capital theory and Grossman’s theory of health Demand in explaining the relationships that exist between the variables within the model of the study. The study engages the Instrumental Variable Regression technique in achieving the broad objectives among other techniques for the other specific objectives. The estimation results show that there exists a positive relationship between female healthcare and the level of female agricultural productivity in Nigeria. In conclusion, the study emphasises the need for more provision and empowerment for greater female access to healthcare and educational attainment levels that aids higher female agricultural productivity and consequently an improvement in the total agricultural productivity of the Nigerian economy.Keywords: agricultural productivity, education, female, healthcare, investment
Procedia PDF Downloads 825252 The Effect of CPU Location in Total Immersion of Microelectronics
Authors: A. Almaneea, N. Kapur, J. L. Summers, H. M. Thompson
Abstract:
Meeting the growth in demand for digital services such as social media, telecommunications, and business and cloud services requires large scale data centres, which has led to an increase in their end use energy demand. Generally, over 30% of data centre power is consumed by the necessary cooling overhead. Thus energy can be reduced by improving the cooling efficiency. Air and liquid can both be used as cooling media for the data centre. Traditional data centre cooling systems use air, however liquid is recognised as a promising method that can handle the more densely packed data centres. Liquid cooling can be classified into three methods; rack heat exchanger, on-chip heat exchanger and full immersion of the microelectronics. This study quantifies the improvements of heat transfer specifically for the case of immersed microelectronics by varying the CPU and heat sink location. Immersion of the server is achieved by filling the gap between the microelectronics and a water jacket with a dielectric liquid which convects the heat from the CPU to the water jacket on the opposite side. Heat transfer is governed by two physical mechanisms, which is natural convection for the fixed enclosure filled with dielectric liquid and forced convection for the water that is pumped through the water jacket. The model in this study is validated with published numerical and experimental work and shows good agreement with previous work. The results show that the heat transfer performance and Nusselt number (Nu) is improved by 89% by placing the CPU and heat sink on the bottom of the microelectronics enclosure.Keywords: CPU location, data centre cooling, heat sink in enclosures, immersed microelectronics, turbulent natural convection in enclosures
Procedia PDF Downloads 2745251 Developing Manufacturing Process for the Graphene Sensors
Authors: Abdullah Faqihi, John Hedley
Abstract:
Biosensors play a significant role in the healthcare sectors, scientific and technological progress. Developing electrodes that are easy to manufacture and deliver better electrochemical performance is advantageous for diagnostics and biosensing. They can be implemented extensively in various analytical tasks such as drug discovery, food safety, medical diagnostics, process controls, security and defence, in addition to environmental monitoring. Development of biosensors aims to create high-performance electrochemical electrodes for diagnostics and biosensing. A biosensor is a device that inspects the biological and chemical reactions generated by the biological sample. A biosensor carries out biological detection via a linked transducer and transmits the biological response into an electrical signal; stability, selectivity, and sensitivity are the dynamic and static characteristics that affect and dictate the quality and performance of biosensors. In this research, a developed experimental study for laser scribing technique for graphene oxide inside a vacuum chamber for processing of graphene oxide is presented. The processing of graphene oxide (GO) was achieved using the laser scribing technique. The effect of the laser scribing on the reduction of GO was investigated under two conditions: atmosphere and vacuum. GO solvent was coated onto a LightScribe DVD. The laser scribing technique was applied to reduce GO layers to generate rGO. The micro-details for the morphological structures of rGO and GO were visualised using scanning electron microscopy (SEM) and Raman spectroscopy so that they could be examined. The first electrode was a traditional graphene-based electrode model, made under normal atmospheric conditions, whereas the second model was a developed graphene electrode fabricated under a vacuum state using a vacuum chamber. The purpose was to control the vacuum conditions, such as the air pressure and the temperature during the fabrication process. The parameters to be assessed include the layer thickness and the continuous environment. Results presented show high accuracy and repeatability achieving low cost productivity.Keywords: laser scribing, lightscribe DVD, graphene oxide, scanning electron microscopy
Procedia PDF Downloads 1225250 Green, Yellow, Orange and Red Emission of Sm3+ Doped Borotellurite Glass under the 480nm Excitation Wavelength
Authors: M. R. S. Nasuha, K. Azman, H. Azhan, S. A. Senawi, A . Mardhiah
Abstract:
Sm3+ doped borotellurite glasses of the system (70-x) TeO2-20B2O3-10ZnO-xSm2O3 (where x = 0.0, 0.5, 1.0, 1.5, 2.0, and 2.5 mol%) have been prepared using melt-quenching method. Their physical properties such as density, molar volume and oxygen packing density as well as the optical measurements by mean of their absorption and emission characteristic have been carried out at room temperature using UV/VIS and photoluminescence spectrophotometer. The result of physical properties is found to vary with respect to Sm3+ ions content. Meanwhile, three strong absorption peaks are observed and are well resolved in the ultraviolet and visible regions due to transitions between the ground state and various excited state of Sm3+ ions. Thus, the photoluminescence spectra exhibit four emission bands from the initial state, which correspond to the 4G5/2 → 6H5/2, 4G5/2 → 6H7/2, 4G5/2 → 6H9/2 and 4G5/2 → 6H11/2 fluorescence transitions at 562 nm, 599 nm, 645 nm, and 706 nm, respectively.Keywords: absorption, borotellurite, emission, optical, physical
Procedia PDF Downloads 6985249 Bayesian Parameter Inference for Continuous Time Markov Chains with Intractable Likelihood
Authors: Randa Alharbi, Vladislav Vyshemirsky
Abstract:
Systems biology is an important field in science which focuses on studying behaviour of biological systems. Modelling is required to produce detailed description of the elements of a biological system, their function, and their interactions. A well-designed model requires selecting a suitable mechanism which can capture the main features of the system, define the essential components of the system and represent an appropriate law that can define the interactions between its components. Complex biological systems exhibit stochastic behaviour. Thus, using probabilistic models are suitable to describe and analyse biological systems. Continuous-Time Markov Chain (CTMC) is one of the probabilistic models that describe the system as a set of discrete states with continuous time transitions between them. The system is then characterised by a set of probability distributions that describe the transition from one state to another at a given time. The evolution of these probabilities through time can be obtained by chemical master equation which is analytically intractable but it can be simulated. Uncertain parameters of such a model can be inferred using methods of Bayesian inference. Yet, inference in such a complex system is challenging as it requires the evaluation of the likelihood which is intractable in most cases. There are different statistical methods that allow simulating from the model despite intractability of the likelihood. Approximate Bayesian computation is a common approach for tackling inference which relies on simulation of the model to approximate the intractable likelihood. Particle Markov chain Monte Carlo (PMCMC) is another approach which is based on using sequential Monte Carlo to estimate intractable likelihood. However, both methods are computationally expensive. In this paper we discuss the efficiency and possible practical issues for each method, taking into account the computational time for these methods. We demonstrate likelihood-free inference by performing analysing a model of the Repressilator using both methods. Detailed investigation is performed to quantify the difference between these methods in terms of efficiency and computational cost.Keywords: Approximate Bayesian computation(ABC), Continuous-Time Markov Chains, Sequential Monte Carlo, Particle Markov chain Monte Carlo (PMCMC)
Procedia PDF Downloads 2065248 Ni-W alloy Coatings: A Promising Electrode Material
Authors: Mr. Liju Elias, A. Chitharanjan Hegde
Abstract:
Ni-W alloy coatings have been developed galvanostatically on copper substrate from tri-sodium citrate bath, using glycerol as the additive. The deposition conditions for production of Ni-W coatings have been optimized for peak performance of their electrocatalytic activity, namely hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The corrosion behavior of the coatings were tested under working conditions of electrocatalysis (1M KOH). Electrocatalytic behaviours were tested by cyclic voltammetry and chrono-potentiometry techniques. Experimental results demonstrated that Ni-W coatings at low and high current densities (c. d.) showing superior performance for OER and HER respectively. The increased electrocatalytic activity for HER with increase of deposition c. d. was attributed to the phase structure, surface morphology and chemical composition of the coatings, confirmed by XRD, SEM and EDX analysis, respectively. The dependency of hardness and thickness of the coatings on HER and OER were examined, and results were discussed.Keywords: electrocatalytic behavior, HER, Ni-W alloy, OER
Procedia PDF Downloads 4175247 Health Hazards Among Health Care Workers and Associated Factors in Public Hospitals, Sana'a-Yemen
Authors: Makkia Ahmad Ali Al-Falahi, Abdullah Abdelaziz Muharram
Abstract:
Background: Healthcare workers (HCWs) in Yemen are exposed to a myriad of occupational health hazards, including biological, physical, ergonomic, chemical and psychosocial hazards. HCWs operate in an environment that is considered to be one of the most hazardous occupational settings. Objective: To assess the prevalence of occupational health hazards among healthcare workers and associated risk factors in public hospitals in Sana'a City, Yemen. Method: Descriptive cross-sectional design was utilized; out of 5443 totals of HCWs 396 were selected by multistage sampling technique was carried out in the public hospitals in Sana'a city, Yemen. Results: More the half (60.6%) of HCWs aged between 20-30 years, (50.8%) were males, (56.3%) were married, and (45.5%) had a diploma qualification, while (65.2%) of HCWs had less than 6 years of experience. The result showed that the highest prevalence of occupational hazards was (99%), (ergonomic hazards (93.4%), biological hazards (87.6%), psychosocial (86.65%), physical hazards (83.3%), and chemical hazards (73.5%). There were no statistically significant differences between demographic characteristics and the prevalence of occupational hazards (p >0.05). Conclusion and recommendations: The study showed the highest prevalence of occupational hazards; regarding the prevalence of biological hazards exposure to sharp-related injury, the most prevalent physical hazards were slip/trip/and fall. Ergonomic hazards had back or neck pain during work. Chemical hazards were allergic to medical gloves powder. On psychosocial hazards was suffered from verbal and physical harassment. The study concluded by raising awareness among HCWs by conducting training courses to prevent occupational hazards.Keywords: health workers, occupational hazards, risk factors, the prevalence
Procedia PDF Downloads 845246 In vitro Biological Activity of Some Synthesized Monoazo Heterocycles Based On Thiophene and Thiazolyl-Thiophene Analogue
Authors: Mohamed E. Khalifa, Adil A. Gobouri
Abstract:
Potential synthesis of a series of 3-amino-4-arylazothiophene derivatives from reaction of 2-cyano-2-phenylthiocarbamoyl acetamide and the appropriate α-halogenated reagents, followed by coupling with different aryl diazonium salts (Japp-Klingemann reaction), and another series of 5-arylazo-thiazol-2-ylcarbamoyl-thiophene derivatives from base-catalyzed intramolecular condensation of 5-arylazo-2-(N-chloroacetyl)amino-thiazole with selected B-keto compounds (Thorpe-Ziegler reaction) was performed. The biological activity of the two series was studied in vitro. Their versatility for pharmaceutical purposes was reported, where they displayed remarkable activities against selected pathogenic microorganisms; Bacillus subtilize, Staphylococcus aureus (Gram positive bacteria), Escherichia coli, Pseudomonas aeruginosa (Gram negative bacteria) and Aspergillus flavus, Candida albicans (fungi) with various degrees related to their chemical structures.Keywords: thiophene, 2-aminothiazole, compounds, antioxidant, antitumor, antimicrobial
Procedia PDF Downloads 3445245 Customised Wellness Solutions Using Health Technological Platforms: An Exploratory Research Protocol
Authors: Elaine Wong Yee-Sing, Liaw Wee Tong
Abstract:
Rapid transformations in demographic and socioeconomic shifts are leading to a growing global demand for health and beauty products and services that demands holistic concepts of well-being. In addition, technological breakthroughs such as internet of things make it convenient and offer innovative solutions for well-being and engage consumers to track their own health conditions and fitness goals. This 'new health economy' encompasses three key concepts: well-being, well-conditioned and well-shaped; which are shaped by wellness segments and goals that influence purchasing decisions of consumers. The research protocol aims to examine the feasibility, challenges, and capabilities in provision for each customer with an ecosystem, or platform, that organizes data and insights to create an individual health and fitness, nutrition, and beauty profile. Convenience sampling of 100 consumers residing in private housing within five major districts in Singapore will be selected to participate in the study. Statistical Package for Social Science 25 will be used to conduct descriptive statistics for quantitative data while qualitative data results using focus interviews, will be translated and transcribed to identify improvements in provision of these services. Rising income in emerging global markets is fuelling the demand for these general wellbeing products and services. Combined with technological advances, it is imperative to understand how these highly personalized services with integrated technology can be designed better to support consumer preferences; provide greater flexibility and high-quality service, and generate better health awareness among consumers.Keywords: beauty, consumers, health, technology, wellness
Procedia PDF Downloads 1295244 Microfluidic Paper-Based Electrochemical Biosensor
Authors: Ahmad Manbohi, Seyyed Hamid Ahmadi
Abstract:
A low-cost paper-based microfluidic device (PAD) for the multiplex electrochemical determination of glucose, uric acid, and dopamine in biological fluids was developed. Using wax printing, PAD containing a central zone, six channels, and six detection zones was fabricated, and the electrodes were printed on detection zones using pre-made electrodes template. For each analyte, two detection zones were used. The carbon working electrode was coated with chitosan-BSA (and enzymes for glucose and uric acid). To detect glucose and uric acid, enzymatic reactions were employed. These reactions involve enzyme-catalyzed redox reactions of the analytes and produce free electrons for electrochemical measurement. Calibration curves were linear (R² > 0.980) in the range of 0-80 mM for glucose, 0.09–0.9 mM for dopamine, and 0–50 mM for uric acid, respectively. Blood samples were successfully analyzed by the proposed method.Keywords: biological fluids, biomarkers, microfluidic paper-based electrochemical biosensors, Multiplex
Procedia PDF Downloads 2835243 Aggregating Buyers and Sellers for E-Commerce: How Demand and Supply Meet in Fairs
Authors: Pierluigi Gallo, Francesco Randazzo, Ignazio Gallo
Abstract:
In recent years, many new and interesting models of successful online business have been developed. Many of these are based on the competition between users, such as online auctions, where the product price is not fixed and tends to rise. Other models, including group-buying, are based on cooperation between users, characterized by a dynamic price of the product that tends to go down. There is not yet a business model in which both sellers and buyers are grouped in order to negotiate on a specific product or service. The present study investigates a new extension of the group-buying model, called fair, which allows aggregation of demand and supply for price optimization, in a cooperative manner. Additionally, our system also aggregates products and destinations for shipping optimization. We introduced the following new relevant input parameters in order to implement a double-side aggregation: (a) price-quantity curves provided by the seller; (b) waiting time, that is, the longer buyers wait, the greater discount they get; (c) payment time, which determines if the buyer pays before, during or after receiving the product; (d) the distance between the place where products are available and the place of shipment, provided in advance by the buyer or dynamically suggested by the system. To analyze the proposed model we implemented a system prototype and a simulator that allows studying effects of changing some input parameters. We analyzed the dynamic price model in fairs having one single seller and a combination of selected sellers. The results are very encouraging and motivate further investigation on this topic.Keywords: auction, aggregation, fair, group buying, social buying
Procedia PDF Downloads 2945242 Use of Microbial Fuel Cell for Metal Recovery from Wastewater
Authors: Surajbhan Sevda
Abstract:
Metal containing wastewater is generated in large quintiles due to rapid industrialization. Generally, the metal present in wastewater is not biodegradable and can be accumulated in living animals, humans and plant tissue, causing disorder and diseases. The conventional metal recovery methods include chemical, physical and biological methods, but these are chemical and energy intensive. The recent development in microbial fuel cell (MFC) technology provides a new approach for metal recovery; this technology offers a flexible platform for both reduction and oxidation reaction oriented process. The use of MFCs will be a new platform for more efficient and low energy approach for metal recovery from the wastewater. So far metal recover was extensively studied using chemical, physical and biological methods. The MFCs present a new and efficient approach for removing and recovering metals from different wastewater, suggesting the use of different electrode for metal recovery can be a new efficient and effective approach.Keywords: metal recovery, microbial fuel cell, wastewater, bioelectricity
Procedia PDF Downloads 2185241 Biodegradable Poly-ε-Caprolactone-Based Siloxane Polymer
Authors: Maria E. Fortună, Elena Ungureanu, Răzvan Rotaru, Valeria Harabagiu
Abstract:
Polymers are used in a variety of areas due to their unique mechanical and chemical properties. Natural polymers are biodegradable, whereas synthetic polymers are rarely biodegradable but can be modified. As a result, by combining the benefits of natural and synthetic polymers, composite materials that are biodegradable can be obtained with potential for biomedical and environmental applications. However, because of their strong resistance to degradation, it may be difficult to eliminate waste. As a result, interest in developing biodegradable polymers has risen significantly. This research involves obtaining and characterizing two biodegradable poly-ε-caprolactone-polydimethylsiloxane copolymers. A comparison study was conducted using an aminopropyl-terminated polydimethylsiloxane macroinitiator with two distinct molecular weights. The copolymers were obtained by ring-opening polymerization of poly (ɛ-caprolactone) in the presence of aminopropyl-terminated polydimethylsiloxane as initiator and comonomers and stannous 2-ethylhexanoate as a catalyst. The materials were characterized using a number of techniques, including NMR, FTIR, EDX, SEM, AFM, and DSC. Additionally, the water contact angle and water vapor sorption capacity were assessed. Furthermore, the copolymers were examined for environmental susceptibility by conducting biological tests on tomato plants (Lypercosium esculentum), with an accent on biological stability and metabolism. Subsequent to the copolymer's degradation, the dynamics of nitrogen experience evolutionary alterations, validating the progression of the process accompanied by the liberation of organic nitrogen. The biological tests performed (germination index, average seedling height, green and dry biomass) on Lypercosium esculentum, San Marzano variety tomato plants in direct contact with the copolymer indicated normal growth and development, suggesting a minimal toxic effect and, by extension, compatibility of the copolymer with the environment. The total chlorophyll concentration of plant leaves in contact with copolymers was determined, considering the pigment's critical role in photosynthesis and, implicitly, plant metabolism and physiological state.Keywords: biodegradable, biological stability, copolymers, polydimethylsiloxane
Procedia PDF Downloads 245240 Efficient Treatment of Azo Dye Wastewater with Simultaneous Energy Generation by Microbial Fuel Cell
Authors: Soumyadeep Bhaduri, Rahul Ghosh, Rahul Shukla, Manaswini Behera
Abstract:
The textile industry consumes a substantial amount of water throughout the processing and production of textile fabrics. The water eventually turns into wastewater, where it acts as an immense damaging nuisance due to its dye content. Wastewater streams contain a percentage ranging from 2.0% to 50.0% of the total weight of dye used, depending on the dye class. The management of dye effluent in textile industries presents a formidable challenge to global sustainability. The current focus is on implementing wastewater treatment technology that enable the recycling of wastewater, reduce energy usage and offset carbon emissions. Microbial fuel cell (MFC) is a device that utilizes microorganisms as a bio-catalyst to effectively treat wastewater while also producing electricity. The MFC harnesses the chemical energy present in wastewater by oxidizing organic compounds in the anodic chamber and reducing an electron acceptor in the cathodic chamber, thereby generating electricity. This research investigates the potential of MFCs to tackle this challenge of azo dye removal with simultaneously generating electricity. Although MFCs are well-established for wastewater treatment, their application in dye decolorization with concurrent electricity generation remains relatively unexplored. This study aims to address this gap by assessing the effectiveness of MFCs as a sustainable solution for treating wastewater containing azo dyes. By harnessing microorganisms as biocatalysts, MFCs offer a promising avenue for environmentally friendly dye effluent management. The performance of MFCs in treating azo dyes and generating electricity was evaluated by optimizing the Chemical Oxygen Demand (COD) and Hydraulic Retention Time (HRT) of influent. COD and HRT values ranged from 1600 mg/L to 2400 mg/L and 5 to 9 days, respectively. Results showed that the maximum open circuit voltage (OCV) reached 648 mV at a COD of 2400 mg/L and HRT of 5 days. Additionally, maximum COD removal of 98% and maximum color removal of 98.91% were achieved at a COD of 1600 mg/L and HRT of 9 days. Furthermore, the study observed a maximum power density of 19.95 W/m3 at a COD of 2400 mg/L and HRT of 5 days. Electrochemical analysis, including linear sweep voltammetry (LSV), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were done to find out the response current and internal resistance of the system. To optimize pH and dye concentration, pH values were varied from 4 to 10, and dye concentrations ranged from 25 mg/L to 175 mg/L. The highest voltage output of 704 mV was recorded at pH 7, while a dye concentration of 100 mg/L yielded the maximum output of 672 mV. This study demonstrates that MFCs offer an efficient and sustainable solution for treating azo dyes in textile industry wastewater, while concurrently generating electricity. These findings suggest the potential of MFCs to contribute to environmental remediation and sustainable development efforts on a global scale.Keywords: textile wastewater treatment, microbial fuel cell, renewable energy, sustainable wastewater treatment
Procedia PDF Downloads 23