Search results for: behavioral healthcare
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2658

Search results for: behavioral healthcare

1308 A PROMETHEE-BELIEF Approach for Multi-Criteria Decision Making Problems with Incomplete Information

Authors: H. Moalla, A. Frikha

Abstract:

Multi-criteria decision aid methods consider decision problems where numerous alternatives are evaluated on several criteria. These methods are used to deal with perfect information. However, in practice, it is obvious that this information requirement is too much strict. In fact, the imperfect data provided by more or less reliable decision makers usually affect decision results since any decision is closely linked to the quality and availability of information. In this paper, a PROMETHEE-BELIEF approach is proposed to help multi-criteria decisions based on incomplete information. This approach solves problems with incomplete decision matrix and unknown weights within PROMETHEE method. On the base of belief function theory, our approach first determines the distributions of belief masses based on PROMETHEE’s net flows and then calculates weights. Subsequently, it aggregates the distribution masses associated to each criterion using Murphy’s modified combination rule in order to infer a global belief structure. The final action ranking is obtained via pignistic probability transformation. A case study of real-world application concerning the location of a waste treatment center from healthcare activities with infectious risk in the center of Tunisia is studied to illustrate the detailed process of the BELIEF-PROMETHEE approach.

Keywords: belief function theory, incomplete information, multiple criteria analysis, PROMETHEE method

Procedia PDF Downloads 166
1307 Automated Classification of Hypoxia from Fetal Heart Rate Using Advanced Data Models of Intrapartum Cardiotocography

Authors: Malarvizhi Selvaraj, Paul Fergus, Andy Shaw

Abstract:

Uterine contractions produced during labour have the potential to damage the foetus by diminishing the maternal blood flow to the placenta. In order to observe this phenomenon labour and delivery are routinely monitored using cardiotocography monitors. An obstetrician usually makes the diagnosis of foetus hypoxia by interpreting cardiotocography recordings. However, cardiotocography capture and interpretation is time-consuming and subjective, often lead to misclassification that causes damage to the foetus and unnecessary caesarean section. Both of these have a high impact on the foetus and the cost to the national healthcare services. Automatic detection of foetal heart rate may be an objective solution to help to reduce unnecessary medical interventions, as reported in several studies. This paper aim is to provide a system for better identification and interpretation of abnormalities of the fetal heart rate using RStudio. An open dataset of 552 Intrapartum recordings has been filtered with 0.034 Hz filters in an attempt to remove noise while keeping as much of the discriminative data as possible. Features were chosen following an extensive literature review, which concluded with FIGO features such as acceleration, deceleration, mean, variance and standard derivation. The five features were extracted from 552 recordings. Using these features, recordings will be classified either normal or abnormal. If the recording is abnormal, it has got more chances of hypoxia.

Keywords: cardiotocography, foetus, intrapartum, hypoxia

Procedia PDF Downloads 216
1306 Hotel Sales Promotion Effectiveness: An Experimental Study about Promotional Fit Presence vs. Absence on Behavioral Intentions

Authors: Esra Topcuoglu, Seyhmus Baloglu

Abstract:

This research investigates the effects of online hotel sales promotion fit (SP fit) on traveler purchase intention (PI) and word-of-mouth (WOM). It examines these relationships based on the need for cognition (NFC), intention to travel (TI), promotional attractiveness (PA), and demographics within resource matching theory (RMT). One factor (SP: Fit presence for monetary and nonmonetary vs. Fit absence for monetary and nonmonetary) design was employed to test the effects of SP fit on traveler behaviors. Data collection was conducted from 300 subjects through Qualtrics. One-way MANOVA was performed to test the main effects of SP fit, and PROCESS simple moderation test for the interaction effects. Results revealed promotional fit increased the effectiveness of monetary and nonmonetary sales promotions. “F&B discount card at the hotel” was the most preferred deal. Fit absence for monetary sales promotion (MSP) and fit presence for nonmonetary sales promotion (NMSP) yielded significant results. The participants were involved in their intention to travel and perceptions of promotional attractiveness to value the promotions.

Keywords: need for cognition, promotional attractiveness, sales promotion fit, travel intention

Procedia PDF Downloads 137
1305 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches

Authors: Aya Salama

Abstract:

Digital Twin is an emerging research topic that attracted researchers in the last decade. It is used in many fields, such as smart manufacturing and smart healthcare because it saves time and money. It is usually related to other technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, Human digital twin (HDT), in specific, is still a novel idea that still needs to prove its feasibility. HDT expands the idea of Digital Twin to human beings, which are living beings and different from the inanimate physical entities. The goal of this research was to create a Human digital twin that is responsible for real-time human replies automation by simulating human behavior. For this reason, clustering, supervised classification, topic extraction, and sentiment analysis were studied in this paper. The feasibility of the HDT for personal replies generation on social messaging applications was proved in this work. The overall accuracy of the proposed approach in this paper was 63% which is a very promising result that can open the way for researchers to expand the idea of HDT. This was achieved by using Random Forest for clustering the question data base and matching new questions. K-nearest neighbor was also applied for sentiment analysis.

Keywords: human digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification, clustering

Procedia PDF Downloads 87
1304 The Effectiveness of Intervention Methods for Repetitive Behaviors in Preschool Children with Autism Spectrum Disorder: A Systematic Review

Authors: Akane Uda, Ami Tabata, Mi An, Misa Komaki, Ryotaro Ito, Mayumi Inoue, Takehiro Sasai, Yusuke Kusano, Toshihiro Kato

Abstract:

Early intervention is recommended for children with autism spectrum disorder (ASD), and an increasing number of children have received support and intervention before school age in recent years. In this study, we systematically reviewed preschool interventions focused on repetitive behaviors observed in children with ASD, which are often observed at younger ages. Inclusion criteria were as follows : (1) Child of preschool status (age ≤ 7 years) with a diagnosis of ASD (including autism, Asperger's, and pervasive developmental disorder) or a parent (caregiver) with a preschool child with ASD, (2) Physician-confirmed diagnosis of ASD (autism, Asperger's, and pervasive developmental disorder), (3) Interventional studies for repetitive behaviors, (4) Original articles published within the past 10 years (2012 or later), (5) Written in English and Japanese. Exclusion criteria were as follows: (1) Systematic reviews or meta-analyses, (2) Conference reports or books. We carefully scrutinized databases to remove duplicate references and used a two-step screening process to select papers. The primary screening included close scrutiny of titles and abstracts to exclude articles that did not meet the eligibility criteria. During the secondary screening, we carefully read the complete text to assess eligibility, which was double-checked by six members at the laboratory. Disagreements were resolved through consensus-based discussion. Our search yielded 304 papers, of which nine were included in the study. The level of evidence was as follows: three randomized controlled trials (level 2), four pre-post studies (level 4b), and two case reports (level 5). Seven articles selected for this study described the effectiveness of interventions. Interventions for repetitive behaviors in preschool children with ASD were categorized as five interventions that directly involved the child and four educational programs for caregivers and parents. Studies that directly intervened with children used early intensive intervention based on applied behavior analysis (Early Start Denver Model, Early Intensive Behavioral Intervention, and the Picture Exchange Communication System) and individualized education based on sensory integration. Educational interventions for caregivers included two methods; (a) education regarding combined methods and practices of applied behavior analysis in addition to classification and coping methods for repetitive behaviors, and (b) education regarding evaluation methods and practices based on children’s developmental milestones in play. With regard to the neurophysiological basis of repetitive behaviors, environmental factors are implicated as possible contributors. We assumed that applied behavior analysis was shown to be effective in reducing repetitive behaviors because analysis focused on the interaction between the individual and the environment. Additionally, with regard to educational interventions for caregivers, the intervention was shown to promote behavioral change in children based on the caregivers' understanding of the classification of repetitive behaviors and the children’s developmental milestones in play and adjustment of the person-environment context led to a reduction in repetitive behaviors.

Keywords: autism spectrum disorder, early intervention, repetitive behaviors, systematic review

Procedia PDF Downloads 140
1303 Multisource (RF and Solar) Energy Harvesting for Internet of Things (IoT)

Authors: Emmanuel Ekwueme, Anwar Ali

Abstract:

As the Internet of Things (IoT) continues to expand, the demand for battery-free devices is increasing, which is crucial for the efficiency of 5G networks and eco-friendly industrial systems. The solution is a device that operates indefinitely, requires no maintenance, and has no negative impact on the ambient environment. One promising approach to achieve this is energy harvesting, which involves capturing energy from the ambient environment and transferring it to power devices. This method can revolutionize industries. Such as manufacturing, agriculture, and healthcare by enabling real-time data collection and analysis, reducing maintenance costs, improving efficiency, and contributing to a future with lower carbon emissions. This research explores various energy harvesting techniques, focusing on radio frequencies (RF) and multiple energy sources. It examines RF-based and solar methods for powering battery-free sensors, low-power circuits, and IoT devices. The study investigates a hybrid RF-solar harvesting circuit designed for remote sensing devices. The proposed system includes distinct RF and solar energy harvester circuits, with the RF harvester operating at 2.45GHz and the solar harvester utilizing a maximum power point tracking (MPPT) algorithm to maximize efficiency.

Keywords: radio frequency, energy harvesting, Internet of Things (IoT), multisource, solar energy

Procedia PDF Downloads 10
1302 Status of Herpetofauna of Trans-Himalayan Region of Ladakh, India

Authors: Dimpi A. Patel, Pankaj Raina, Ramesh Chinnasamy, Sunetro Ghosal

Abstract:

The herpetological fauna of Ladakh has been surveyed few times till 1999. In 2019, a rapid survey to document current herpetofaunal composition was undertaken in which a total of 6 species belonging to 2 orders and five families along with their altitudinal ranges were recorded. We present a revised checklist of reptiles found in Ladakh trans Himalayas based on historical records and recent field surveys. Records for erroneously reported species in literature are discussed and recommended for removal from the list from this region. For several species, new elevation range records have been recorded. This paper contributes to the present status of the richness of reptiles and amphibians in the region by documenting the composition and ecological distribution of the herpetofauna of unstudied sites. Species-specific temperature and humidity regimes were also recorded during the survey periods. Our study creates baseline information for future ecological and behavioral studies on the herpetofauna of the region by providing habitat preferences and distribution in detail.

Keywords: amphibians, distribution, diversity, reptiles, trans-Himalaya

Procedia PDF Downloads 169
1301 Evaluation of the Hepatitis C Virus and Classical and Modern Immunoassays Used Nowadays to Diagnose It in Tirana

Authors: Stela Papa, Klementina Puto, Migena Pllaha

Abstract:

HCV is a hepatotropic RNA virus, transmitted primarily via the blood route, which causes progressive disease such as chronic hepatitis, liver cirrhosis, or hepatocellular carcinoma. HCV nowadays is a global healthcare problem. A variety of immunoassays including old and new technologies are being applied to detect HCV in our country. These methods include Immunochromatography assays (ICA), Fluorescence immunoassay (FIA), Enzyme linked fluorescent assay (ELFA), and Enzyme linked immunosorbent assay (ELISA) to detect HCV antibodies in blood serum, which lately is being slowly replaced by more sensitive methods such as rapid automated analyzer chemiluminescence immunoassay (CLIA). The aim of this study is to estimate HCV infection in carriers and chronic acute patients and to evaluate the use of new diagnostic methods. This study was realized from September 2016 to May 2018. During this study period, 2913 patients were analyzed for the presence of HCV by taking samples from their blood serum. The immunoassays performed were ICA, FIA, ELFA, ELISA, and CLIA assays. Concluding, 82% of patients taken in this study, resulted infected with HCV. Diagnostic methods in clinical laboratories are crucial in the early stages of infection, in the management of chronic hepatitis and in the treatment of patients during their disease.

Keywords: CLIA, ELISA, Hepatitis C virus, immunoassay

Procedia PDF Downloads 153
1300 ‘BEST BARK’ Dog Care and Owner Consultation System

Authors: Shalitha Jayasekara, Saluk Bawantha, Dinithi Anupama, Isuru Gunarathne, Pradeepa Bandara, Hansi De Silva

Abstract:

Dogs have been known as "man's best friend" for generations, providing friendship and loyalty to their human counterparts. However, due to people's busy lives, they are unaware of the ailments that can affect their pets. However, in recent years, mobile technologies have had a significant impact on our lives, and with technological improvements, a rule-based expert system allows the end-user to enable new types of healthcare systems. The advent of Android OS-based smartphones with more user-friendly interfaces and lower pricing opens new possibilities for continuous monitoring of pets' health conditions, such as healthy dogs, dangerous ingestions, and swallowed objects. The proposed ‘Best Bark’ Dog care and owner consultation system is a mobile application for dog owners. Four main components for dog owners were implemented after a questionnaire was distributed to the target group of audience and the findings were evaluated. The proposed applications are widely used to provide health and clinical support to dog owners, including suggesting exercise and diet plans and answering queries about their dogs. Additionally, after the owner uploads a photo of the dog, the application provides immediate feedback and a description of the dog's skin disease.

Keywords: Convolution Neural Networks, Artificial Neural Networks, Knowledgebase, Sentimental Analysis.

Procedia PDF Downloads 153
1299 Exploring the Neural Mechanisms of Communication and Cooperation in Children and Adults

Authors: Sara Mosteller, Larissa K. Samuelson, Sobanawartiny Wijeakumar, John P. Spencer

Abstract:

This study was designed to examine how humans are able to teach and learn semantic information as well as cooperate in order to jointly achieve sophisticated goals. Specifically, we are measuring individual differences in how these abilities develop from foundational building blocks in early childhood. The current study adopts a paradigm for novel noun learning developed by Samuelson, Smith, Perry, and Spencer (2011) to a hyperscanning paradigm [Cui, Bryant and Reiss, 2012]. This project measures coordinated brain activity between a parent and child using simultaneous functional near infrared spectroscopy (fNIRS) in pairs of 2.5, 3.5 and 4.5-year-old children and their parents. We are also separately testing pairs of adult friends. Children and parents, or adult friends, are seated across from one another at a table. The parent (in the developmental study) then teaches their child the names of novel toys. An experimenter then tests the child by presenting the objects in pairs and asking the child to retrieve one object by name. Children are asked to choose from both pairs of familiar objects and pairs of novel objects. In order to explore individual differences in cooperation with the same participants, each dyad plays a cooperative game of Jenga, in which their joint score is based on how many blocks they can remove from the tower as a team. A preliminary analysis of the noun-learning task showed that, when presented with 6 word-object mappings, children learned an average of 3 new words (50%) and that the number of objects learned by each child ranged from 2-4. Adults initially learned all of the new words but were variable in their later retention of the mappings, which ranged from 50-100%. We are currently examining differences in cooperative behavior during the Jenga playing game, including time spent discussing each move before it is made. Ongoing analyses are examining the social dynamics that might underlie the differences between words that were successfully learned and unlearned words for each dyad, as well as the developmental differences observed in the study. Additionally, the Jenga game is being used to better understand individual and developmental differences in social coordination during a cooperative task. At a behavioral level, the analysis maps periods of joint visual attention between participants during the word learning and the Jenga game, using head-mounted eye trackers to assess each participant’s first-person viewpoint during the session. We are also analyzing the coherence in brain activity between participants during novel word-learning and Jenga playing. The first hypothesis is that visual joint attention during the session will be positively correlated with both the number of words learned and with the number of blocks moved during Jenga before the tower falls. The next hypothesis is that successful communication of new words and success in the game will each be positively correlated with synchronized brain activity between the parent and child/the adult friends in cortical regions underlying social cognition, semantic processing, and visual processing. This study probes both the neural and behavioral mechanisms of learning and cooperation in a naturalistic, interactive and developmental context.

Keywords: communication, cooperation, development, interaction, neuroscience

Procedia PDF Downloads 252
1298 Moral Distress among Nurses Working in Hospitals in Jazan: A Cross-Sectional Study

Authors: Hussain Darraj

Abstract:

Background: Healthcare workers, especially nurses, are subjected to a great risk of psychological stress, mostly moral distress. Therefore, it is crucial to address moral distress in nurses. Objectives: The aim of this study is to study the extent of moral distress among hospital nurses in Jazan. Methods: This study used a cross-sectional study design, which included 419 nurses from Jazan hospitals. A questionnaire was used to measure moral distress and its related factors. Results: The average total score for moral distress among the study participants is 134.14, with a standard deviation of 53.94. Moreover, the current study findings indicate that those over the age of 35 years who work as nurse managers, working in critical departments, have the intention to leave a position, have received ethical training or workshops, have provided care for COVID-19 cases, or work in a department with staff shortages are associated with the experience of higher-level moral stress. Conclusion: Nurses are recommended to be provided with ongoing education and resources in order to reduce moral distress and create a positive work atmosphere for nurses. Moreover, the current study sheds light on the importance of organizational support to provide enough resources and staffing in order to reduce moral distress among nurses. Further research is needed to focus on other health professionals and moral distress. Moreover, future studies are also required to explore the strategies to reduce moral distress levels among nurses.

Keywords: moral distress, Jazan, nurses, hospital

Procedia PDF Downloads 90
1297 In Online and Laboratory We Trust: Comparing Trust Game Behavior in Three Environments

Authors: Kaisa M. Herne, Hanna E. Björkstedt

Abstract:

Comparisons of online and laboratory environments are important for assessing whether the environment influences behavioral results. Trust game behavior was examined in three environments: 1) The standard laboratory setting with physically present participants (laboratory), 2) An online environment with an online meeting before playing the trust game (online plus a meeting); and 3) An online environment without a meeting (online without a meeting). In laboratory, participants were present in a classroom and played the trust game anonymously via computers. Online plus a meeting mimicked the laboratory in that participants could see each other in an online meeting before sessions started, whereas online without a meeting was a standard online experiment in which participants did not see each other at any stages of the experiment. Participants were recruited through pools of student subjects at two universities. The trust game was identical in all conditions; it was played with the same software, anonymously, and with stranger matching. There were no statistically significant differences between the treatment conditions regarding trust or trustworthiness. Results suggest that conducting trust game experiments online will yield similar results to experiments implemented in a laboratory.

Keywords: laboratory vs. online experiment, trust behavior, trust game, trustworthiness behavior

Procedia PDF Downloads 78
1296 Investigating Nurses’ Burnout Experiences on TikTok

Authors: Claire Song

Abstract:

Background: TikTok is an emerging social media platform creating an outlet for nurses to express and communicate their nursing experiences and stress related to nursing. Purpose: This study investigates the lived experiences of nursing burnout shared on TikTok. Method: The cross-sectional content analysis examines the video content, format, type, and quantitative indicators, including the number of likes and comments. Results: A total of 35 videos and 18616 comments were examined, published between November 2020 and May 2023. Combined, these 35 videos received 24859 comments and 1159669 of likes. Most of the videos included nurses, and 12 included nurses in professional attire. Three videos included interviewers in the video, but the rest of the videos were self-recorded. Four themes of nurses’ burnout experiences were identified: 1) high-intensity work environment, 2) negative internal perception, 3) culture of nursing work, and 4) poor teamwork experience. Conclusion: This study explored the description of nurses’ burnout experiences via a creative platform. Social media, such as TikTok, is a valuable outlet for healthcare providers to express and share their experiences. Future research might consider using the social media platform to explore coping strategies and resilience in nurses who experienced burnout.

Keywords: burnout, emotional wellbeing, nursing, social media

Procedia PDF Downloads 86
1295 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models

Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri

Abstract:

Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.

Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation

Procedia PDF Downloads 74
1294 Health Belief Model to Predict Sharps Injuries among Health Care Workers at First Level Care Facilities in Rural Pakistan

Authors: Mohammad Tahir Yousafzai, Amna Rehana Siddiqui, Naveed Zafar Janjua

Abstract:

We assessed the frequency and predictors of sharp injuries (SIs) among health care workers (HCWs) at first level care facilities (FLCF) in rural Pakistan. HCWs working at public clinic (PC), privately owned licensed practitioners’ clinic (LPC) and non-licensed practitioners’ clinic (NLC) were interviewed on universal precautions (UPs) and constructs of health belief model (HBM) to assess their association with SIs through negative-binomial regression. From 365 clinics, 485 HCWs were interviewed. Overall annual rate of Sis was 192/100 HCWs/year; 78/100 HCWs among licensed prescribers, 191/100 HCWs among non-licensed prescribers, 248/100 HCWs among qualified assistants, and 321/100 HCWs among non-qualified assistants. Increasing knowledge score about bloodborne pathogens (BBPs) transmission (rate-ratio (RR): 0.93; 95%CI: 0.89–0.96), fewer years of work experience, being a non-licensed prescriber (RR: 2.02; 95%CI: 1.36–2.98) licensed (RR: 2.86; 9%CI: 1.81–4.51) or non-licensed assistant (RR: 2.78; 95%CI: 1.72–4.47) compared to a licensed prescriber, perceived barriers (RR: 1.06;95%CI: 1.03–1.08), and compliance with UPs scores (RR: 0.93; 95%CI: 0.87–0.97) were significant predictors of SIs. Improved knowledge about BBPs, compliance with UPs and reduced barriers to follow UPs could reduce SIs to HCWs.

Keywords: health belief model, sharp injuries, needle stick injuries, healthcare workers

Procedia PDF Downloads 310
1293 Actual and Perceived Financial Sophistication and Wealth Accumulation: The Role of Education and Gender

Authors: Christina E. Bannier, Milena Neubert

Abstract:

This study examines the role of actual and perceived financial sophistication (i.e., financial literacy and confidence) for individuals’ wealth accumulation. Using survey data from the German SAVE initiative, we find strong gender- and education-related differences in the distribution of the two variables: Whereas financial literacy rises in formal education, confidence increases in education for men but decreases for women. As a consequence, highly-educated women become strongly underconfident, while men remain overconfident. We show that these differences influence wealth accumulation: The positive effect of financial literacy is stronger for women than for men and is increasing in women’s education but decreasing in men’s. For highly-educated men, however, overconfidence closes this gap by increasing wealth via stronger financial engagement. Interestingly, female underconfidence does not reduce current wealth levels though it weakens future-oriented financial engagement and may thus impair future wealth accumulation.

Keywords: financial literacy, financial sophistication, confidence, wealth, household finance, behavioral finance, gender, formal education

Procedia PDF Downloads 268
1292 Unusual High Origin and Superficial Course of Radial Artery: A Case Report with Embryological Explanation

Authors: Anasuya Ghosh, Subhramoy Chaudhury

Abstract:

During routine cadaveric dissection at gross anatomy lab of our institution, a radial artery was found with unusual origin and superficial course. Normally the radial artery takes its origin as one of the terminal branches of brachial artery at the level of the neck of radius. It usually lies along the lateral border of fore arm deep to the brachioradialis muscle. While dissecting a 72-year-old Caucasian female cadaver, it was found that the right sided radial artery originated from the upper part of brachial artery of arm, 2 cm below the lower border of teres major muscle, from the lateral aspect of brachial artery. Then the radial artery superficially crossed the brachial artery and median nerve from lateral to medial direction and rested superficially at the cubital fossa. Embryologically, it can be explained as a failure of disappearance, or abnormal persistence of some insignificant embryonic vessels may give rise to this kind of vascular anomalies. As radial artery is one of the most important upper limb arteries, its variation and related complications are clinically significant. This unusual origin and course of radial artery should be kept in mind by all healthcare providers including surgeons and radiologists during routine venipuncture, orthopedic and plastic surgeries of arm, coronary angiographic procedures in radial approach etc. to prevent unwanted complications.

Keywords: brachial artery anomalies, brachio-radial artery, high origin radial artery, superficial radial artery

Procedia PDF Downloads 325
1291 Risk Factors for Fall in Elderly with Diabetes Mellitus Type 2 in Jeddah Saudi Arabia 2022: A Cross-Sectional Study

Authors: Rami S. Alasmari, Abdullah Al Zahrani, Hattan A. Hassani, Hattan A. Hassani, Nawwaf A. Almalky, Abdullah F. Bokhari, Alwalied A. Hafez

Abstract:

Diabetes mellitus type 2 (DMT2) is a major chronic condition that is considered common among elderly people, with multiple potential complications that could contribute to falls. However, this concept is not well understood, thus, the aim of this study is to determine whether diabetes is an independent risk factor for falls in elderly. In this observational cross-sectional study, 309 diabetic patients aged 60 or more who visited the primary healthcare centers of the Ministry of National Guard Health Affairs in Jeddah were chosen via convenience sampling method. To collect the data, Semi-structured Fall Risk Assessment questionnaire and Fall Efficacy Score scale were used. The mean age of the participants was estimated to be 68.5 (SD:7.4) years. Among the participants, 48.2% experienced falling before, and 63.1% of them suffered falls in the past 12-months. The results showed that gait problems were independently associated with a higher likelihood of fall among the elderly patients (OR = 1.98, 95%CI, 1.08 to 3.62, p = 0.026. This paper suggests that diabetes mellitus is an independent fall risk factor among elderly. Therefore, identifying such patients as being at higher risk and prompt referral to a specialist falls clinic is recommended.

Keywords: diabetes, fall, elderly, risk factors

Procedia PDF Downloads 105
1290 The Differences of Vascular Endothelial Growth Factor Levels in Serum to Determine Follicular Adenoma and Follicular Carcinoma of Thyroid

Authors: Tery Nehemia Nugraha Joseph, J. D. P. Wisnubroto

Abstract:

Thyroid cancer is a healthcare problem with high morbidity and mortality. Follicular adenoma and follicular carcinoma are thyroid tumors from the thyroid follicular cells differentiation with a microfollicular pattern that consists of follicular cuboidal cells. vascular endothelial growth factor (VEGF) is a potent and powerful mitogen for endothelial cells and increases vascular permeability. Therefore, due to an increase in thyroid-stimulating hormone (TSH), VEGF production is activated in the thyroid that leads to the end of mitogenic TSH stimulation and initiation of angiogenesis. The differences in VEGF levels in the follicular carcinoma of thyroid tissue with follicular adenoma thyroid can be used as a basis in differentiating the two types of neoplasms. This study aims to analyze VEGF in the serum so that it can be used to differentiate the types of thyroid carcinoma before surgery. This study uses a cross-sectional research design. Samples were carried out by taking serum samples, and the VEGF levels were calculated. Data were analyzed using the Mann-Whitney test. The results found a significant difference between VEGF levels in the follicular carcinoma thyroid group and VEGF levels in the follicular adenoma thyroid group with a value of p = 0.007 (p < 0.05). The results obtained are 560,427 ± 160,506 ng/mL in the type of follicular carcinoma thyroid and 320.943 ± 134.573 ng/mL in the type of follicular adenoma thyroid. VEGF levels between follicular adenoma and follicular carcinoma are different. VEGF levels are higher in follicular carcinoma thyroid than follicular adenoma thyroid.

Keywords: follicular adenoma thyroid, follicular carcinoma thyroid, thyroid, VEGF

Procedia PDF Downloads 143
1289 Robust Recognition of Locomotion Patterns via Data-Driven Machine Learning in the Cloud Environment

Authors: Shinoy Vengaramkode Bhaskaran, Kaushik Sathupadi, Sandesh Achar

Abstract:

Human locomotion recognition is important in a variety of sectors, such as robotics, security, healthcare, fitness tracking and cloud computing. With the increasing pervasiveness of peripheral devices, particularly Inertial Measurement Units (IMUs) sensors, researchers have attempted to exploit these advancements in order to precisely and efficiently identify and categorize human activities. This research paper introduces a state-of-the-art methodology for the recognition of human locomotion patterns in a cloud environment. The methodology is based on a publicly available benchmark dataset. The investigation implements a denoising and windowing strategy to deal with the unprocessed data. Next, feature extraction is adopted to abstract the main cues from the data. The SelectKBest strategy is used to abstract optimal features from the data. Furthermore, state-of-the-art ML classifiers are used to evaluate the performance of the system, including logistic regression, random forest, gradient boosting and SVM have been investigated to accomplish precise locomotion classification. Finally, a detailed comparative analysis of results is presented to reveal the performance of recognition models.

Keywords: artificial intelligence, cloud computing, IoT, human locomotion, gradient boosting, random forest, neural networks, body-worn sensors

Procedia PDF Downloads 11
1288 Functions and Effects of Green Facades in the Developing Countries: Case Study of Tehran

Authors: S. Jahani, V. Choopankareh

Abstract:

Many people lost their life caused by environmental pollution every year. The negative effects of environmental crises appear to be much higher in Asian countries. The most important environmental issue in the developing countries and especially in Tehran, to our best knowledge, is air pollution that has affected many aspects of life in society. Environmental topics related to technology’s development have been salient issues among the main concerns of designers. Green facades are the most considerable solutions which designers and architectures are focused on, all over the world. But there are lots of behavioral and psychological problems about this point. In this line, this excavation has tried to reveal the cultural and psychological influences of green façade in developing countries like Tehran. Green façades in developing countries are so useless, although they are so expensive. As a matter of fact, users consider green facade as a decorative item. This research is an attempt to recognize the reasons which show green façades as worthless element. Also, some solutions are presented to promote green façades in the developing countries as an intrinsic solution. There are so many environmental threats, especially about air pollution, for a city as Tehran, which might be solved by green facades.

Keywords: air pollution, developing countries, effects, green facades

Procedia PDF Downloads 276
1287 Empirical Study From Final Exams of Graduate Courses in Computer Science to Demystify the Notion of an Average Software Engineer and Offer a Direction to Address Diversity of Professional Backgrounds of a Student Body

Authors: Alex Elentukh

Abstract:

The paper is based on data collected from final exams administered during five years of teaching the graduate course in software engineering. The visualization instrument with four distinct personas has been used to improve the effectiveness of each class. The study offers a plethora of clues toward students' behavioral preferences. Diversity among students (professional background, physical proximity) is too significant to assume a single face of a learner. This is particularly true for a body of online graduate students in computer science. Conclusions of the study (each learner is unique, and each class is unique) are extrapolated to demystify the notion of an 'average software engineer.' An immediate direction for an educator is to ensure a course applies to a wide audience of very different individuals. On the other hand, a student should be clear about his/her abilities and preferences - to follow the most effective learning path.

Keywords: K.3.2 computer and information science education, learner profiling, adaptive learning, software engineering

Procedia PDF Downloads 102
1286 A Tool for Assessing Performance and Structural Quality of Business Process

Authors: Mariem Kchaou, Wiem Khlif, Faiez Gargouri

Abstract:

Modeling business processes is an essential task when evaluating, improving, or documenting existing business processes. To be efficient in such tasks, a business process model (BPM) must have high structural quality and high performance. Evidently, evaluating the performance of a business process model is a necessary step to reduce time, cost, while assessing the structural quality aims to improve the understandability and the modifiability of the BPMN model. To achieve these objectives, a set of structural and performance measures have been proposed. Since the diversity of measures, we propose a framework that integrates both structural and performance aspects for classifying them. Our measure classification is based on business process model perspectives (e.g., informational, functional, organizational, behavioral, and temporal), and the elements (activity, event, actor, etc.) involved in computing the measures. Then, we implement this framework in a tool assisting the structural quality and the performance of a business process. The tool helps the designers to select an appropriate subset of measures associated with the corresponding perspective and to calculate and interpret their values in order to improve the structural quality and the performance of the model.

Keywords: performance, structural quality, perspectives, tool, classification framework, measures

Procedia PDF Downloads 157
1285 Analysis and Modeling of Stresses and Creeps Resulting from Soil Mechanics in Southern Plains of Kerman Province

Authors: Kourosh Nazarian

Abstract:

Many of the engineering materials, such as behavioral metals, have at least a certain level of linear behavior. It means that if the stresses are doubled, the deformations would be also doubled. In fact, these materials have linear elastic properties. Soils do not follow this law, for example, when compressed, soils become gradually tighter. On the surface of the ground, the sand can be easily deformed with a finger, but in high compressive stresses, they gain considerable hardness and strength. This is mainly due to the increase in the forces among the separate particles. Creeps also deform the soils under a constant load over time. Clay and peat soils have creep behavior. As a result of this phenomenon, structures constructed on such soils will continue their collapse over time. In this paper, the researchers analyzed and modeled the stresses and creeps in the southern plains of Kerman province in Iran through library-documentary, quantitative and software techniques, and field survey. The results of the modeling showed that these plains experienced severe stresses and had a collapse of about 26 cm in the last 15 years and also creep evidence was discovered in an area with a gradient of 3-6 degrees.

Keywords: Stress, creep, faryab, surface runoff

Procedia PDF Downloads 179
1284 Blockchain-Resilient Framework for Cloud-Based Network Devices within the Architecture of Self-Driving Cars

Authors: Mirza Mujtaba Baig

Abstract:

Artificial Intelligence (AI) is evolving rapidly, and one of the areas in which this field has influenced is automation. The automobile, healthcare, education, and robotic industries deploy AI technologies constantly, and the automation of tasks is beneficial to allow time for knowledge-based tasks and also introduce convenience to everyday human endeavors. The paper reviews the challenges faced with the current implementations of autonomous self-driving cars by exploring the machine learning, robotics, and artificial intelligence techniques employed for the development of this innovation. The controversy surrounding the development and deployment of autonomous machines, e.g., vehicles, begs the need for the exploration of the configuration of the programming modules. This paper seeks to add to the body of knowledge of research assisting researchers in decreasing the inconsistencies in current programming modules. Blockchain is a technology of which applications are mostly found within the domains of financial, pharmaceutical, manufacturing, and artificial intelligence. The registering of events in a secured manner as well as applying external algorithms required for the data analytics are especially helpful for integrating, adapting, maintaining, and extending to new domains, especially predictive analytics applications.

Keywords: artificial intelligence, automation, big data, self-driving cars, machine learning, neural networking algorithm, blockchain, business intelligence

Procedia PDF Downloads 119
1283 Real-Time Sensor Fusion for Mobile Robot Localization in an Oil and Gas Refinery

Authors: Adewole A. Ayoade, Marshall R. Sweatt, John P. H. Steele, Qi Han, Khaled Al-Wahedi, Hamad Karki, William A. Yearsley

Abstract:

Understanding the behavioral characteristics of sensors is a crucial step in fusing data from several sensors of different types. This paper introduces a practical, real-time approach to integrate heterogeneous sensor data to achieve higher accuracy than would be possible from any one individual sensor in localizing a mobile robot. We use this approach in both indoor and outdoor environments and it is especially appropriate for those environments like oil and gas refineries due to their sparse and featureless nature. We have studied the individual contribution of each sensor data to the overall combined accuracy achieved from the fusion process. A Sequential Update Extended Kalman Filter(EKF) using validation gates was used to integrate GPS data, Compass data, WiFi data, Inertial Measurement Unit(IMU) data, Vehicle Velocity, and pose estimates from Fiducial marker system. Results show that the approach can enable a mobile robot to navigate autonomously in any environment using a priori information.

Keywords: inspection mobile robot, navigation, sensor fusion, sequential update extended Kalman filter

Procedia PDF Downloads 471
1282 Investigation of Antidepressant Activity of Dracaena Trifasciata in Rats

Authors: Samiah Rehman, Kashmira J. Gohil

Abstract:

Objective: Dracaena trifascaita extract (DTE) possesses strong antioxidant and anti-inflammatory properties that play a vital role in the treatment of mental disorders like depression. The present study was designed to evaluate the antidepressant effects of hydroalcoholic extracts of DT on behavioral models of depression. Methodology: Animals were randomly divided into 6 groups of 5 each: Group 1 and 2 received distilled water and standard drug, imipramine: 25mg/kg, respectively. Groups 4, 5 and 6 received DTE treatment orally at doses of 200 ,400 and 600mg/ kg, respectively, for 14 days. Time of immobility was noted by force swimming test (FST)and tail suspension test (TST) on the 1st,7th and 14th days. Results: The time of immobility was reduced in the treatment group as compared to the control and standard. DTE600 mg/kg showed the highest and most significant antidepressant effects as compared to the standard drug imipramine. (25mg/kg). Conclusion: DTE has good potential as an alternative therapy for depression.

Keywords: Dracaena trifasciata, antidepressants, force swimming test, tail suspension test, herbal drug of depression

Procedia PDF Downloads 74
1281 Mobi-DiQ: A Pervasive Sensing System for Delirium Risk Assessment in Intensive Care Unit

Authors: Subhash Nerella, Ziyuan Guan, Azra Bihorac, Parisa Rashidi

Abstract:

Intensive care units (ICUs) provide care to critically ill patients in severe and life-threatening conditions. However, patient monitoring in the ICU is limited by the time and resource constraints imposed on healthcare providers. Many critical care indices such as mobility are still manually assessed, which can be subjective, prone to human errors, and lack granularity. Other important aspects, such as environmental factors, are not monitored at all. For example, critically ill patients often experience circadian disruptions due to the absence of effective environmental “timekeepers” such as the light/dark cycle and the systemic effect of acute illness on chronobiologic markers. Although the occurrence of delirium is associated with circadian disruption risk factors, these factors are not routinely monitored in the ICU. Hence, there is a critical unmet need to develop systems for precise and real-time assessment through novel enabling technologies. We have developed the mobility and circadian disruption quantification system (Mobi-DiQ) by augmenting biomarker and clinical data with pervasive sensing data to generate mobility and circadian cues related to mobility, nightly disruptions, and light and noise exposure. We hypothesize that Mobi-DiQ can provide accurate mobility and circadian cues that correlate with bedside clinical mobility assessments and circadian biomarkers, ultimately important for delirium risk assessment and prevention. The collected multimodal dataset consists of depth images, Electromyography (EMG) data, patient extremity movement captured by accelerometers, ambient light levels, Sound Pressure Level (SPL), and indoor air quality measured by volatile organic compounds, and the equivalent CO₂ concentration. For delirium risk assessment, the system recognizes mobility cues (axial body movement features and body key points) and circadian cues, including nightly disruptions, ambient SPL, and light intensity, as well as other environmental factors such as indoor air quality. The Mobi-DiQ system consists of three major components: the pervasive sensing system, a data storage and analysis server, and a data annotation system. For data collection, six local pervasive sensing systems were deployed, including a local computer and sensors. A video recording tool with graphical user interface (GUI) developed in python was used to capture depth image frames for analyzing patient mobility. All sensor data is encrypted, then automatically uploaded to the Mobi-DiQ server through a secured VPN connection. Several data pipelines are developed to automate the data transfer, curation, and data preparation for annotation and model training. The data curation and post-processing are performed on the server. A custom secure annotation tool with GUI was developed to annotate depth activity data. The annotation tool is linked to the MongoDB database to record the data annotation and to provide summarization. Docker containers are also utilized to manage services and pipelines running on the server in an isolated manner. The processed clinical data and annotations are used to train and develop real-time pervasive sensing systems to augment clinical decision-making and promote targeted interventions. In the future, we intend to evaluate our system as a clinical implementation trial, as well as to refine and validate it by using other data sources, including neurological data obtained through continuous electroencephalography (EEG).

Keywords: deep learning, delirium, healthcare, pervasive sensing

Procedia PDF Downloads 93
1280 Factors Affecting the Effectiveness of Management Creativity Using Theory Planned Behavior

Authors: Basheer Ahmad Al-Alwan, Ali Ratib Al-Awamreh, Badar Saif Alhatmi

Abstract:

The success of organizations in today's rapidly changing business landscape greatly hinges on the effectiveness of management creativity. This research aimed to uncover the elements influencing the effectiveness of management creativity by employing the Theory of Planned Behavior. The study's findings indicate that two significant predictors of management creativity effectiveness are one's attitude towards it and the subjective norms within the organization. Such results are rather important for the organizations and their leaders who would want to increase management creativity. The attitudes of subordinates towards management creativity should be positive if managers wish to cultivate management creativity among their employees, and the organizational culture must also be one that enhances and supports creative thinking. They should also make available all the requisite resources and support required for the implementation of their creative ideas and let employees participate in the decision-making processes in order to increase their sense of control over their creative activities. This research contributes to the literature on managerial creativity by presenting evidence about the effectiveness of managerial creativity and the strategies aimed at increasing the level of creativity in organizations through empirical insights.

Keywords: management creativity, attitudes, subjective norms, perceived behavioral control

Procedia PDF Downloads 9
1279 Effect of Oat-Protein Peptide in Cognitive Impairment Mice via Mediating Gut-Brain Axis

Authors: Hamad Rafique

Abstract:

The bioactive peptide RDFPITWPW (RW-9) identified from oat protein has been reported to be positive in memory deficits. However, no clarity on the mechanisms responsible for the neuroprotective effects of RW-9 peptide against AD-like symptoms. Herein, it found that RW-9 intervention showed various improving effects in cognitive-behavioral tests and alleviated oxidative stress and inflammation in the scopolamine-induced mice model. The hippocampus proteomics analysis revealed the upregulation of memory-related proteins, including Grin3a, Ppp2r1b, Stat6, Pik3cd, Slc5a7, Chrm2, mainly involved in cAMP signaling, PI3K-Akt signaling, and JAK-STAT signaling pathways. The administration of RW-9 significantly upregulated the neurotransmitters, including 5-HT, DA, and Arg, in mice brains. Moreover, it regulated the serum metabolic profile and increased the expression levels of ABC transporters, biosynthesis of amino acids, and Amino acyl-tRNA biosynthesis, among others. The 16s-rRNA results illustrated that the RW-9 restored the abundance of Muribaculaceae, Lachnospiraceae, Lactobacillus, Clostridia and Bactericides. Taken together, our results suggest that the RW-9 may prevent the AD-like symptoms via modulation of the gut-serum-brain axis.

Keywords: oat protein, active peptide, neuroprotective, gut-brain axis

Procedia PDF Downloads 27