Search results for: yield stress of concrete
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7776

Search results for: yield stress of concrete

6456 Genetic and Non-Genetic Evaluation of Milk Yield and Litter Size of Awassi Sheep in Drylands

Authors: Khaled Al-Najjar, Ahmad Q. Al-Momani, Ahmed Elnahas, Reda Elsaid

Abstract:

The research was carried out using records of Awassi sheep bred in drylands at Al-Fjaj Station, Jordan. That aimed to study non-genetic factors affecting milk yield (MK), litter size at birth (LZB); estimate heritability, repeatability, and genetic and phenotypic correlation using SAS and MTDFREML programs. The results were as follows, the average MK and LZB were 92.84 (kg) and 1.16, respectively. MK was highly significantly affected by each parity, age of ewe, year of lambing, and lactation period, while only the year of lambing had a significant effect on LZB. The heritability and repeatability were 0.07 and 0.10 for MK, while it was 0.05 and 0.25 for LZB. The genetic and phenotypic correlations were 0.17 and 0.02 between MK and LZB, respectively. The research concluded that the herd is genetically homozygous and therefore needs to increase genetic variance by introducing LZB-improved rams and selecting females from dams who achieved at least four parties to increase returns in drylands.

Keywords: Awassi sheep, genetic parameters, litter size, milk yield

Procedia PDF Downloads 123
6455 The Short-Term Stress Indicators in Home and Experimental Dogs

Authors: Madara Nikolajenko, Jevgenija Kondratjeva

Abstract:

Stress is a response of the body to physical or psychological environmental stressors. Cortisol level in blood serum is determined as the main indicator of stress, but the blood collection, the animal preparation and other activities can cause unpleasant conditions and induce increase of these hormones. Therefore, less invasive methods are searched to determine stress hormone levels, for example, by measuring the cortisol level saliva. The aim of the study is to find out the changes of stress hormones in blood and saliva in home and experimental dogs in simulated short-term stress conditions. The study included clinically healthy experimental beagle dogs (n=6) and clinically healthy home American Staffordshire terriers (n=6). The animals were let into a fenced area to adapt. Loud drum sounds (in cooperation with 'Andžeja Grauda drum school') were used as a stressor. Blood serum samples were taken for sodium, potassium, glucose and cortisol level determination and saliva samples for cortisol determination only. Control parameters were taken immediately before the start of the stressor, and next samples were taken immediately after the stress. The last measurements were taken two hours after the stress. Electrolyte levels in blood serum were determined using direction selective electrode method (ILab Aries analyzer) and cortisol in blood serum and saliva using electrochemical luminescence method (Roche Diagnostics). Blood glucose level was measured with glucometer (ACCU-CHECK Active test strips). Cortisol level in the blood increased immediately after the stress in all home dogs (P < 0,05), but only in 33% (P < 0,05) of the experimental dogs. After two hours the measurement decreased in 83% (P < 0,05) of home dogs (in 50% returning to the control point) and in 83% (P < 0,05) of the experimental dogs. Cortisol in saliva immediately after the stress increased in 50% (P > 0,05) of home dogs and in 33% (P > 0,05) of the experimental dogs. After two hours in 83% (P > 0,05) of the home animals, the measurements decreased, only in 17% of the experimental dogs it decreased as well, while in 49% measurement was undetectable due to the lack of material. Blood sodium, potassium, and glucose measurements did not show any significant changes. The combination of short-term stress indicators, when, after the stressor, all indicators should immediately increase and decrease after two hours, confirmed in none of the animals. Therefore the authors can conclude that each animal responds to a stressful situation with different physiological mechanisms and hormonal activity. Cortisol level in saliva and blood is released with the different speed and is not an objective indicator of acute stress.

Keywords: animal behaivor, cortisol, short-term stress, stress indicators

Procedia PDF Downloads 271
6454 Determining the Relationship Between Maternal Stress and Depression and Child Obesity: The Mediating Role of Maternal Self-efficacy

Authors: Alireza Monzavi Chaleshtori, Mahnaz Aliakbari Dehkordi, Maryam Aliakbari, Solmaz Seyed Mostafaii

Abstract:

Objective: Considering the growing obesity among children and the role of mother's psychological factors as well as the need to prevent childhood obesity, this study aimed to investigate the mediating role of mother's self-efficacy in the relationship between mother's stress and depression and child obesity. Method: For this purpose, in a descriptive-correlation study, 222 mothers and children aged 1 to 5 years in Tehran, who had the opportunity to answer an online questionnaire, were selected by random sampling and to the depression scales of the Kroenke and Spitzer Patient Health Questionnaire, Cohen's stress and Self-efficacy of Berkeley mothers answered. Pearson correlation test and path analysis were used for data analysis. Findings: The findings showed that maternal depression had an indirect and significant effect on child obesity, and the effect of stress and depression on child obesity was indirect and non-significant. Therefore, the model has a good fit with the research data, and stress and depression indirectly predicted child obesity with the mediating role of self-efficacy. Conclusion: The hypothesized model tested based on mother's stress and depression with the mediating role of mother's self-efficacy was a good model in explaining the prediction of child obesity. Based on the findings of this research, a practical framework can be provided to explain the psychological factors of the mother in relation to child obesity and its treatment.

Keywords: stress, self-efficacy, child obesity, depression

Procedia PDF Downloads 75
6453 Composite Behavior of Precast Concrete Coping with Internal Connector and Precast Girder

Authors: Junki Min, Heeyoung Lee, Wonseok Chung

Abstract:

Traditional marine concrete structures are difficult to construct and may cause environmental pollution. This study presents new concrete bridge system in the marine. The main feature of the proposed bridge is that precast girders and precast coping are applied to facilitate assembly and to improve constructability. In addition, the moment of the girder is reduced by continuation the joint. In this study, a full-scale joint specimen with a span of 7.0 m was fabricated and tested to evaluate the composite behavior of the joint. A finite element model was also developed and compared against the experimental results. All members of the test specimen behaved stably up to the design load. It was found that the precast joint of the proposed bridge showed the composite behavior efficiently before the failure.

Keywords: finite element analysis, full-scale test, coping, joint performance, marine structure, precast

Procedia PDF Downloads 207
6452 Municipal Sewage Sludge as Co-Substrate in Anaerobic Digestion of Vegetable Waste and Biogas Yield

Authors: J. V. Thanikal, M. Torrijos, Philipe Sousbie, S. M. Rizwan, R. Senthil Kumar, Hatem Yezdi

Abstract:

Co-digestion is one of the advantages of anaerobic digestion process because; several wastes having complimentary characteristics can be treated in a single process. The anaerobic co-digestion process, which can be defined as the simultaneous treatment of two –or more – organic biodegradable waste streams by anaerobic digestion offers great potential for the proper disposal of the organic fraction of solid waste coming from source or separate collection systems. The results of biogas production for sewage sludge, when used as a single substrate, were low (350ml/d), and also the biodegradation rate was slow. Sewage sludge as a co-substrate did not show much effect on biogas yield. The vegetable substrates (Potato, Carrot, Spinach) with a total charge of 27–36 g VS, with a HRT starting from 3 days and ending with 1 day, shown a considerable increase in biogas yield 3.5-5 l/d.

Keywords: anaerobic digestion, co-digestion, vegetable substrate, sewage sludge

Procedia PDF Downloads 573
6451 The Mechanical and Electrochemical Properties of DC-Electrodeposited Ni-Mn Alloy Coating with Low Internal Stress

Authors: Chun-Ying Lee, Kuan-Hui Cheng, Mei-Wen Wu

Abstract:

The nickel-manganese (Ni-Mn) alloy coating prepared from DC electrodeposition process in sulphamate bath was studied. The effects of process parameters, such as current density and electrolyte composition, on the cathodic current efficiency, microstructure, internal stress and mechanical properties were investigated. Because of its crucial effect on the application to the electroforming of microelectronic components, the development of low internal stress coating with high leveling power was emphasized. It was found that both the coating’s manganese content and the cathodic current efficiency increased with the raise in current density. In addition, the internal stress of the deposited coating showed compressive nature at low current densities while changed to tensile one at higher current densities. Moreover, the metallographic observation, X-ray diffraction measurement, transmission electron microscope (TEM) examination, and polarization curve measurement were conducted. It was found that the Ni-Mn coating consisted of nano-sized columnar grains and the maximum hardness of the coating was associated with (111) preferred orientation in the microstructure. The grain size was refined along with the increase in the manganese content of the coating, which accordingly, raised its hardness and mechanical tensile strength. In summary, the Ni-Mn coating prepared at lower current density of 1-2 A/dm2 had low internal stress, high leveling power, and better corrosion resistance.

Keywords: Ni-Mn coating, DC plating, internal stress, leveling power

Procedia PDF Downloads 372
6450 Removal of Aggregates of Monoclonal Antibodies by Ion Exchange Chromatography

Authors: Ishan Arora, Anurag Rathore

Abstract:

The primary objective of this work was to study the effect of resin chemistry, pH and molarity of binding and elution buffer on aggregate removal using Cation Exchange Chromatography and find the optimum conditions which can give efficient aggregate removal with minimum loss of yield. Four different resins were used for carrying out the experiments: Fractogel EMD SO3-(S), Fractogel EMD COO-(M), Capto SP ImpRes and S Ceramic HyperD. Runs were carried out on the AKTA Avant system. Design of Experiments (DOE) was used for analysis using the JMP software. The dependence of the yield obtained using different resins on the operating conditions was studied. Success has been achieved by obtaining yield greater than 90% using Capto SP ImpRes and Fractogel EMD COO-(M) resins. It has also been found that a change in the operating conditions generally has different effects on the yields obtained using different resins.

Keywords: aggregates, cation exchange chromatography, design of experiments, monoclonal antibodies

Procedia PDF Downloads 261
6449 Coping Strategies for Stress Used by Adolescent Girls in Riyadh, Saudi Arabia

Authors: Hafsa Raheel

Abstract:

Objectives: Secondary school girls, ages 15–19 years old were surveyed to find out the coping strategies they used when stressed. Adolescents, who are affected with stress and depression early in life, suffer from depression throughout their lives, especially if they are utilizing improper ways to cope with it. Methods: A cross-sectional school-based survey among 1028 adolescent girls was conducted among the secondary schools in Riyadh city, Kingdom of Saudi Arabia. Results: About 25% stated that they cry, 19% listen to music, 15% start eating a lot, 12% sit alone/isolate themselves, 11% pray/read the Quran, 10% get into a verbal argument or a fight. Only a few, 3% exercise, and 2% stated that they find someone to discuss and talk to. Conclusion: The majority of the adolescent girls in our survey rely on emotion-related coping mechanisms rather than problem-solving mechanisms. This can cause long-term implications in these adolescents as there is an increased probability to develop depression later on in life. Policy makers need to implement strategies for early identification of stress and depression. Talking to friends and family can serve as an effective way to cope with stress.

Keywords: adolescents, stress, Saudi Arabia, mental health

Procedia PDF Downloads 266
6448 Dehydration of Glycerol to Acrolein with Solid Acid Catalysts

Authors: Lin Huang, Bo Wang, Armando Borgna

Abstract:

Dehydration of glycerol to acrolein was conducted with solid acid catalysts in liquid phase in a batch reactor and in gas phase in a fix-bed reactor, respectively. In the liquid-phase reaction, ZSM-5, H3PO4-modified ZSM-5 and heteropolyacids including H3PW12O40•xH2O (HPW) and Cs2.5H0.5PW12O40 (CsPW) were studied as catalysts. High temperatures and high boiling point solvents such as sulfolane improved the selectivity to acrolein through suppressing the formation of polyglycerols and coke. Catalytic results and temperature-programmed desorption of ammonia showed that the yield of acrolein increased with increasing catalyst acidity within the range of weak acid strength. Weak acid sites favored the selectivity to acrolein whereas strong acid sites promoted the formation of coke. ZSM-5 possessing only acid sites led to a high acrolein yield, while heteropolyacid catalysts with strong acid sites produced a low acrolein yield. In the gas-phase reaction, HPW and CsPW supported on metal oxides such as SiO2, γ-Al2O3, SiO2-Al2O3, ZrO2 and silicate TUD-1 were studied as catalysts. HPW/TUD-1 was most active for the production of acrolein, followed by HPW/SiO2. An acrolein yield of 61 % was obtained over HPW/TUD-1. X-ray diffraction study suggested that HPW and CsPW were stable and more dispersed on SiO2, silicate TUD-1 and SiO2-Al2O3. It was found that the structures of HPW and CsPW were destroyed by interaction with γ-Al2O3 and ZrO2. Compared to CsPW/TUD-1, the higher acrolein yield with HPW/TUD-1 may be attributed to more Brønsted acid sites on HPW/TUD-1, based on preliminary pyridine adsorption IR study.

Keywords: dehydration, glycerol, acrolein, solid acid catalysts, gas-phase, liquid-phase

Procedia PDF Downloads 266
6447 Study of Variation in Linear Growth and Other Parameters of Male Albino Rats on Exposure to Chronic Multiple Stress after Birth

Authors: Potaliya Pushpa, Kataria Sushma, D. S. Chowdhary, Dadhich Abhilasha

Abstract:

Introduction: Stress is a nonspecific response of the body to a stressor or triggering stimulus. Chronic stress exposure contributes to various remarkable alterations o growth and development. Collective effects of stressors lead to several changes which are physical, physiological and behavioral in nature. Objective: To understand on an animal model how various chronic stress affect the somatic body growth as it can be useful for effective stress treatment and prevention of stress related illnesses. Material and Method: By selective fostering only male pup colonies were made and 102 male albino rats were studied. They were divided two groups as Control and Stressed. The experimental groups were exposed to four major types of stress as maternal deprivation, Restraint stress, electric foot shock and noise stress for affecting emotional, physical and physiological activities. Exposure was from birth to 17 week of life. Roentgenographs were taken in two planes as Dorso-ventral and Lateral and then measured for each rat. Various parameters were observed at specific intervals. Parameters recorded were Body weight and for linear growth it was summation of Cranial length, Head rump length and tail length. Behavior changes were also observed. Result: Multiple chronic stresses resulted in loss of approx. 25% of mean body weight. Maximal difference was found on 119th day (i.e. 87.81 gm) between the control and stressed group. Linear growth showed retardation which was found to be significant in stressed group on statistical analysis. Cranial Length and Head-rump Length showed maximum difference after maternal deprivation stress. After maternal deprivation (Day 21) and electric foot shock (Day 101) maximum difference i.e. 0.39 cm and 0.47 cm were found in cranial length of two groups. Electric foot shock had considerable impact on tail length. Noise Stress affected moreover behavior as compact to physical growth. Conclusion: Collective study showed that chronic stress not only resulted in reduced body weight in albino rats but also total linear size of rat thus affecting whole growth and development.

Keywords: stress, microscopic anatomy, macroscopic anatomy, chronic multiple stress, birth

Procedia PDF Downloads 266
6446 Mechanical and Durability Characteristics of Roller Compacted Geopolymer Concrete Using Recycled Concrete Aggregate

Authors: Syfur Rahman, Mohammad J. Khattak

Abstract:

Every year a huge quantity of recycling concrete aggregate (RCA) is generated in the United States of America. Utilization of RCA can solve the storage problem, prevent environmental pollution, and reduce the construction cost. However, due to the overall low strength and durability characteristics of RCA, its usages are limited to a certain area like a landfill, low strength base material, replacement of a few percentages of virgin aggregates in Portland cement concrete, etc. This study focuses on the improvement of the strength and durability characteristics of RCA by introducing the concept of roller-compacted geopolymer concrete. In this research, developed roller-compacted geopolymer concrete (RCGPC) and roller-compacted cement concrete (RCC) mixtures containing 100% recycled concrete aggregate were evaluated and compared. Several selected RCGPC mixtures were investigated to find out the effect of mixture variables, including sodium hydroxide (NaOH) molar concentration, sodium silicate (Na₂SiO₃), to sodium hydroxide (NaOH) ratio on the strength, stiffness and durability characteristics of the developed RCGPC. Sodium hydroxide (NaOH) and sodium silicate (Na₂SiO₃) were mixed in different ratios to synthesize the alkali activator. American Concrete Pavement Association (ACPA) recommended RCC gradation was used with a maximum nominal aggregate size of 19 mm with a 4% fine particle passing 0.075 mm sieve. The mixtures were made using NaOH molar concentration of 8M and 10M along with, Na₂SiO₃ to NaOH ratio of 0 and 1 by mass and 15% class F fly ash. Optimum alkali content and moisture content were determined for each RCGPC and RCC mixtures, respectively, using modified proctor test. Compressive strength, semi-circular bending beam strength, and dynamic modulus test were conducted to evaluate the mechanistic characteristics of both mixtures. To determine the optimum curing conditions for RCGPC, effects of different curing temperature and curing duration on compressive strength were also studied. Sulphate attack and freeze-thaw tests were also carried out to assess the durability properties of the developed mixtures. X-ray diffraction (XRD) was used for morphology and microstructure analysis. From the optimum moisture content results, it was found that RCGPC has high alkali content, which was mainly due to the high absorption capacity of RCA. It was found that the mixtures with Na₂SiO₃ to NaOH ratio of 1 yielded about 60% higher compressive strength than the ratio of 0. Further, the mixtures using 10M NaOH concentrations and alkali ratio of 1 produced about 28 MPa of compressive strength, which was around 33% higher than 8M NaOH mixtures. Similar results were obtained for elastic and dynamic modulus of the mixtures. On the other hand, the semi-circular bending beam strength remained the same for both 8 and 10 molar NaOH geopolymer mixtures. Formation of new geopolymeric compounds and chemical bonds in the newly formed novel RCGPC mixtures were also discovered using XRD analysis. The results of mechanical and durability testing further revealed that RCGPC performed similarly to that of RCC mixtures. Based on the results of mechanical and durability testing, the developed RCGPC mixtures using 100% recycled concrete could be used as a cost-effective solution for the construction of pavement structures.

Keywords: roller compacted concrete, geopolymer concrete, recycled concrete aggregate, concrete pavement, fly ash

Procedia PDF Downloads 139
6445 Statistical Characteristics of Code Formula for Design of Concrete Structures

Authors: Inyeol Paik, Ah-Ryang Kim

Abstract:

In this research, a statistical analysis is carried out to examine the statistical properties of the formula given in the design code for concrete structures. The design formulas of the Korea highway bridge design code - the limit state design method (KHBDC) which is the current national bridge design code and the design code for concrete structures by Korea Concrete Institute (KCI) are applied for the analysis. The safety levels provided by the strength formulas of the design codes are defined based on the probabilistic and statistical theory.KHBDC is a reliability-based design code. The load and resistance factors of this code were calibrated to attain the target reliability index. It is essential to define the statistical properties for the design formulas in this calibration process. In general, the statistical characteristics of a member strength are due to the following three factors. The first is due to the difference between the material strength of the actual construction and that used in the design calculation. The second is the difference between the actual dimensions of the constructed sections and those used in design calculation. The third is the difference between the strength of the actual member and the formula simplified for the design calculation. In this paper, the statistical study is focused on the third difference. The formulas for calculating the shear strength of concrete members are presented in different ways in KHBDC and KCI. In this study, the statistical properties of design formulas were obtained through comparison with the database which comprises the experimental results from the reference publications. The test specimen was either reinforced with the shear stirrup or not. For an applied database, the bias factor was about 1.12 and the coefficient of variation was about 0.18. By applying the statistical properties of the design formula to the reliability analysis, it is shown that the resistance factors of the current design codes satisfy the target reliability indexes of both codes. Also, the minimum resistance factors of the KHBDC which is written in the material resistance factor format and KCE which is in the member resistance format are obtained and the results are presented. A further research is underway to calibrate the resistance factors of the high strength and high-performance concrete design guide.

Keywords: concrete design code, reliability analysis, resistance factor, shear strength, statistical property

Procedia PDF Downloads 321
6444 Subcritical and Supercritical Water Gasification of Xylose

Authors: Shyh-Ming Chern, Te-Hsiu Tang

Abstract:

Hemicellulose is one of the major constituents of all plant cell walls, making up 15-25% of dry wood. It is a biopolymer from many different sugar monomers, including pentoses, like xylose, and hexoses, like mannose. In an effort to gasify real biomass in subcritical and supercritical water in a single process, it is necessary to understand the gasification of hemicellulose, in addition to cellulose and lignin, in subcritical and supercritical water. In the present study, xylose is chosen as the model compound for hemicellulose, since it has the largest amount in most hardwoods. Xylose is gasified in subcritical and supercritical water for the production of higher-valued gaseous products. Experiments were conducted with a 16-ml autoclave batch-type reactor. Hydrogen peroxide is adopted as the oxidant in an attempt to promote the gasification yield. The major operating parameters for the gasification include reaction temperature (400 - 600°C), reaction pressure (5 - 25 MPa), the concentration of xylose (0.05 and 0.30 M), and level of oxidant added (0 and 0.25 chemical oxygen demand). 102 experimental runs were completed out of 46 different set of experimental conditions. Product gases were analyzed with a GC-TCD and determined to be mainly composed of H₂ (10 – 74 mol. %), CO (1 – 56 mol. %), CH₄ (1 – 27 mol. %), CO₂ (10 – 50 mol. %), and C₂H₆ (0 – 8 mol. %). It has been found that the gas yield (amount of gas produced per gram of xylose gasified), higher heating value (HHV) of the dry product gas, and energy yield (energy stored in the product gas divided by the energy stored in xylose) all increase significantly with rising temperature and moderately with reducing pressure. The overall best operating condition occurred at 873 K and 10 MPa, with a gas yield of 54 mmol/g of xylose, a gas HHV of 440 kJ/mol, and an energy yield of 1.3. A seemingly unreasonably energy yield of greater than unity resulted from the external heating employed in the experiments to drive the gasification process. It is concluded that xylose can be completely gasified in subcritical and supercritical water under proper operating conditions. The addition of oxidant does not promote the gasification of xylose.

Keywords: gasification, subcritical water, supercritical water, xylose

Procedia PDF Downloads 241
6443 Impact of Dietary Rumen Protected Choline on Transition Dairy Cows’ Productive Performance

Authors: Mohamed Ahmed Tony, Fayez Abaza

Abstract:

The effects of a dietary supplement of rumen-protected choline on feed intake, milk yield, milk composition and some blood metabolites were evaluated in transition dairy cows. Forty multiparous cows were blocked into 20 pairs and then randomly allocated to either one of 2 treatments. The treatments were supplementation either with or without (control) rumen-protected choline. Treatments were applied from 2 weeks before and until 8 weeks after calving. Both groups received the same basal diet as total mixed ration. Additionally, 50 g of a rumen-protected choline supplement (25% rumen protected choline chloride) was added individually in the feed. Individual feed intake, milk yield, and body weight were recorded daily. Milk samples were analyzed weekly for fat, protein, and lactose content. Blood was sampled at week 2 before calving, d 1, d 4, d 7, d 10, week 2, week 3, and week 8 after calving. Glucose, triglycerids, nonesterified fatty acids, and β-hydroxybutyric acid in blood were analysed. The results revealed that choline supplementation increased DM intake from 16.5 to 18.0 kg/d and, hence, net energy intake from 99.2 to 120.5 MJ/d at the intercept of the lactation curve at 1 day in milk. Choline supplementation had no effect on milk yield, milk fat yield, or lactose yield. Milk protein yield was increased from 1.11 to 1.22 kg/d at the intercept of the lactation curve. Choline supplementation was associated with decreased milk fat concentration at the intercept of the lactation curve at 1 day in milking, but the effect of choline on milk fat concentration gradually decreased as lactation progressed. Choline supplementation decreased the concentration of blood triglycerids during the first 4 wk after parturition. Choline supplementation had no effect on energy-corrected milk yield, energy balance, body weight and body condition score. Results from this study suggest that fat metabolism in periparturient dairy cows is improved by choline supplementation during the transition period and this may potentially decrease the risk for metabolic disorders in the periparturient dairy cow.

Keywords: choline, dairy cattle, transition cow, triglycerids

Procedia PDF Downloads 518
6442 Simulation the Stress Distribution of Wheel/Rail at Contact Region

Authors: Norie A. Akeel, Z. Sajuri, A. K. Ariffin

Abstract:

This paper discusses the effect of different loading analysis on crack initiation life of wheel/rail in the contact region. A simulated three dimensional (3D) elasto plastic model of a wheel/rail contact is modeled using the fine mesh technique in the contact region by using Finite Element Method FEM code ANSYS 11.0 software. Different loads of approximately from 70 to 140 KN was applied on the wheel tread through the running surface on the railhead surface to simulate stress distribution (Von Mises) and a life prediction of the crack initiation under rolling contact motion. Stress analysis is achieved and the fatigue life to the rail head surface is calculated numerically by using a multi-axial fatigue life of crack initiation model. All results obtained from the previous researches are compared with this research.

Keywords: FEM, rolling contact, rail track, stress distribution, fatigue life

Procedia PDF Downloads 556
6441 The Relationship Between Weight Gain, Cyclicality of Diabetologic Education and the Experienced Stress: A Study Involving Pregnant Women

Authors: Agnieszka Rolinska, Marta Makara-Studzinska

Abstract:

Introduction: In recent years, there has been an intensive development of research into the physiological relationships between the experienced stress and obesity. Moreover, strong chronic stress leads to the disorganization of a person’s activeness on various levels of functioning, including the behavioral and cognitive sphere (also in one’s diet). Aim: The present work addresses the following research questions: Is there a relationship between an increase in stress related to the disease and the need for the cyclicality of diabetologic education in gestational diabetes? Are there any differences in terms of the experienced stress during the last three months of pregnancy in women with gestational diabetes and in normal pregnancy between the patients with normal weight gains and those with abnormal weight gains? Are there any differences in terms of stress coping styles in women with gestational diabetes and in normal pregnancy between the patients with normal weight gains and those with abnormal weight gains? Method: The study involved pregnant women with gestational diabetes (treated with diet, without insulin therapy) and in normal pregnancy – 206 women in total. The following psychometric tools were employed: Perceived Stress Scale (PSS; Cohen, Kamarck, Mermelstein), Coping Inventory for Stressful Situations (CISS; Endler, Parker) and authors’ own questionnaire. Gestational diabetes mellitus was diagnosed on the basis of the results of fasting oral glucose tolerance test (75 g OGTT). Body weight measurements were confirmed in a diagnostic interview, taking into account medical data. Regularities in weight gains in pregnancy were determined according to the recommendations of the Polish Gynecological Society and American norms determined by the Institute of Medicine (IOM). Conclusions: An increase in stress related to the disease varies in patients with differing requirements for the cyclical nature of diabetologic education (i.e. education which is systematically repeated). There are no differences in terms of recently experienced stress and stress coping styles between women with gestational diabetes and those in normal pregnancy. There is a relationship between weight gains in pregnancy and the stress experienced in life as well as stress coping styles – both in pregnancy complicated by diabetes and in physiological pregnancy. In the discussion of the obtained results, the authors refer to scientific reports from English-language magazines of international range.

Keywords: diabetologic education, gestational diabetes, stress, weight gain in pregnancy

Procedia PDF Downloads 310
6440 Impacts of Land Use and Land Cover Change on Stream Flow and Sediment Yield of Genale Dawa Dam III Watershed, Ethiopia

Authors: Aklilu Getahun Sulito

Abstract:

Land Use and Land Cover change dynamics is a result of complex interactions betweenseveral bio- physical and socio-economic conditions. The impacts of the landcoverchange on stream flow and sediment yield were analyzed statistically usingthehydrological model, SWAT. Genale Dawa Dam III watershed is highly af ectedbydeforestation, over grazing, and agricultural land expansion. This study was aimedusingSWAT model for the assessment of impacts of land use land cover change on sediment yield, evaluating stream flow on wet &dry seasons and spatial distribution sediment yieldfrom sub-basins of the Genale Dawa Dam III watershed. Land use land cover maps(LULC) of 2000, 2008 and 2016 were used with same corresponding climate data. During the study period most parts of the forest, dense forest evergreen and grass landchanged to cultivated land. The cultivated land increased by 26.2%but forest land, forest evergreen lands and grass lands decreased by 21.33%, 11.59 % and 7.28 %respectively, following that the mean annual sediment yield of watershed increased by 7.37ton/haover16 years period (2000 – 2016). The analysis of stream flow for wet and dry seasonsshowed that the steam flow increased by 25.5% during wet season, but decreasedby29.6% in the dry season. The result an average annual spatial distribution of sediment yield increased by 7.73ton/ha yr -1 from (2000_2016). The calibration results for bothstream flow and sediment yield showed good agreement between observed and simulateddata with the coef icient of determination of 0.87 and 0.84, Nash-Sutclif e ef iciencyequality to 0.83 and 0.78 and percentage bias of -7.39% and -10.90%respectively. Andthe result for validation for both stream flow and sediment showed good result withCoef icient of determination equality to 0.83 and 0.80, Nash-Sutclif e ef iciency of 0.78and 0.75 and percentage bias of 7.09% and 3.95%. The result obtained fromthe model based on the above method was the mean annual sediment load at Genale DawaDamIIIwatershed increase from 2000 to 2016 for the reason that of the land uses change. Sotouse the Genale Dawa Dam III the land use management practices are neededinthefuture to prevent further increase of sediment yield of the watershed.

Keywords: Genale Dawa Dam III watershed, land use land cover change, SWAT, spatial distribution, sediment yield, stream flow

Procedia PDF Downloads 56
6439 Marble Powder’s Effect on Permeability and Mechanical Properties of Concrete

Authors: Shams Ul Khaliq, Khan Shahzada, Bashir Alam, Fawad Bilal, Mushtaq Zeb, Faizan Akbar

Abstract:

Marble industry contributes its fair share in environmental deterioration, producing voluminous amounts of mud and other excess residues obtained from marble and granite processing, polluting soil, water and air. Reusing these products in other products will not just prevent our environment from polluting but also help with economy. In this research, an attempt has been made to study the expediency of waste Marble Powder (MP) in concrete production. Various laboratory tests were performed to investigate permeability, physical and mechanical properties, such as slump, compressive strength, split tensile test, etc. Concrete test samples were fabricated with varying MP content (replacing 5-30% cement), furnished from two different sources. 5% replacement of marble dust caused 6% and 12% decrease in compressive and tensile strength respectively. These parameters gradually decreased with increasing MP content up to 30%. Most optimum results were obtained with 10% replacement. Improvement in consistency and permeability were noticed. The permeability was improved with increasing MP proportion up to 10% without substantial decrease in compressive strength. Obtained results revealed that MP as an alternative to cement in concrete production is a viable option considering its economic and environment friendly implications.

Keywords: marble powder, strength, permeability, consistency, environment

Procedia PDF Downloads 336
6438 Long-Term Deformations of Concrete Structures

Authors: Abdelmalk Brahma

Abstract:

Drying is a phenomenon that accompanies the hardening of hydraulic materials. It can, if it is not prevented, lead to significant spontaneous dimensional variations, which the cracking is one of events. In this context, cracking promotes the transport of aggressive agents in the material, which can affect the durability of concrete structures. Drying shrinkage develops over a long period almost 30 years although most occurred during the first three years. Drying shrinkage stabilizes when the material is water balance with the external environment. The drying shrinkage of cementitious materials is due to the formation of capillary tensions in the pores of the material, which has the consequences of bringing the solid walls of each other. Knowledge of the shrinkage characteristics of concrete is a necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable shrinkage movement in reinforced or prestressed concrete and the appropriate steps can be taken in design to accommodate this movement. This study is concerned the modelling of drying shrinkage of the hydraulic materials and the prediction of the rate of spontaneous deformations of hydraulic materials during hardening. The model developed takes in consideration the main factors affecting drying shrinkage. There was agreement between drying shrinkage predicted by the developed model and experimental results. In last we show that developed model describe the evolution of the drying shrinkage of high performances concretes correctly.

Keywords: drying, hydraulic concretes, shrinkage, modeling, prediction

Procedia PDF Downloads 265
6437 Piezo-Extracted Model Based Chloride/ Carbonation Induced Corrosion Assessment in Reinforced Concrete Structures

Authors: Gupta. Ashok, V. talakokula, S. bhalla

Abstract:

Rebar corrosion is one of the main causes of damage and premature failure of the reinforced concrete (RC) structures worldwide, causing enormous costs for inspection, maintenance, restoration and replacement. Therefore, early detection of corrosion and timely remedial action on the affected portion can facilitate an optimum utilization of the structure, imparting longevity to it. The recent advent of the electro-mechanical impedance (EMI) technique using piezo sensors (PZT) for structural health monitoring (SHM) has provided a new paradigm to the maintenance engineers to diagnose the onset of the damage at the incipient stage itself. This paper presents a model based approach for corrosion assessment based on the equivalent parameters extracted from the impedance spectrum of concrete-rebar system using the EMI technique via the PZT sensors.

Keywords: impedance, electro-mechanical, stiffness, mass, damping, equivalent parameters

Procedia PDF Downloads 545
6436 Finite Element Modeling of Global Ti-6Al-4V Mechanical Behavior in Relationship with Microstructural Parameters

Authors: Fatna Benmessaoud, Mohammed Cheikh, Vencent Velay, Vanessa Vedal, Farhad Rezai-Aria, Christine Boher

Abstract:

The global mechanical behavior of materials is strongly linked to their microstructure, especially their crystallographic texture and their grains morphology. These material aspects determine the mechanical fields character (heterogeneous or homogeneous), thus, they give to the global behavior a degree of anisotropy according the initial microstructure. For these reasons, the prediction of global behavior of materials in relationship with the microstructure must be performed with a multi-scale approach. Therefore, multi-scale modeling in the context of crystal plasticity is widely used. In this present contribution, a phenomenological elasto-viscoplastic model developed in the crystal plasticity context and finite element method are used to investigate the effects of crystallographic texture and grains sizes on global behavior of a polycrystalline equiaxed Ti-6Al-4V alloy. The constitutive equations of this model are written on local scale for each slip system within each grain while the strain and stress mechanical fields are investigated at the global scale via finite element scale transition. The beta phase of Ti-6Al-4V alloy modeled is negligible; its percent is less than 10%. Three families of slip systems of alpha phase are considered: basal and prismatic families with a burgers vector and pyramidal family with a burgers vector. The twinning mechanism of plastic strain is not observed in Ti-6Al-4V, therefore, it is not considered in the present modeling. Nine representative elementary volumes (REV) are generated with Voronoi tessellations. For each individual equiaxed grain, the own crystallographic orientation vis-à-vis the loading is taken into account. The meshing strategy is optimized in a way to eliminate the meshing effects and at the same time to allow calculating the individual grain size. The stress and strain fields are determined in each Gauss point of the mesh element. A post-treatment is used to calculate the local behavior (in each grain) and then by appropriate homogenization, the macroscopic behavior is calculated. The developed model is validated by comparing the numerical simulation results with an experimental data reported in the literature. It is observed that the present model is able to predict the global mechanical behavior of Ti-6Al-4V alloy and investigate the microstructural parameters' effects. According to the simulations performed on the generated volumes (REV), the macroscopic mechanical behavior of Ti-6Al-4V is strongly linked to the active slip systems family (prismatic, basal or pyramidal). The crystallographic texture determines which family of slip systems can be activated; therefore it gives to the plastic strain a heterogeneous character thus an anisotropic macroscopic mechanical behavior. The average grains size influences also the Ti-6Al-4V mechanical proprieties, especially the yield stress; by decreasing of the average grains size, the yield strength increases according to Hall-Petch relationship. The grains sizes' distribution gives to the strain fields considerable heterogeneity. By increasing grain sizes, the scattering in the localization of plastic strain is observed, thus, in certain areas the stress concentrations are stronger than other regions.

Keywords: microstructural parameters, multi-scale modeling, crystal plasticity, Ti-6Al-4V alloy

Procedia PDF Downloads 126
6435 Service Life Modelling of Concrete Deterioration Due to Biogenic Sulphuric Acid (BSA) Attack-State-of-an-Art-Review

Authors: Ankur Bansal, Shashank Bishnoi

Abstract:

Degradation of Sewage pipes, sewage pumping station and Sewage treatment plants(STP) is of major concern due to difficulty in their maintenance and the high cost of replacement. Most of these systems undergo degradation due to Biogenic sulphuric acid (BSA) attack. Since most of Waste water treatment system are underground, detection of this deterioration remains hidden. This paper presents a literature review, outlining the mechanism of this attack focusing on critical parameters of BSA attack, along with available models and software to predict the deterioration due to this attack. This paper critically examines the various steps and equation in various Models of BSA degradation, detail on assumptions and working of different softwares are also highlighted in this paper. The paper also focuses on the service life design technique available through various codes and method to integrate the servile life design with BSA degradation on concrete. In the end, various methods enhancing the resistance of concrete against Biogenic sulphuric acid attack are highlighted. It may be concluded that the effective modelling for degradation phenomena may bring positive economical and environmental impacts. With current computing capabilities integrated degradation models combining the various durability aspects can bring positive change for sustainable society.

Keywords: concrete degradation, modelling, service life, sulphuric acid attack

Procedia PDF Downloads 314
6434 Stress and Coping among Adolescents in Selected Schools in the Capital City of India

Authors: N. Mathew, A. Qureshi, D. C. Khakha, R. Sagar

Abstract:

Adolescents in India, account for one-fifth of the total population and are a significant human resource. Present study was conducted to find out various life stressors of adolescents, coping strategies adopted by them and the impact of stress on adolescent mental health. A descriptive, cross sectional study conducted on schools in the south zone of Delhi, capital city of the country. Data was collected on 360 adolescents between the age group of 13-17 years on socio-demographic profile, Adolescent life event stress scale, brief cope and youth self report for ages 11-18. Adolescents had significantly higher stress on uncontrollable events such as family events, relocation events, accident events and ambiguous events as compared to controllable events such as sexual events, deviance events and autonomy events (p<0.01).Adolescent stress was significantly correlated with various demographic variables in the study. The most frequently used coping strategies by the adolescents were positive reframing, planning, active coping, and instrumental support. It has also been found that the stress has a significant impact on adolescent mental health in the form of either internalizing problems such as anxious, withdrawn and somatic problems or externalizing problems such as rule breaking and aggressive behaviors. Out of the total sample of 360 adolescents 150 were identified as having psycho-social morbidity, including 59 borderline cases and 91 high-risk cases Study pointed out the need for mental health screening among the adolescents and also indicated the need for mental health inputs in educational institutions.

Keywords: adolecents, stress, coping, mental health

Procedia PDF Downloads 515
6433 Effect of Plant Density and Planting Pattern on Yield and Quality of Single Cross 704 Silage Corn (Zea mays L.) in Isfahan

Authors: Seyed Mohammad Ali Zahedi

Abstract:

This field experiment was conducted in Isfahan in 2011 in order to study the effect of plant density and planting pattern on growth, yield and quality of silage corn (SC 704) using a randomized complete block design with split plot layout and four replications. The main plot consisted of three planting patterns (60 and 75 cm single planting row and 75 cm double planting row referred to as 60S, 75S and 75T, respectively). The subplots consisted of four levels of plant densities (65000, 80000, 95000 and 110000 plants per hectare). Each subplot consisted of 7 rows, each with 10m length. Vegetative and reproductive characteristics of plants at silking and hard dough stages (when the plants were harvested for silage) were evaluated. Results of variance analysis showed that the effects of planting pattern and plant density were significant on leaf area per plant, leaf area index (at silking), plant height, stem diameter, dry weights of leaf, stem and ear in silking and harvest stages and on fresh and dry yield, dry matter percentage and crude protein percentage at harvest. There was no planting pattern × plant density interaction for these parameters. As row space increased from 60 cm with single planting to 75 cm with single planting, leaf area index and plant height increased, but leaf area per plant, stem diameter, dry weight of leaf, stem and ear, dry matter percentage, dry matter yield and crude protein percentage decreased. Dry matter yield reduced from 24.9 to 18.5 t/ha and crude protein percentage decreased from 6.11 to 5.60 percent. When the plant density increased from 65000 to 110000 plant per hectare, leaf area index, plant height, dry weight of leaf, stem and ear and dry matter yield increased from 19.2 to 23.3 t/ha, whereas leaf area per plant, stem diameter, dry matter percentage and crude protein percentage decreased from 6.30 to 5.25. The best results were obtained with 60 cm row distance with single planting and 110000 plants per hectare.

Keywords: silage corn, plant density, planting pattern, yield

Procedia PDF Downloads 339
6432 Experimental Investigation on Performance of Beam Column Frames with Column Kickers

Authors: Saiada Fuadi Fancy, Fahim Ahmed, Shofiq Ahmed, Raquib Ahsan

Abstract:

The worldwide use of reinforced concrete construction stems from the wide availability of reinforcing steel as well as concrete ingredients. However, concrete construction requires a certain level of technology, expertise, and workmanship, particularly, in the field during construction. As a supporting technology for a concrete column or wall construction, kicker is cast as part of the slab or foundation to provide a convenient starting point for a wall or column ensuring integrity at this important junction. For that reason, a comprehensive study was carried out here to investigate the behavior of reinforced concrete frame with different kicker parameters. To achieve this objective, six half-scale specimens of portal reinforced concrete frame with kickers and one portal frame without kicker were constructed according to common practice in the industry and subjected to cyclic incremental horizontal loading with sustained gravity load. In this study, the experimental data, obtained in four deflections controlled cycle, were used to evaluate the behavior of kickers. Load-displacement characteristics were obtained; maximum loads and deflections were measured and assessed. Finally, the test results of frames constructed with three different types of kicker thickness were compared with the kickerless frame. Similar crack patterns were observed for all the specimens. From this investigation, specimens with kicker thickness 3″ were shown better results than specimens with kicker thickness 1.5″, which was specified by maximum load, stiffness, initiation of first crack and residual displacement. Despite of better performance, it could not be firmly concluded that 4.5″ kicker thickness is the most appropriate one. Because, during the test of that specimen, separation of dial gauge was needed. Finally, comparing with kickerless specimen, it was observed that performance of kickerless specimen was relatively better than kicker specimens.

Keywords: crack, cyclic, kicker, load-displacement

Procedia PDF Downloads 322
6431 Bracing Applications for Improving the Earthquake Performance of Reinforced Concrete Structures

Authors: Diyar Yousif Ali

Abstract:

Braced frames, besides other structural systems, such as shear walls or moment resisting frames, have been a valuable and effective technique to increase structures against seismic loads. In wind or seismic excitations, diagonal members react as truss web elements which would afford tension or compression stresses. This study proposes to consider the effect of bracing diagonal configuration on values of base shear and displacement of building. Two models were created, and nonlinear pushover analysis was implemented. Results show that bracing members enhance the lateral load performance of the Concentric Braced Frame (CBF) considerably. The purpose of this article is to study the nonlinear response of reinforced concrete structures which contain hollow pipe steel braces as the major structural elements against earthquake loads. A five-storey reinforced concrete structure was selected in this study; two different reinforced concrete frames were considered. The first system was an un-braced frame, while the last one was a braced frame with diagonal bracing. Analytical modelings of the bare frame and braced frame were realized by means of SAP 2000. The performances of all structures were evaluated using nonlinear static analyses. From these analyses, the base shear and displacements were compared. Results are plotted in diagrams and discussed extensively, and the results of the analyses showed that the braced frame was seemed to capable of more lateral load carrying and had a high value for stiffness and lower roof displacement in comparison with the bare frame.

Keywords: reinforced concrete structures, pushover analysis, base shear, steel bracing

Procedia PDF Downloads 90
6430 Heat and Mass Transfer of Triple Diffusive Convection in a Rotating Couple Stress Liquid Using Ginzburg-Landau Model

Authors: Sameena Tarannum, S. Pranesh

Abstract:

A nonlinear study of triple diffusive convection in a rotating couple stress liquid has been analysed. It is performed to study the effect of heat and mass transfer by deriving Ginzburg-Landau equation. Heat and mass transfer are quantified in terms of Nusselt number and Sherwood numbers, which are obtained as a function of thermal and solute Rayleigh numbers. The obtained Ginzburg-Landau equation is Bernoulli equation, and it has been elucidated numerically by using Mathematica. The effects of couple stress parameter, solute Rayleigh numbers, and Taylor number on the onset of convection and heat and mass transfer have been examined. It is found that the effects of couple stress parameter and Taylor number are to stabilize the system and to increase the heat and mass transfer.

Keywords: couple stress liquid, Ginzburg-Landau model, rotation, triple diffusive convection

Procedia PDF Downloads 339
6429 Comparative Analysis of Yield before and after Access to Extension Services among Crop Farmers in Bauchi Local Government Area of Bauchi State, Nigeria

Authors: U. S. Babuga, A. H. Danwanka, A. Garba

Abstract:

The research was carried out to compare the yield of respondents before and after access to extension services on crop production technologies in the study area. Data were collected from the study area through questionnaires administered to seventy-five randomly selected respondents. Data were analyzed using descriptive statistics, t-test and regression models. The result disclosed that majority (97%) of the respondent attended one form of school or the other. The majority (78.67%) of the respondents had farm size ranging between 1-3 hectares. The majority of the respondent adopt improved variety of crops, plant spacing, herbicide, fertilizer application, land preparation, crop protection, crop processing and storage of farm produce. The result of the t-test between the yield of respondents before and after access to extension services shows that there was a significant (p<0.001) difference in yield before and after access to extension. It also indicated that farm size was significant (p<0.001) while household size, years of farming experience and extension contact were significant at (p<0.005). The major constraint to adoption of crop production technologies were shortage of extension agents, high cost of technology and lack of access to credit facility. The major pre-requisite for the improvement of extension service are employment of more extension agents or workers and adequate training. Adequate agricultural credit to farmers at low interest rates will enhance their adoption of crop production technologies.

Keywords: comparative, analysis, yield, access, extension

Procedia PDF Downloads 369
6428 Strengthening of Concrete Slabs with Steel Beams

Authors: Mizam Doğan

Abstract:

In service life; structures can be damaged if they are subjected to dead and live loads which are greater than design values. For preventing this case; possible loads must be correctly calculated, structure must be designed according to determined loads, and structure must not be used out of its function. If loading case of the structure changes when its function changes; it must be reinforced for continuing it is new function. Reinforcement is a process that is made by increasing the existing strengths of structural system elements of the structure as reinforced concrete walls, beams, and slabs. Reinforcement can be done by casting reinforced concrete, placing steel and fiber structural elements. In this paper, reinforcing of columns and slabs of a structure of which function is changed is studied step by step. This reinforcement is made for increasing vertical and lateral load carrying capacity of the building. Not for repairing damaged structural system.

Keywords: strengthening, RC slabs, seismic load, steel beam, structural irregularity

Procedia PDF Downloads 260
6427 Structural Optimization Using Catenary and Other Natural Shapes

Authors: Mitchell Gohnert

Abstract:

This paper reviews some fundamental concepts of structural optimization, which is focused on the shape of the structure. Bending stresses produce high peak stresses at each face of the member, and therefore, substantially more material is required to resist bending. The shape of the structure has a profound effect on stress levels. Stress may be reduced dramatically by simply changing the shape to accommodate natural stress flow. The main objective of structural optimization is to direct the thrust line along the axis of the member. Optimal shapes include the catenary arch or dome, triangular shapes, and columns. If the natural flow of stress matches the shape of the structures, the most optimal shape is determined. Structures, however, must resist multiple load patterns. An optimal shape is still possible by ensuring that the thrust lines fall within the middle third of the member.

Keywords: optimization, natural structures, shells, catenary, domes, arches

Procedia PDF Downloads 45