Search results for: quantification accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4198

Search results for: quantification accuracy

2878 Scoping Review of Biological Age Measurement Composed of Biomarkers

Authors: Diego Alejandro Espíndola-Fernández, Ana María Posada-Cano, Dagnóvar Aristizábal-Ocampo, Jaime Alberto Gallo-Villegas

Abstract:

Background: With the increase in life expectancy, aging has been subject of frequent research, and therefore multiple strategies have been proposed to quantify the advance of the years based on the known physiology of human senescence. For several decades, attempts have been made to characterize these changes through the concept of biological age, which aims to integrate, in a measure of time, structural or functional variation through biomarkers in comparison with simple chronological age. The objective of this scoping review is to deepen the updated concept of measuring biological age composed of biomarkers in the general population and to summarize recent evidence to identify gaps and priorities for future research. Methods: A scoping review was conducted according to the five-phase methodology developed by Arksey and O'Malley through a search of five bibliographic databases to February 2021. Original articles were included with no time or language limit that described the biological age composed of at least two biomarkers in those over 18 years of age. Results: 674 articles were identified, of which 105 were evaluated for eligibility and 65 were included with information on the measurement of biological age composed of biomarkers. Articles from 1974 of 15 nationalities were found, most observational studies, in which clinical or paraclinical biomarkers were used, and 11 different methods described for the calculation of the composite biological age were informed. The outcomes reported were the relationship with the same measured biomarkers, specified risk factors, comorbidities, physical or cognitive functionality, and mortality. Conclusions: The concept of biological age composed of biomarkers has evolved since the 1970s and multiple methods of its quantification have been described through the combination of different clinical and paraclinical variables from observational studies. Future research should consider the population characteristics, and the choice of biomarkers against the proposed outcomes to improve the understanding of aging variables to direct effective strategies for a proper approach.

Keywords: biological age, biological aging, aging, senescence, biomarker

Procedia PDF Downloads 186
2877 The Enhancement of Target Localization Using Ship-Borne Electro-Optical Stabilized Platform

Authors: Jaehoon Ha, Byungmo Kang, Kilho Hong, Jungsoo Park

Abstract:

Electro-optical (EO) stabilized platforms have been widely used for surveillance and reconnaissance on various types of vehicles, from surface ships to unmanned air vehicles (UAVs). EO stabilized platforms usually consist of an assembly of structure, bearings, and motors called gimbals in which a gyroscope is installed. EO elements such as a CCD camera and IR camera, are mounted to a gimbal, which has a range of motion in elevation and azimuth and can designate and track a target. In addition, a laser range finder (LRF) can be added to the gimbal in order to acquire the precise slant range from the platform to the target. Recently, a versatile functionality of target localization is needed in order to cooperate with the weapon systems that are mounted on the same platform. The target information, such as its location or velocity, needed to be more accurate. The accuracy of the target information depends on diverse component errors and alignment errors of each component. Specially, the type of moving platform can affect the accuracy of the target information. In the case of flying platforms, or UAVs, the target location error can be increased with altitude so it is important to measure altitude as precisely as possible. In the case of surface ships, target location error can be increased with obliqueness of the elevation angle of the gimbal since the altitude of the EO stabilized platform is supposed to be relatively low. The farther the slant ranges from the surface ship to the target, the more extreme the obliqueness of the elevation angle. This can hamper the precise acquisition of the target information. So far, there have been many studies on EO stabilized platforms of flying vehicles. However, few researchers have focused on ship-borne EO stabilized platforms of the surface ship. In this paper, we deal with a target localization method when an EO stabilized platform is located on the mast of a surface ship. Especially, we need to overcome the limitation caused by the obliqueness of the elevation angle of the gimbal. We introduce a well-known approach for target localization using Unscented Kalman Filter (UKF) and present the problem definition showing the above-mentioned limitation. Finally, we want to show the effectiveness of the approach that will be demonstrated through computer simulations.

Keywords: target localization, ship-borne electro-optical stabilized platform, unscented kalman filter

Procedia PDF Downloads 520
2876 Alternative Water Resources and Brominated Byproducts

Authors: Nora Kuiper, Candace Rowell, Hugues Preud'Homme, Basem Shomar

Abstract:

As the global dependence on seawater desalination as a primary drinking water resource increases, a unique class of secondary pollutants is emerging. The presence of bromide salts in seawater may result in increased levels of bromine and brominated byproducts in drinking water. The State of Qatar offers a unique setting to study these pollutants and their impacts on consumers as the country is 100% dependent on seawater desalination to supply municipal tap water and locally produced bottled water. Tap water (n=115) and bottled water (n=62) samples were collected throughout the State of Qatar and analyzed for a suite of inorganic and organic compounds, including 54 volatile organic compounds (VOCs), with an emphasis on brominated byproducts. All VOC identification and quantification was completed using a Bruker Scion GCMSMS with static headspace technologies. A risk survey tool was used to collect information regarding local consumption habits, health outcomes and perception of water sources for adults and children. This study is the first of its kind in the country. Dibromomethane, bromoform, and bromobenzene were detected in 61%, 88% and 2%, of the drinking water samples analyzed. The levels of dibromomethane ranged from approximately 100-500 ng/L and the concentrations of bromoform ranged from approximately 5-50 µg/L. Additionally, bromobenzene concentrations were 60 ng/L. The presence of brominated compounds in drinking water is a public health concern specific to populations using seawater as a feed water source and may pose unique risks that have not been previously studied. Risk assessments are ongoing to quantify the risks associated with prolonged consumption of disinfection byproducts; specifically the risks of brominated trihalomethanes as the levels of bromoform found in Qatar’s drinking water reach more than 60% of the US EPA’s Maximum Contaminant Level of all THMs.

Keywords: brominated byproducts, desalination, trihalomethanes, risk assessment

Procedia PDF Downloads 429
2875 Research and Application of Multi-Scale Three Dimensional Plant Modeling

Authors: Weiliang Wen, Xinyu Guo, Ying Zhang, Jianjun Du, Boxiang Xiao

Abstract:

Reconstructing and analyzing three-dimensional (3D) models from situ measured data is important for a number of researches and applications in plant science, including plant phenotyping, functional-structural plant modeling (FSPM), plant germplasm resources protection, agricultural technology popularization. It has many scales like cell, tissue, organ, plant and canopy from micro to macroscopic. The techniques currently used for data capture, feature analysis, and 3D reconstruction are quite different of different scales. In this context, morphological data acquisition, 3D analysis and modeling of plants on different scales are introduced systematically. The commonly used data capture equipment for these multiscale is introduced. Then hot issues and difficulties of different scales are described respectively. Some examples are also given, such as Micron-scale phenotyping quantification and 3D microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning, 3D reconstruction of leaf surfaces and feature extraction from point cloud acquired by using 3D handheld scanner, plant modeling by combining parameter driven 3D organ templates. Several application examples by using the 3D models and analysis results of plants are also introduced. A 3D maize canopy was constructed, and light distribution was simulated within the canopy, which was used for the designation of ideal plant type. A grape tree model was constructed from 3D digital and point cloud data, which was used for the production of science content of 11th international conference on grapevine breeding and genetics. By using the tissue models of plants, a Google glass was used to look around visually inside the plant to understand the internal structure of plants. With the development of information technology, 3D data acquisition, and data processing techniques will play a greater role in plant science.

Keywords: plant, three dimensional modeling, multi-scale, plant phenotyping, three dimensional data acquisition

Procedia PDF Downloads 277
2874 Integrating Best Practices for Construction Waste in Quality Management Systems

Authors: Paola Villoria Sáez, Mercedes Del Río Merino, Jaime Santa Cruz Astorqui, Antonio Rodríguez Sánchez

Abstract:

The Spanish construction industry generates large volumes of waste. However, despite the legislative improvements introduced for construction and demolition waste (CDW), construction waste recycling rate remains well below other European countries and also below the target set for 2020. This situation can be due to many difficulties. i.e.: The difficulty of onsite segregation or the estimation in advance of the total amount generated. Despite these difficulties, the proper management of CDW must be one of the main aspects to be considered by the construction companies. In this sense, some large national companies are implementing Integrated Management Systems (IMS) including not only quality and safety aspects, but also environment issues. However, although this fact is a reality for large construction companies still the vast majority of companies need to adopt this trend. In short, it is common to find in small and medium enterprises a decentralized management system: A single system of quality management, another for system safety management and a third one for environmental management system (EMS). In addition, the EMSs currently used address CDW superficially and are mainly focus on other environmental concerns such as carbon emissions. Therefore, this research determines and implements a specific best practice management system for CDW based on eight procedures in a Spanish Construction company. The main advantages and drawbacks of its implementation are highlighted. Results of this study show that establishing and implementing a CDW management system in building works, improve CDW quantification as the company obtains their own CDW generation ratio. This helps construction stakeholders when developing CDW Management Plans and also helps to achieve a higher adjustment of CDW management costs. Finally, integrating this CDW system with the EMS of the company favors the cohesion of the construction process organization at all stages, establishing responsibilities in the field of waste and providing a greater control over the process.

Keywords: construction and demolition waste, waste management, best practices, waste minimization, building, quality management systems

Procedia PDF Downloads 533
2873 Development of a New Device for Bending Fatigue Testing

Authors: B. Mokhtarnia, M. Layeghi

Abstract:

This work presented an original bending fatigue-testing setup for fatigue characterization of composite materials. A three-point quasi-static setup was introduced that was capable of applying stress control load in different loading waveforms, frequencies, and stress ratios. This setup was equipped with computerized measuring instruments to evaluate fatigue damage mechanisms. A detailed description of its different parts and working features was given, and dynamic analysis was done to verify the functional accuracy of the device. Feasibility was validated successfully by conducting experimental fatigue tests.

Keywords: bending fatigue, quasi-static testing setup, experimental fatigue testing, composites

Procedia PDF Downloads 132
2872 DEMs: A Multivariate Comparison Approach

Authors: Juan Francisco Reinoso Gordo, Francisco Javier Ariza-López, José Rodríguez Avi, Domingo Barrera Rosillo

Abstract:

The evaluation of the quality of a data product is based on the comparison of the product with a reference of greater accuracy. In the case of MDE data products, quality assessment usually focuses on positional accuracy and few studies consider other terrain characteristics, such as slope and orientation. The proposal that is made consists of evaluating the similarity of two DEMs (a product and a reference), through the joint analysis of the distribution functions of the variables of interest, for example, elevations, slopes and orientations. This is a multivariable approach that focuses on distribution functions, not on single parameters such as mean values or dispersions (e.g. root mean squared error or variance). This is considered to be a more holistic approach. The use of the Kolmogorov-Smirnov test is proposed due to its non-parametric nature, since the distributions of the variables of interest cannot always be adequately modeled by parametric models (e.g. the Normal distribution model). In addition, its application to the multivariate case is carried out jointly by means of a single test on the convolution of the distribution functions of the variables considered, which avoids the use of corrections such as Bonferroni when several statistics hypothesis tests are carried out together. In this work, two DEM products have been considered, DEM02 with a resolution of 2x2 meters and DEM05 with a resolution of 5x5 meters, both generated by the National Geographic Institute of Spain. DEM02 is considered as the reference and DEM05 as the product to be evaluated. In addition, the slope and aspect derived models have been calculated by GIS operations on the two DEM datasets. Through sample simulation processes, the adequate behavior of the Kolmogorov-Smirnov statistical test has been verified when the null hypothesis is true, which allows calibrating the value of the statistic for the desired significance value (e.g. 5%). Once the process has been calibrated, the same process can be applied to compare the similarity of different DEM data sets (e.g. the DEM05 versus the DEM02). In summary, an innovative alternative for the comparison of DEM data sets based on a multinomial non-parametric perspective has been proposed by means of a single Kolmogorov-Smirnov test. This new approach could be extended to other DEM features of interest (e.g. curvature, etc.) and to more than three variables

Keywords: data quality, DEM, kolmogorov-smirnov test, multivariate DEM comparison

Procedia PDF Downloads 115
2871 Performance Evaluation of Composite Beam under Uniform Corrosion

Authors: Ririt Aprilin Sumarsono

Abstract:

Composite member (concrete and steel) has been widely advanced for structural utilization due to its best performance in resisting load, reducing the total weight of the structure, increasing stiffness, and other available advantages. On the other hand, the environment load such as corrosion (e.g. chloride ingress) creates significant time-dependent degradation for steel. Analysis performed in this paper is mainly considered uniform corrosion for evaluating the composite beam without examining the pit corrosion as the initial corrosion formed. Corrosion level in terms of weight loss is modified in yield stress and modulus elasticity of steel. Those two mechanical properties are utilized in this paper for observing the stresses due to corrosion attacked. As corrosion level increases, the effective width of the composite beam in the concrete section will be wider. The position of a neutral axis of composite section will indicate the composite action due to corrosion of composite beam so that numerous shear connectors provided must be reconsidered. Flexure capacity quantification provides stresses, and shear capacity calculation derives connectors needed in overcoming the shear problem for composite beam under corrosion. A model of simply supported composite beam examined in this paper under uniform corrosion where the stresses as the focus of the evaluation. Principal stress at the first stage of composite construction decline as the corrosion level incline, parallel for the second stage stress analysis where the tension region held by the steel undergoes lower capacity due to corrosion. Total stresses of the composite section for steel to be born significantly decreases particularly in the outermost fiber of tension side. Whereas, the available compression side is smaller as the corrosion level increases so that the stress occurs on the compression side shows reduction as well. As a conclusion, the increment of corrosion level will degrade both compression and tension side of stresses.

Keywords: composite beam, modulus of elasticity, stress analysis, yield strength, uniform corrosion

Procedia PDF Downloads 286
2870 Salt Tolerance of Potato: Genetically Engineered with Atriplex canescens BADH Gene Driven by 3 Copies of CAMV35s Promoter

Authors: Arfan Ali, Muhammad Shahzad Iqbal, Idrees Ahmad Nasir

Abstract:

Potato (Solanum tuberosum L.) is ranked among the top leading staple foods in the world. Salinity adversely affects potato crop yield and quality. Therefore, increased level of salt tolerance is a key factor to ensure high yield. The present study focused on the Agrobacterium-mediated transformation of Atriplex canescens betaine aldehyde dehydrogenase (BADH) gene, using single, double and triple CAMV35s promoter to improve salt tolerance in potato. Detection of seven potato lines harboring BADH gene, followed by identification of T-DNA insertions, determination of transgenes copies no through Southern Hybridization and quantification of BADH protein through Enzyme Linked Immunosorbent Assay were considered in this study. The results clearly depict that the salt tolerance of potato was found to be promoter-dependent, as the potato transgenic lines with triple promoter showed 4.4 times more glycine betaine production which consequently leads towards high resistance to salt stress as compared to transgenic potato lines with single and double promoters having least production of glycine betaine. Moreover, triple promoter transgenic potato lines have also shown lower levels of H2O2, malondialdehyde (MDA), relative electrical conductivity, high proline and chlorophyll content as compared other two lines having a single and double promoter. Insilco analysis also confirmed that Atriplex canescens BADH has the tendency to interact with sodium ions and water molecules. Taken together these facts it can be concluded that over-expression of BADH under triple CAMV35s promoter with more glycine betaine, chlorophyll & MDA contents, high relative quantities of other metabolites results in an enhanced level of salt tolerance in potato.

Keywords: Atriplex canescens, BADH, CAMV35s promotor, potato, Solanum tubersum

Procedia PDF Downloads 277
2869 Improving the Design of Blood Pressure and Blood Saturation Monitors

Authors: L. Parisi

Abstract:

A blood pressure monitor or sphygmomanometer can be either manual or automatic, employing respectively either the auscultatory method or the oscillometric method. The manual version of the sphygmomanometer involves an inflatable cuff with a stethoscope adopted to detect the sounds generated by the arterial walls to measure blood pressure in an artery. An automatic sphygmomanometer can be effectively used to monitor blood pressure through a pressure sensor, which detects vibrations provoked by oscillations of the arterial walls. The pressure sensor implemented in this device improves the accuracy of the measurements taken.

Keywords: blood pressure, blood saturation, sensors, actuators, design improvement

Procedia PDF Downloads 456
2868 Natural and Construction/Demolition Waste Aggregates: A Comparative Study

Authors: Debora C. Mendes, Matthias Eckert, Claudia S. Moço, Helio Martins, Jean-Pierre Gonçalves, Miguel Oliveira, Jose P. Da Silva

Abstract:

Disposal of construction and demolition waste (C&DW) in embankments in the periphery of cities causes both environmental and social problems. To achieve the management of C&DW, a detailed analysis of the properties of these materials should be done. In this work we report a comparative study of the physical, chemical and environmental properties of natural and C&DW aggregates from 25 different origins. Assays were performed according to European Standards. Analysis of heavy metals and organic compounds, namely polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were performed. Finally, properties of concrete prepared with C&DW aggregates are reported. Physical analyses of C&DW aggregates indicated lower quality properties than natural aggregates, particularly for concrete preparation and unbound layers of road pavements. Chemical properties showed that most samples (80%) meet the values required by European regulations for concrete and unbound layers of road pavements. Analyses of heavy metals Cd, Cr, Cu, Pb, Ni, Mo and Zn in the C&DW leachates showed levels below the limits established by the Council Decision of 19 December 2002. Identification and quantification of PCBs and PAHs indicated that few samples shows the presence of these compounds. The measured levels of PCBs and PAHs are also below the limits. Other compounds identified in the C&DW leachates include phthalates and diphenylmethanol. The characterized C&DW aggregates show lower quality properties than natural aggregates but most samples showed to be environmentally safe. A continuous monitoring of the presence of heavy metals and organic compounds should be made to trial safe C&DW aggregates. C&DW aggregates provide a good economic and environmental alternative to natural aggregates.

Keywords: concrete preparation, construction and demolition waste, heavy metals, organic pollutants

Procedia PDF Downloads 359
2867 Evaluation of the Impact of Telematics Use on Young Drivers’ Driving Behaviour: A Naturalistic Driving Study

Authors: WonSun Chen, James Boylan, Erwin Muharemovic, Denny Meyer

Abstract:

In Australia, drivers aged between 18 and 24 remained at high risk of road fatality over the last decade. Despite the successful implementation of the Graduated Licensing System (GLS) that supports young drivers in their early phases of driving, the road fatality statistics for these drivers remains high. In response to these statistics, studies conducted in Australia prior to the start of the COVID-19 pandemic have demonstrated the benefits of using telematics devices for improving driving behaviour, However, the impact of COVID-19 lockdown on young drivers’ driving behaviour has emerged as a global concern. Therefore, this naturalistic study aimed to evaluate and compare the driving behaviour(such as acceleration, braking, speeding, etc.) of young drivers with the adoption of in-vehicle telematics devices. Forty-two drivers aged between 18 and 30 and residing in the Australian state of Victoria participated in this study during the period of May to October 2022. All participants drove with the telematics devices during the first 30-day. At the start of the second 30-day, twenty-one participants were randomised to an intervention group where they were provided with an additional telematics ray device that provided visual feedback to the drivers, especially when they committed to aggressive driving behaviour. The remaining twenty-one participants remined their driving journeys without the extra telematics ray device (control group). Such trustworthy data enabled the assessment of changes in the driving behaviour of these young drivers using a machine learning approach in Python. Results are expected to show participants from the intervention group will show improvements in their driving behaviour compared to those from the control group.Furthermore, the telematics data enable the assessment and quantification of such improvements in driving behaviour. The findings from this study are anticipated to shed some light in guiding the development of customised campaigns and interventions to further address the high road fatality among young drivers in Australia.

Keywords: driving behaviour, naturalistic study, telematics data, young drivers

Procedia PDF Downloads 124
2866 Biomedical Definition Extraction Using Machine Learning with Synonymous Feature

Authors: Jian Qu, Akira Shimazu

Abstract:

OOV (Out Of Vocabulary) terms are terms that cannot be found in many dictionaries. Although it is possible to translate such OOV terms, the translations do not provide any real information for a user. We present an OOV term definition extraction method by using information available from the Internet. We use features such as occurrence of the synonyms and location distances. We apply machine learning method to find the correct definitions for OOV terms. We tested our method on both biomedical type and name type OOV terms, our work outperforms existing work with an accuracy of 86.5%.

Keywords: information retrieval, definition retrieval, OOV (out of vocabulary), biomedical information retrieval

Procedia PDF Downloads 496
2865 Eliminating Cutter-Path Deviation For Five-Axis Nc Machining

Authors: Alan C. Lin, Tsong Der Lin

Abstract:

This study proposes a deviation control method to add interpolation points to numerical control (NC) codes of five-axis machining in order to achieve the required machining accuracy. Specific research issues include: (1) converting machining data between the CL (cutter location) domain and the NC domain, (2) calculating the deviation between the deviated path and the linear path, (3) finding interpolation points, and (4) determining tool orientations for the interpolation points. System implementation with practical examples will also be included to highlight the applicability of the proposed methodology.

Keywords: CAD/CAM, cutter path, five-axis machining, numerical control

Procedia PDF Downloads 424
2864 Pyramid Binary Pattern for Age Invariant Face Verification

Authors: Saroj Bijarnia, Preety Singh

Abstract:

We propose a simple and effective biometrics system based on face verification across aging using a new variant of texture feature, Pyramid Binary Pattern. This employs Local Binary Pattern along with its hierarchical information. Dimension reduction of generated texture feature vector is done using Principal Component Analysis. Support Vector Machine is used for classification. Our proposed method achieves an accuracy of 92:24% and can be used in an automated age-invariant face verification system.

Keywords: biometrics, age invariant, verification, support vector machine

Procedia PDF Downloads 353
2863 On the Utility of Bidirectional Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of the flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on the spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts, as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with an attention mechanism. In previous works on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work, with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on the presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: machine learning, classification and regression, gene circuit design, bidirectional transformers

Procedia PDF Downloads 61
2862 Extracting Attributes for Twitter Hashtag Communities

Authors: Ashwaq Alsulami, Jianhua Shao

Abstract:

Various organisations often need to understand discussions on social media, such as what trending topics are and characteristics of the people engaged in the discussion. A number of approaches have been proposed to extract attributes that would characterise a discussion group. However, these approaches are largely based on supervised learning, and as such they require a large amount of labelled data. We propose an approach in this paper that does not require labelled data, but rely on lexical sources to detect meaningful attributes for online discussion groups. Our findings show an acceptable level of accuracy in detecting attributes for Twitter discussion groups.

Keywords: attributed community, attribute detection, community, social network

Procedia PDF Downloads 162
2861 Deciphering Orangutan Drawing Behavior Using Artificial Intelligence

Authors: Benjamin Beltzung, Marie Pelé, Julien P. Renoult, Cédric Sueur

Abstract:

To this day, it is not known if drawing is specifically human behavior or if this behavior finds its origins in ancestor species. An interesting window to enlighten this question is to analyze the drawing behavior in genetically close to human species, such as non-human primate species. A good candidate for this approach is the orangutan, who shares 97% of our genes and exhibits multiple human-like behaviors. Focusing on figurative aspects may not be suitable for orangutans’ drawings, which may appear as scribbles but may have meaning. A manual feature selection would lead to an anthropocentric bias, as the features selected by humans may not match with those relevant for orangutans. In the present study, we used deep learning to analyze the drawings of a female orangutan named Molly († in 2011), who has produced 1,299 drawings in her last five years as part of a behavioral enrichment program at the Tama Zoo in Japan. We investigate multiple ways to decipher Molly’s drawings. First, we demonstrate the existence of differences between seasons by training a deep learning model to classify Molly’s drawings according to the seasons. Then, to understand and interpret these seasonal differences, we analyze how the information spreads within the network, from shallow to deep layers, where early layers encode simple local features and deep layers encode more complex and global information. More precisely, we investigate the impact of feature complexity on classification accuracy through features extraction fed to a Support Vector Machine. Last, we leverage style transfer to dissociate features associated with drawing style from those describing the representational content and analyze the relative importance of these two types of features in explaining seasonal variation. Content features were relevant for the classification, showing the presence of meaning in these non-figurative drawings and the ability of deep learning to decipher these differences. The style of the drawings was also relevant, as style features encoded enough information to have a classification better than random. The accuracy of style features was higher for deeper layers, demonstrating and highlighting the variation of style between seasons in Molly’s drawings. Through this study, we demonstrate how deep learning can help at finding meanings in non-figurative drawings and interpret these differences.

Keywords: cognition, deep learning, drawing behavior, interpretability

Procedia PDF Downloads 165
2860 Potential Risk Assessment Due to Groundwater Quality Deterioration and Quantifying the Major Influencing Factors Using Geographical Detectors in the Gunabay Watershed of Ethiopia

Authors: Asnakew Mulualem Tegegne, Tarun Kumar Lohani, , Abunu Atlabachew Eshete

Abstract:

Groundwater quality has become deteriorated due to natural and anthropogenic activities. Poor water quality has a potential risk to human health and the environment. Therefore, the study aimed to assess the potential risk of groundwater quality contamination levels and public health risks in the Gunabay watershed. For this task, seventy-eight groundwater samples were collected from thirty-nine locations in the dry and wet seasons during 2022. The ground water contamination index was applied to assess the overall quality of groundwater. Six major driving forces (temperature, population density, soil, land cover, recharge, and geology) and their quantitative impact of each factor on groundwater quality deterioration were demonstrated using Geodetector. The results showed that low groundwater quality was detected in urban and agricultural land. Especially nitrate contamination was highly linked to groundwater quality deterioration and public health risks, and a medium contamination level was observed in the area. This indicates that the inappropriate application of fertilizer on agricultural land and wastewater from urban areas has a great impact on shallow aquifers in the study area. Furthermore, the major influencing factors are ranked as soil type (0.33–0.31)>recharge (0.17–0.15)>temperature (0.13–0.08)>population density (0.1–0.08)>land cover types (0.07– 0.04)>lithology (0.05–0.04). The interaction detector revealed that the interaction between soil ∩ recharge, soil ∩ temperature, and soil ∩ land cover, temperature ∩ recharge is more influential to deteriorate groundwater quality in both seasons. Identification and quantification of the major influencing factors may provide new insight into groundwater resource management.

Keywords: groundwater contamination index, geographical detectors, public health · influencing factors, and water resources management

Procedia PDF Downloads 17
2859 Phytochemical Exploration of Plectranthus stocksii Hook. F. for Antioxidant and Cytotoxic Properties

Authors: Kasipandi Muniyandi, Parimelazhagan Thangaraj

Abstract:

Plants are important prospective wealth of a country, combination of local health care information about a specific plant together with data published by several groups of scientists, can help in deciding whether it should be considered acceptable for medicinal use. In the developed countries, too, plant-derived drugs may be of importance. The wide variety of ailments that are being treated with Plectranthus is an indication of the medicinal value of the genus. A number of species are not toxic and so may be taken orally, whilst others are used topically on the skin or as enemas. This study was designed to evaluate the different properties of Plectranthus stocksii and the aerial parts were collected and extracted with petroleum ether, chloroform, ethyl acetate, acetone and methanol by Soxhlet apparatus and finally macerated with hot water. The quantification assays revealed that, leaf methanol extract showed higher total phenolic (415.41 mg GAE/ g extract) and tannin (177.53 mg GAE/ g extract) contents whereas leaf ethyl acetate exhibited higher flavonoids (777.11 mg RE/ g extract) content. The antioxidant efficiency of the extracts was analyzed by various radical scavenging assays. Among the different antioxidant assays, leaf ethyl acetate extract showed higher free radical scavenging activities against DPPH (IC50 = 3.46 µg/mL), ABTS (27417.65 µM TE/ g extract), FRAP (152.17 mM Fe(II)E/ mg extract) NO• radical (21.46%) and Superoxide radical (IC50 = 24.16 µg/mL) assays. All the parts P. stocksii extracts showed significant protection against OH• induced DNA damage at 50 µg concentration. The HPLC analysis of leaf ethyl acetate extract revealed the presence of Quercetin (30.29 µg/mg of extract) was the major compound. Anticancer activity of leaf ethyl acetate extract showed better IC50 values were 48.87 and 36.08 µg/ mL against MCF-7 and Caco-2 respectively. From this study, P. stocksii can act as a potent antioxidant and cytotoxic antimicrobial agent. The scope for drug development from this plant is endless and there is undoubtedly a call for further research in pharmaceutical industries.

Keywords: antioxidant, cytotoxicity, phenolics, plectranthus stocksii

Procedia PDF Downloads 383
2858 Data Model to Predict Customize Skin Care Product Using Biosensor

Authors: Ashi Gautam, Isha Shukla, Akhil Seghal

Abstract:

Biosensors are analytical devices that use a biological sensing element to detect and measure a specific chemical substance or biomolecule in a sample. These devices are widely used in various fields, including medical diagnostics, environmental monitoring, and food analysis, due to their high specificity, sensitivity, and selectivity. In this research paper, a machine learning model is proposed for predicting the suitability of skin care products based on biosensor readings. The proposed model takes in features extracted from biosensor readings, such as biomarker concentration, skin hydration level, inflammation presence, sensitivity, and free radicals, and outputs the most appropriate skin care product for an individual. This model is trained on a dataset of biosensor readings and corresponding skin care product information. The model's performance is evaluated using several metrics, including accuracy, precision, recall, and F1 score. The aim of this research is to develop a personalised skin care product recommendation system using biosensor data. By leveraging the power of machine learning, the proposed model can accurately predict the most suitable skin care product for an individual based on their biosensor readings. This is particularly useful in the skin care industry, where personalised recommendations can lead to better outcomes for consumers. The developed model is based on supervised learning, which means that it is trained on a labeled dataset of biosensor readings and corresponding skin care product information. The model uses these labeled data to learn patterns and relationships between the biosensor readings and skin care products. Once trained, the model can predict the most suitable skin care product for an individual based on their biosensor readings. The results of this study show that the proposed machine learning model can accurately predict the most appropriate skin care product for an individual based on their biosensor readings. The evaluation metrics used in this study demonstrate the effectiveness of the model in predicting skin care products. This model has significant potential for practical use in the skin care industry for personalised skin care product recommendations. The proposed machine learning model for predicting the suitability of skin care products based on biosensor readings is a promising development in the skin care industry. The model's ability to accurately predict the most appropriate skin care product for an individual based on their biosensor readings can lead to better outcomes for consumers. Further research can be done to improve the model's accuracy and effectiveness.

Keywords: biosensors, data model, machine learning, skin care

Procedia PDF Downloads 97
2857 Tracking Maximum Power Point Utilizing Artificial Immunity System

Authors: Marwa Ahmed Abd El Hamied

Abstract:

In this paper In this paper, a new technique based on Artificial Immunity System (AIS) technique has been developed to track Maximum Power Point (MPP). AIS system is implemented in a photovoltaic system that is subjected to variable temperature and insulation condition. The proposed novel is simulated using Mat Lab program. The results of simulation have been compared to those who are generated from Observation Controller. The proposed model shows promising results as it provide better accuracy comparing to classical model.

Keywords: component, artificial immunity technique, solar energy, perturbation and observation, power based methods

Procedia PDF Downloads 427
2856 Hand Gesture Recognition Interface Based on IR Camera

Authors: Yang-Keun Ahn, Kwang-Soon Choi, Young-Choong Park, Kwang-Mo Jung

Abstract:

Vision based user interfaces to control TVs and PCs have the advantage of being able to perform natural control without being limited to a specific device. Accordingly, various studies on hand gesture recognition using RGB cameras or depth cameras have been conducted. However, such cameras have the disadvantage of lacking in accuracy or the construction cost being large. The proposed method uses a low cost IR camera to accurately differentiate between the hand and the background. Also, complicated learning and template matching methodologies are not used, and the correlation between the fingertips extracted through curvatures is utilized to recognize Click and Move gestures.

Keywords: recognition, hand gestures, infrared camera, RGB cameras

Procedia PDF Downloads 406
2855 Simultaneous Determination of Cefazolin and Cefotaxime in Urine by HPLC

Authors: Rafika Bibi, Khaled Khaladi, Hind Mokran, Mohamed Salah Boukhechem

Abstract:

A high performance liquid chromatographic method with ultraviolet detection at 264nm was developed and validate for quantitative determination and separation of cefazolin and cefotaxime in urine, the mobile phase consisted of acetonitrile and phosphate buffer pH4,2(15 :85) (v/v) pumped through ODB 250× 4,6 mm, 5um column at a flow rate of 1ml/min, loop of 20ul. In this condition, the validation of this technique showed that it is linear in a range of 0,01 to 10ug/ml with a good correlation coefficient ( R>0,9997), retention time of cefotaxime, cefazolin was 9.0, 10.1 respectively, the statistical evaluation of the method was examined by means of within day (n=6) and day to day (n=5) and was found to be satisfactory with high accuracy and precision.

Keywords: cefazolin, cefotaxime, HPLC, bioscience, biochemistry, pharmaceutical

Procedia PDF Downloads 363
2854 Methodology of Automation and Supervisory Control and Data Acquisition for Restructuring Industrial Systems

Authors: Lakhoua Najeh

Abstract:

Introduction: In most situations, an industrial system already existing, conditioned by its history, its culture and its context are in difficulty facing the necessity to restructure itself in an organizational and technological environment in perpetual evolution. This is why all operations of restructuring first of all require a diagnosis based on a functional analysis. After a presentation of the functionality of a supervisory system for complex processes, we present the concepts of industrial automation and supervisory control and data acquisition (SCADA). Methods: This global analysis exploits the various available documents on the one hand and takes on the other hand in consideration the various testimonies through investigations, the interviews or the collective workshops; otherwise, it also takes observations through visits as a basis and even of the specific operations. The exploitation of this diagnosis enables us to elaborate the project of restructuring thereafter. Leaving from the system analysis for the restructuring of industrial systems, and after a technical diagnosis based on visits, an analysis of the various technical documents and management as well as on targeted interviews, a focusing retailing the various levels of analysis has been done according a general methodology. Results: The methodology adopted in order to contribute to the restructuring of industrial systems by its participative and systemic character and leaning on a large consultation a lot of human resources that of the documentary resources, various innovating actions has been proposed. These actions appear in the setting of the TQM gait requiring applicable parameter quantification and a treatment valorising some information. The new management environment will enable us to institute an information and communication system possibility of migration toward an ERP system. Conclusion: Technological advancements in process monitoring, control and industrial automation over the past decades have contributed greatly to improve the productivity of virtually all industrial systems throughout the world. This paper tries to identify the principles characteristics of a process monitoring, control and industrial automation in order to provide tools to help in the decision-making process.

Keywords: automation, supervision, SCADA, TQM

Procedia PDF Downloads 177
2853 Analysis of Different Classification Techniques Using WEKA for Diabetic Disease

Authors: Usama Ahmed

Abstract:

Data mining is the process of analyze data which are used to predict helpful information. It is the field of research which solve various type of problem. In data mining, classification is an important technique to classify different kind of data. Diabetes is most common disease. This paper implements different classification technique using Waikato Environment for Knowledge Analysis (WEKA) on diabetes dataset and find which algorithm is suitable for working. The best classification algorithm based on diabetic data is Naïve Bayes. The accuracy of Naïve Bayes is 76.31% and take 0.06 seconds to build the model.

Keywords: data mining, classification, diabetes, WEKA

Procedia PDF Downloads 147
2852 Improvements in OpenCV's Viola Jones Algorithm in Face Detection–Skin Detection

Authors: Jyoti Bharti, M. K. Gupta, Astha Jain

Abstract:

This paper proposes a new improved approach for false positives filtering of detected face images on OpenCV’s Viola Jones Algorithm In this approach, for Filtering of False Positives, Skin Detection in two colour spaces i.e. HSV (Hue, Saturation and Value) and YCrCb (Y is luma component and Cr- red difference, Cb- Blue difference) is used. As a result, it is found that false detection has been reduced. Our proposed method reaches the accuracy of about 98.7%. Thus, a better recognition rate is achieved.

Keywords: face detection, Viola Jones, false positives, OpenCV

Procedia PDF Downloads 407
2851 Mapping of Forest Cover Change in the Democratic Republic of the Congo

Authors: Armand Okende, Benjamin Beaumont

Abstract:

Introduction: Deforestation is a change in the structure and composition of flora and fauna, which leads to a loss of biodiversity, production of goods and services and an increase in fires. It concerns vast territories in tropical zones particularly; this is the case of the territory of Bolobo in the current province of Maï- Ndombe in the Democratic Republic of Congo. Indeed, through this study between 2001 and 2018, we believe that it was important to show and analyze quantitatively the important forests changes and analyze quantitatively. It’s the overall objective of this study because, in this area, we are witnessing significant deforestation. Methodology: Mapping and quantification are the methodological approaches that we have put forward to assess the deforestation or forest changes through satellite images or raster layers. These satellites data from Global Forest Watch are integrated into the GIS software (GRASS GIS and Quantum GIS) to represent the loss of forest cover that has occurred and the various changes recorded (e.g., forest gain) in the territory of Bolobo. Results: The results obtained show, in terms of quantifying deforestation for the periods 2001-2006, 2007-2012 and 2013-2018, the loss of forest area in hectares each year. The different change maps produced during different study periods mentioned above show that the loss of forest areas is gradually increasing. Conclusion: With this study, knowledge of forest management and protection is a challenge to ensure good management of forest resources. To do this, it is wise to carry out more studies that would optimize the monitoring of forests to guarantee the ecological and economic functions they provide in the Congo Basin, particularly in the Democratic Republic of Congo. In addition, the cartographic approach, coupled with the geographic information system and remote sensing proposed by Global Forest Watch using raster layers, provides interesting information to explain the loss of forest areas.

Keywords: deforestation, loss year, forest change, remote sensing, drivers of deforestation

Procedia PDF Downloads 133
2850 Evaluation of Two DNA Extraction Methods for Minimal Porcine (Pork) Detection in Halal Food Sample Mixture Using Taqman Real-time PCR Technique

Authors: Duaa Mughal, Syeda Areeba Nadeem, Shakil Ahmed, Ishtiaq Ahmed Khan

Abstract:

The identification of porcine DNA in Halal food items is critical to ensuring compliance with dietary restrictions and religious beliefs. In Islam, Porcine is prohibited as clearly mentioned in Quran (Surah Al-Baqrah, Ayat 173). The purpose of this study was to compare two DNA extraction procedures for detecting 0.001% of porcine DNA in processed Halal food sample mixtures containing chicken, camel, veal, turkey and goat meat using the TaqMan Real-Time PCR technology. In this research, two different commercial kit protocols were compared. The processed sample mixtures were prepared by spiking known concentration of porcine DNA to non-porcine food matrices. Afterwards, TaqMan Real-Time PCR technique was used to target a particular porcine gene from the extracted DNA samples, which was quantified after extraction. The results of the amplification were evaluated for sensitivity, specificity, and reproducibility. The results of the study demonstrated that two DNA extraction techniques can detect 0.01% of porcine DNA in mixture of Halal food samples. However, as compared to the alternative approach, Eurofins| GeneScan GeneSpin DNA Isolation kit showed more effective sensitivity and specificity. Furthermore, the commercial kit-based approach showed great repeatability with minimal variance across repeats. Quantification of DNA was done by using fluorometric assay. In conclusion, the comparison of DNA extraction methods for detecting porcine DNA in Halal food sample mixes using the TaqMan Real-Time PCR technology reveals that the commercial kit-based approach outperforms the other methods in terms of sensitivity, specificity, and repeatability. This research helps to promote the development of reliable and standardized techniques for detecting porcine DNA in Halal food items, religious conformity and assuring nutritional.

Keywords: real time PCR (qPCR), DNA extraction, porcine DNA, halal food authentication, religious conformity

Procedia PDF Downloads 78
2849 The Use of Correlation Difference for the Prediction of Leakage in Pipeline Networks

Authors: Mabel Usunobun Olanipekun, Henry Ogbemudia Omoregbee

Abstract:

Anomalies such as water pipeline and hydraulic or petrochemical pipeline network leakages and bursts have significant implications for economic conditions and the environment. In order to ensure pipeline systems are reliable, they must be efficiently controlled. Wireless Sensor Networks (WSNs) have become a powerful network with critical infrastructure monitoring systems for water, oil and gas pipelines. The loss of water, oil and gas is inevitable and is strongly linked to financial costs and environmental problems, and its avoidance often leads to saving of economic resources. Substantial repair costs and the loss of precious natural resources are part of the financial impact of leaking pipes. Pipeline systems experts have implemented various methodologies in recent decades to identify and locate leakages in water, oil and gas supply networks. These methodologies include, among others, the use of acoustic sensors, measurements, abrupt statistical analysis etc. The issue of leak quantification is to estimate, given some observations about that network, the size and location of one or more leaks in a water pipeline network. In detecting background leakage, however, there is a greater uncertainty in using these methodologies since their output is not so reliable. In this work, we are presenting a scalable concept and simulation where a pressure-driven model (PDM) was used to determine water pipeline leakage in a system network. These pressure data were collected with the use of acoustic sensors located at various node points after a predetermined distance apart. We were able to determine with the use of correlation difference to determine the leakage point locally introduced at a predetermined point between two consecutive nodes, causing a substantial pressure difference between in a pipeline network. After de-noising the signal from the sensors at the nodes, we successfully obtained the exact point where we introduced the local leakage using the correlation difference model we developed.

Keywords: leakage detection, acoustic signals, pipeline network, correlation, wireless sensor networks (WSNs)

Procedia PDF Downloads 109