Search results for: polymer matrix composites
2532 Ecofriendly Multi-Layer Polymer Treatment for Hydrophobic and Water Repellent Porous Cotton Fabrics
Authors: Muhammad Zahid, Ilker S. Bayer, Athanassia Athanassiou
Abstract:
Fluorinated polymers having C8 chemistry (chemicals with 8 fluorinated carbon atoms) are well renowned for their excellent low surface tension and water repelling properties. However, these polymers degrade into highly toxic heavy perfluoro acids in the environment. When the C8 chemistry is reduced to C6 chemistry, this environmental concern is eliminated at the expense of reduced liquid repellent performance. In order to circumvent this, in this study, we demonstrate pre-treatment of woven cotton fabrics with a fluorinated acrylic copolymer with C6 chemistry and subsequently with a silicone polymer to render them hydrophobic. A commercial fluorinated acrylic copolymer was blended with silica nanoparticles to form hydrophobic nano-roughness on cotton fibers and a second coating layer of polydimethylsiloxane (PDMS) was applied on the fabric. A static water contact angle (for 5µl) and rolling angle (for 12.5µl) of 147°±2° and 31° were observed, respectively. Hydrostatic head measurements were also performed to better understand the performance with 26±1 cm and 2.56kPa column height and static pressure respectively. Fabrication methods (with rod coater etc.) were kept simple, reproducible, and scalable and cost efficient. Moreover, the robustness of applied coatings was also evaluated by sonication cleaning and abrasion methods. Water contact angle (WCA), water shedding angle (WSA), hydrostatic head, droplet bouncing-rolling off and prolonged staining tests were used to characterize hydrophobicity of materials. For chemical and morphological analysis, various characterization methods were used such as attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and scanning electron microscopy (SEM).Keywords: fluorinated polymer, hydrophobic, polydimethylsiloxane, water contact angle
Procedia PDF Downloads 3252531 A Framework for Designing Complex Product-Service Systems with a Multi-Domain Matrix
Authors: Yoonjung An, Yongtae Park
Abstract:
Offering a Product-Service System (PSS) is a well-accepted strategy that companies may adopt to provide a set of systemic solutions to customers. PSSs were initially provided in a simple form but now take diversified and complex forms involving multiple services, products and technologies. With the growing interest in the PSS, frameworks for the PSS development have been introduced by many researchers. However, most of the existing frameworks fail to examine various relations existing in a complex PSS. Since designing a complex PSS involves full integration of multiple products and services, it is essential to identify not only product-service relations but also product-product/ service-service relations. It is also equally important to specify how they are related for better understanding of the system. Moreover, as customers tend to view their purchase from a more holistic perspective, a PSS should be developed based on the whole system’s requirements, rather than focusing only on the product requirements or service requirements. Thus, we propose a framework to develop a complex PSS that is coordinated fully with the requirements of both worlds. Specifically, our approach adopts a multi-domain matrix (MDM). A MDM identifies not only inter-domain relations but also intra-domain relations so that it helps to design a PSS that includes highly desired and closely related core functions/ features. Also, various dependency types and rating schemes proposed in our approach would help the integration process.Keywords: inter-domain relations, intra-domain relations, multi-domain matrix, product-service system design
Procedia PDF Downloads 6412530 Precise Determination of the Residual Stress Gradient in Composite Laminates Using a Configurable Numerical-Experimental Coupling Based on the Incremental Hole Drilling Method
Authors: A. S. Ibrahim Mamane, S. Giljean, M.-J. Pac, G. L’Hostis
Abstract:
Fiber reinforced composite laminates are particularly subject to residual stresses due to their heterogeneity and the complex chemical, mechanical and thermal mechanisms that occur during their processing. Residual stresses are now well known to cause damage accumulation, shape instability, and behavior disturbance in composite parts. Many works exist in the literature on techniques for minimizing residual stresses in thermosetting and thermoplastic composites mainly. To study in-depth the influence of processing mechanisms on the formation of residual stresses and to minimize them by establishing a reliable correlation, it is essential to be able to measure very precisely the profile of residual stresses in the composite. Residual stresses are important data to consider when sizing composite parts and predicting their behavior. The incremental hole drilling is very effective in measuring the gradient of residual stresses in composite laminates. This method is semi-destructive and consists of drilling incrementally a hole through the thickness of the material and measuring relaxation strains around the hole for each increment using three strain gauges. These strains are then converted into residual stresses using a matrix of coefficients. These coefficients, called calibration coefficients, depending on the diameter of the hole and the dimensions of the gauges used. The reliability of the incremental hole drilling depends on the accuracy with which the calibration coefficients are determined. These coefficients are calculated using a finite element model. The samples’ features and the experimental conditions must be considered in the simulation. Any mismatch can lead to inadequate calibration coefficients, thus introducing errors on residual stresses. Several calibration coefficient correction methods exist for isotropic material, but there is a lack of information on this subject concerning composite laminates. In this work, a Python program was developed to automatically generate the adequate finite element model. This model allowed us to perform a parametric study to assess the influence of experimental errors on the calibration coefficients. The results highlighted the sensitivity of the calibration coefficients to the considered errors and gave an order of magnitude of the precisions required on the experimental device to have reliable measurements. On the basis of these results, improvements were proposed on the experimental device. Furthermore, a numerical method was proposed to correct the calibration coefficients for different types of materials, including thick composite parts for which the analytical approach is too complex. This method consists of taking into account the experimental errors in the simulation. Accurate measurement of the experimental errors (such as eccentricity of the hole, angular deviation of the gauges from their theoretical position, or errors on increment depth) is therefore necessary. The aim is to determine more precisely the residual stresses and to expand the validity domain of the incremental hole drilling technique.Keywords: fiber reinforced composites, finite element simulation, incremental hole drilling method, numerical correction of the calibration coefficients, residual stresses
Procedia PDF Downloads 1322529 Microplastics in Two Bivalves of The Bay of Bengal Coast, Bangladesh
Authors: Showmitra Chowdhury, M. Shahadat Hossain, S. M. Sharifuzzaman, Sayedur Rahman Chowdhury, Subrata Sarker, M. Shah Nawaz Chowdhury
Abstract:
Microplastics were identified in mussel (Pernaviridis) and Oyster (Crassostrea madrasensis) from the south east coast of Bangladesh. Samples were collected from four sites of the coast based on their availability, and gastrointestinal tracts were assessed following isolation, floatation, filtration, microscopic observation, and polymer identification by micro-Fourier Transformed Infrared Spectroscope (μ-FTIR) for microplastics determination. A total of 1527 microplastics were identified from 130 samples. The amount of microplastics varied from 0.66 to 3.10 microplastics/g and from 3.20 to 27.60 items/individual. Crassostrea madrasensiscontained on average 1.64 items/g and exhibited the highest level of microplastics by weight. Fiber was the most dominant type, accounting for 72% of total microplastics. Polyethylene, polypropylene, polystyrene, polyester, and nylon were the major polymer types. In both species, transparent/ black color and filamentous shape was dominant. The most common size ranges from 0.005 to 0.25mm and accounted for 39% to 67%. The study revealed microplastics pollution is widespread and relatively high in the bivalves of Bangladesh.Keywords: microplastics, bivalves, mussel, oyster, bay of bengal, Bangladesh
Procedia PDF Downloads 1112528 Body Armours in Amazonian Fish
Authors: Fernando G. Torres, Donna M. Ebenstein, Monica Merino
Abstract:
Most fish are covered by a protective external armour. The characteristics of these armours depend on the individual elements that form them, such as scales, scutes or dermal plates. In this work, we assess the properties of two different types of protective elements: scales from A. gigas and dermal plates from P. pardalis. A. Gigas and P. Pardalis are two Amazonian fish with a rather prehistoric aspect. They have large scales and dermal plates that form two different types of protective body armours. Although both scales and dermal plates are formed by collagen and hydroxyapatite, their structures display remarkable differences. The structure and composition of the samples were assessed by means of X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). Morphology studies were carried out using a Scanning Electron Microscopy (SEM). Nanoindentation tests were performed to measure the reduced moduli in A. gigas scales and P. pardalis plates. The similarities and differences between scales and dermal plates are discussed based on the experimental results. Both protective armours are designed to be lightweight, flexible and tough. A. Gigas scales are are light laminated composites, while P. pardalis dermal plates show a sandwich like structure with dense outer layers and a porous inner matrix. It seems that the armour of P. pardalis is more suited for a bottom-dwelling fish and allows for protection against predators. The scales from A. Gigas are more adapted to give protection to a swimming fish. The information obtained from these studies is also important for the development of bioinspired nanocomposites, with potential applications in the biomedical field.Keywords: pterygoplichthys pardalis, dermal plates arapaima gigas, fish scales
Procedia PDF Downloads 3912527 Chemical Technology Approach for Obtaining Carbon Structures Containing Reinforced Ceramic Materials Based on Alumina
Authors: T. Kuchukhidze, N. Jalagonia, T. Archuadze, G. Bokuchava
Abstract:
The growing scientific-technological progress in modern civilization causes actuality of producing construction materials which can successfully work in conditions of high temperature, radiation, pressure, speed, and chemically aggressive environment. Such extreme conditions can withstand very few types of materials and among them, ceramic materials are in the first place. Corundum ceramics is the most useful material for creation of constructive nodes and products of various purposes for its low cost, easy accessibility to raw materials and good combination of physical-chemical properties. However, ceramic composite materials have one disadvantage; they are less plastics and have lower toughness. In order to increase the plasticity, the ceramics are reinforced by various dopants, that reduces the growth of the cracks. It is shown, that adding of even small amount of carbon fibers and carbon nanotubes (CNT) as reinforcing material significantly improves mechanical properties of the products, keeping at the same time advantages of alundum ceramics. Graphene in composite material acts in the same way as inorganic dopants (MgO, ZrO2, SiC and others) and performs the role of aluminum oxide inhibitor, as it creates shell, that gives possibility to reduce sintering temperature and at the same time it acts as damper, because scattering of a shock wave takes place on carbon structures. Application of different structural modification of carbon (graphene, nanotube and others) as reinforced material, gives possibility to create multi-purpose highly requested composite materials based on alundum ceramics. In the present work offers simplified technology for obtaining of aluminum oxide ceramics, reinforced with carbon nanostructures, during which chemical modification with doping carbon nanostructures will be implemented in the process of synthesis of final powdery composite – Alumina. In charge doping carbon nanostructures connected to matrix substance with C-O-Al bonds, that provide their homogeneous spatial distribution. In ceramic obtained as a result of consolidation of such powders carbon fragments equally distributed in the entire matrix of aluminum oxide, that cause increase of bending strength and crack-resistance. The proposed way to prepare the charge simplifies the technological process, decreases energy consumption, synthesis duration and therefore requires less financial expenses. In the implementation of this work, modern instrumental methods were used: electronic and optical microscopy, X-ray structural and granulometric analysis, UV, IR, and Raman spectroscopy.Keywords: ceramic materials, α-Al₂O₃, carbon nanostructures, composites, characterization, hot-pressing
Procedia PDF Downloads 1192526 Predictive Modelling of Curcuminoid Bioaccessibility as a Function of Food Formulation and Associated Properties
Authors: Kevin De Castro Cogle, Mirian Kubo, Maria Anastasiadi, Fady Mohareb, Claire Rossi
Abstract:
Background: The bioaccessibility of bioactive compounds is a critical determinant of the nutritional quality of various food products. Despite its importance, there is a limited number of comprehensive studies aimed at assessing how the composition of a food matrix influences the bioaccessibility of a compound of interest. This knowledge gap has prompted a growing need to investigate the intricate relationship between food matrix formulations and the bioaccessibility of bioactive compounds. One such class of bioactive compounds that has attracted considerable attention is curcuminoids. These naturally occurring phytochemicals, extracted from the roots of Curcuma longa, have gained popularity owing to their purported health benefits and also well known for their poor bioaccessibility Project aim: The primary objective of this research project is to systematically assess the influence of matrix composition on the bioaccessibility of curcuminoids. Additionally, this study aimed to develop a series of predictive models for bioaccessibility, providing valuable insights for optimising the formula for functional foods and provide more descriptive nutritional information to potential consumers. Methods: Food formulations enriched with curcuminoids were subjected to in vitro digestion simulation, and their bioaccessibility was characterized with chromatographic and spectrophotometric techniques. The resulting data served as the foundation for the development of predictive models capable of estimating bioaccessibility based on specific physicochemical properties of the food matrices. Results: One striking finding of this study was the strong correlation observed between the concentration of macronutrients within the food formulations and the bioaccessibility of curcuminoids. In fact, macronutrient content emerged as a very informative explanatory variable of bioaccessibility and was used, alongside other variables, as predictors in a Bayesian hierarchical model that predicted curcuminoid bioaccessibility accurately (optimisation performance of 0.97 R2) for the majority of cross-validated test formulations (LOOCV of 0.92 R2). These preliminary results open the door to further exploration, enabling researchers to investigate a broader spectrum of food matrix types and additional properties that may influence bioaccessibility. Conclusions: This research sheds light on the intricate interplay between food matrix composition and the bioaccessibility of curcuminoids. This study lays a foundation for future investigations, offering a promising avenue for advancing our understanding of bioactive compound bioaccessibility and its implications for the food industry and informed consumer choices.Keywords: bioactive bioaccessibility, food formulation, food matrix, machine learning, probabilistic modelling
Procedia PDF Downloads 682525 Neuron Imaging in Lateral Geniculate Nucleus
Authors: Sandy Bao, Yankang Bao
Abstract:
The understanding of information that is being processed in the brain, especially in the lateral geniculate nucleus (LGN), has been proven challenging for modern neuroscience and for researchers with a focus on how neurons process signals and images. In this paper, we are proposing a method to image process different colors within different layers of LGN, that is, green information in layers 4 & 6 and red & blue in layers 3 & 5 based on the surface dimension of layers. We take into consideration the images in LGN and visual cortex, and that the edge detected information from the visual cortex needs to be considered in order to return back to the layers of LGN, along with the image in LGN to form the new image, which will provide an improved image that is clearer, sharper, and making it easier to identify objects in the image. Matrix Laboratory (MATLAB) simulation is performed, and results show that the clarity of the output image has significant improvement.Keywords: lateral geniculate nucleus, matrix laboratory, neuroscience, visual cortex
Procedia PDF Downloads 2792524 Synthesis and Electrochemical Characterization of a Copolymer (PANI/PEDOT:PSS) for Application in Supercapacitors
Authors: Naima Boudieb, Mohamed Loucif Seaid, Imad Rati, Imane Benammane
Abstract:
The aim of this study is to synthesis of a copolymer PANI/PEDOT:PSS by electrochemical means to apply in supercapacitors. Polyaniline (PANI) is a conductive polymer; it was synthesized by electrochemical polymerization. It exhibits very stable properties in different environments, whereas PEDOT:PSS is a conductive polymer based on poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(styrene sulfonate)(PSS). It is commonly used with polyaniline to improve its electrical conductivity. Several physicochemical and electrochemical techniques were used for the characterization of PANI/PEDOT:PSS: cyclic voltammetry (VC), electrochemical impedance spectroscopy (EIS), open circuit potential, SEM, X-ray diffraction, etc. The results showed that the PANI/PEDOT:PSS composite is a promising material for supercapacitors due to its high electrical conductivity and high porosity. Electrochemical and physicochemical characterization tests have shown that the composite has high electrical and structural performances, making it a material of choice for high-performance energy storage applications.Keywords: energy storage, supercapacitors, SIE, VC, PANI, poly(3, 4-ethylenedioxythiophene, PEDOT, polystyrene sulfonate
Procedia PDF Downloads 632523 Experimental Investigation on Tensile Durability of Glass Fiber Reinforced Polymer (GFRP) Rebar Embedded in High Performance Concrete
Authors: Yuan Yue, Wen-Wei Wang
Abstract:
The objective of this research is to comprehensively evaluate the impact of alkaline environments on the durability of Glass Fiber Reinforced Polymer (GFRP) reinforcements in concrete structures and further explore their potential value within the construction industry. Specifically, we investigate the effects of two widely used high-performance concrete (HPC) materials on the durability of GFRP bars when embedded within them under varying temperature conditions. A total of 279 GFRP bar specimens were manufactured for microcosmic and mechanical performance tests. Among them, 270 specimens were used to test the residual tensile strength after 120 days of immersion, while 9 specimens were utilized for microscopic testing to analyze degradation damage. SEM techniques were employed to examine the microstructure of GFRP and cover concrete. Unidirectional tensile strength experiments were conducted to determine the remaining tensile strength after corrosion. The experimental variables consisted of four types of concrete (engineering cementitious composite (ECC), ultra-high-performance concrete (UHPC), and two types of ordinary concrete with different compressive strengths) as well as three acceleration temperatures (20, 40, and 60℃). The experimental results demonstrate that high-performance concrete (HPC) offers superior protection for GFRP bars compared to ordinary concrete. Two types of HPC enhance durability through different mechanisms: one by reducing the pH of the concrete pore fluid and the other by decreasing permeability. For instance, ECC improves embedded GFRP's durability by lowering the pH of the pore fluid. After 120 days of immersion at 60°C under accelerated conditions, ECC (pH=11.5) retained 68.99% of its strength, while PC1 (pH=13.5) retained 54.88%. On the other hand, UHPC enhances FRP steel's durability by increasing porosity and compactness in its protective layer to reinforce FRP reinforcement's longevity. Due to fillers present in UHPC, it typically exhibits lower porosity, higher densities, and greater resistance to permeation compared to PC2 with similar pore fluid pH levels, resulting in varying degrees of durability for GFRP bars embedded in UHPC and PC2 after 120 days of immersion at a temperature of 60°C - with residual strengths being 66.32% and 60.89%, respectively. Furthermore, SEM analysis revealed no noticeable evidence indicating fiber deterioration in any examined specimens, thus suggesting that uneven stress distribution resulting from interface segregation and matrix damage emerges as a primary causative factor for tensile strength reduction in GFRP rather than fiber corrosion. Moreover, long-term prediction models were utilized to calculate residual strength values over time for reinforcement embedded in HPC under high temperature and high humidity conditions - demonstrating that approximately 75% of its initial strength was retained by reinforcement embedded in HPC after 100 years of service.Keywords: GFRP bars, HPC, degeneration, durability, residual tensile strength.
Procedia PDF Downloads 562522 Nanocellulose Reinforced Biocomposites Based on Wheat Plasticized Starch for Food Packaging
Authors: Belen Montero, Carmen Ramirez, Maite Rico, Rebeca Bouza, Irene Derungs
Abstract:
Starch is a promising polymer for producing biocomposite materials because it is renewable, completely biodegradable and easily available at a low cost. Thermoplastic starches (TPS) can be obtained after the disruption and plasticization of native starch with a plasticizer. In this work, the solvent casting method was used to obtain TPS films from wheat starch plasticized with glycerol and reinforced with nanocellulose (CNC). X-ray diffraction analysis was used to follow the evolution of the crystallinity. The native wheat starch granules have shown a profile corresponding to A-type crystal structures typical for cereal starches. When TPS films are analyzed a high amorphous halo centered on 19º is obtained, indicating the plasticization process is completed. SEM imaging was made in order to analyse the morphology. The image from the raw wheat starch granules shows a bimodal granule size distribution with some granules in large round disk-shape forms (A-type) and the others as smaller spherical particles (B-type). The image from the neat TPS surface shows a continuous surface. No starch aggregates or swollen granules can be seen so, the plasticization process is complete. In the surfaces of reinforced TPS films aggregates are seen as the CNC concentration in the matrix increases. The CNC influence on the mechanical properties of TPS films has been studied by dynamic mechanical analysis. A direct relation exists between the storage modulus values, E’, and the CNC content in reinforced TPS films: higher is the content of nanocellulose in the composite, higher is the value of E’. This reinforcement effect can be explained by the appearance of a strong and crystalline nanoparticle-TPS interphase. Thermal stability of films was analysed by TGA. It has not observed any influence on the behaviour related to the thermal degradation of films with the incorporation of the CNC. Finally, the resistance to the water absorption films was analysed following the standard UNE-EN ISO 1998:483. The percentage of water absorbed by the samples at each time was calculated. The addition of 5 wt % of CNC to the TPS matrix leads to a significant improvement in the moisture resistance of the starch based material decreasing their diffusivity. It has been associated to the formation of a nanocrystal network that prevents swelling of the starch and therefore water absorption and to the high crystallinity of cellulose compared to starch. As a conclusion, the wheat film reinforced with 5 wt % of cellulose nanocrystals seems to be a good alternative for short-life applications into the packaging industry, because of its greatest rigidity, thermal stability and moisture sorption resistance.Keywords: biocomposites, nanocellulose, starch, wheat
Procedia PDF Downloads 2122521 The Role of Poling Protocol on Augmentation of Magnetoelectricity in BCZT/NZFO Layered Composites
Authors: Pankhuri Bansal, Sanjeev Kumar
Abstract:
We examined the exotic role of electrical poling of layered BCZT-NZFO bulk composite for sustainable advancement of magnetoelectric (ME) technology. Practically, it seems quite difficult to access the full potential of ME composites due to their weak ME coupling performances. Using a standard poling protocol, we successfully deployed the coupling performance of laminated ME composite, comprised of a ferroelectric (FE) layer of BCZT and a ferrite layer of NZFO. However, the ME coupling constant of laminated composite is optimized by lowering the volume fraction of the FE component to strengthen the mechanical strain in the piezoelectric layer while fixing the thickness of the magnetostrictive ferrite layer. Here, we employed systematic zero field cooled (ZFC) and field cooled (FC) electrical poling protocol on morphotropic phase boundary (MPB) based BCZT composition, well-appreciated for it’s remarkable electromechanical activity. We report a record augmentation in magnetoelectric coupling as a consequence of a prudent field-cooled poling mechanism. On the basis of our findings, we emphasize that the degree of magnetoelectricity may be significantly improved for the miniaturization of efficient devices via proper execution of the poling technique.Keywords: magnetoelectric, lead-free, ferroelctric, ferromagnetic, energy harvesting
Procedia PDF Downloads 432520 Adsorption of Cd2+ from Aqueous Solutions Using Chitosan Obtained from a Mixture of Littorina littorea and Achatinoidea Shells
Authors: E. D. Paul, O. F. Paul, J. E. Toryila, A. J. Salifu, C. E. Gimba
Abstract:
Adsorption of Cd2+ ions from aqueous solution by Chitosan, a natural polymer, obtained from a mixture of the exoskeletons of Littorina littorea (Periwinkle) and Achatinoidea (Snail) was studied at varying adsorbent dose, contact time, metal ion concentrations, temperature and pH using batch adsorption method. The equilibrium adsorption isotherms were determined between 298 K and 345 K. The adsorption data were adjusted to Langmuir, Freundlich and the pseudo second order kinetic models. It was found that the Langmuir isotherm model most fitted the experimental data, with a maximum monolayer adsorption of 35.1 mgkg⁻¹ at 308 K. The entropy and enthalpy of adsorption were -0.1121 kJmol⁻¹K⁻¹ and -11.43 kJmol⁻¹ respectively. The Freundlich adsorption model, gave Kf and n values consistent with good adsorption. The pseudo-second order reaction model gave a straight line plot with rate constant of 1.291x 10⁻³ kgmg⁻¹ min⁻¹. The qe value was 21.98 mgkg⁻¹, indicating that the adsorption of Cadmium ion by the chitosan composite followed the pseudo-second order kinetic model.Keywords: adsorption, chitosan, littorina littorea, achatinoidea, natural polymer
Procedia PDF Downloads 4032519 Enhanced High-Temperature Strength of HfNbTaTiZrV Refractory High-Entropy Alloy via Al₂O₃ Reinforcement
Authors: Bingjie Wang, Qianqian Qang, Nan Lu, Xiubing Liang, Baolong Shen
Abstract:
Novel composites of HfNbTaTiZrV refractory high-entropy alloy (RHEA) reinforced with 0-5 vol.% Al₂O₃ particles have been synthesized by vacuum arc melting. The microstructure evolution, compressive mechanical properties at room and elevated temperatures, as well as strengthening mechanism of the composites, are analyzed. The HfNbTaTiZrV RHEA reinforced with 4 vol.% Al₂O₃ displays excellent phase stability at elevated temperatures. A superior compressive yield strength of 2700 MPa at room temperature, 1392 MPa at 800 °C, and 693 MPa at 1000 °C has been obtained for this composite. The improved yield strength results from multiple strengthening mechanisms caused by Al₂O₃ addition, including interstitial strengthening, grain boundary strengthening, and dispersion strengthening. Besides, the effects of interstitial strengthening increase with the temperature and is the main strengthening mechanism at elevated temperatures. These findings not only promote the development of oxide-reinforced RHEAs for challenging engineering applications but also provide guidelines for the design of light refractory materials with multiple strengthening mechanisms.Keywords: Al₂O₃-reinforcement, HfNbTaTiZrV, refractory high-entropy alloy, interstitial strengthening
Procedia PDF Downloads 1152518 Finite Element Modelling of a 3D Woven Composite for Automotive Applications
Authors: Ahmad R. Zamani, Luigi Sanguigno, Angelo R. Maligno
Abstract:
A 3D woven composite, designed for automotive applications, is studied using Abaqus Finite Element (FE) software suite. Python scripts were developed to build FE models of the woven composite in Complete Abaqus Environment (CAE). They can read TexGen or WiseTex files and automatically generate consistent meshes of the fabric and the matrix. A user menu is provided to help define parameters for the FE models, such as type and size of the elements in fabric and matrix as well as the type of matrix-fabric interaction. Node-to-node constraints were imposed to guarantee periodicity of the deformed shapes at the boundaries of the representative volume element of the composite. Tensile loads in three axes and biaxial loads in x-y directions have been applied at different Fibre Volume Fractions (FVFs). A simple damage model was implemented via an Abaqus user material (UMAT) subroutine. Existing tools for homogenization were also used, including voxel mesh generation from TexGen as well as Abaqus Micromechanics plugin. Linear relations between homogenised elastic properties and the FVFs are given. The FE models of composite exhibited balanced behaviour with respect to warp and weft directions in terms of both stiffness and strength.Keywords: 3D woven composite (3DWC), meso-scale finite element model, homogenisation of elastic material properties, Abaqus Python scripting
Procedia PDF Downloads 1452517 Image Rotation Using an Augmented 2-Step Shear Transform
Authors: Hee-Choul Kwon, Heeyong Kwon
Abstract:
Image rotation is one of main pre-processing steps for image processing or image pattern recognition. It is implemented with a rotation matrix multiplication. It requires a lot of floating point arithmetic operations and trigonometric calculations, so it takes a long time to execute. Therefore, there has been a need for a high speed image rotation algorithm without two major time-consuming operations. However, the rotated image has a drawback, i.e. distortions. We solved the problem using an augmented two-step shear transform. We compare the presented algorithm with the conventional rotation with images of various sizes. Experimental results show that the presented algorithm is superior to the conventional rotation one.Keywords: high-speed rotation operation, image rotation, transform matrix, image processing, pattern recognition
Procedia PDF Downloads 2772516 Sampled-Data Control for Fuel Cell Systems
Authors: H. Y. Jung, Ju H. Park, S. M. Lee
Abstract:
A sampled-data controller is presented for solid oxide fuel cell systems which is expressed by a sector bounded nonlinear model. The sector bounded nonlinear systems, which have a feedback connection with a linear dynamical system and nonlinearity satisfying certain sector type constraints. Also, the sampled-data control scheme is very useful since it is possible to handle digital controller and increasing research efforts have been devoted to sampled-data control systems with the development of modern high-speed computers. The proposed control law is obtained by solving a convex problem satisfying several linear matrix inequalities. Simulation results are given to show the effectiveness of the proposed design method.Keywords: sampled-data control, fuel cell, linear matrix inequalities, nonlinear control
Procedia PDF Downloads 5652515 Cement-Based Composites with Carbon Nanofillers for Smart Structural Health Monitoring Sensors
Authors: Antonella D'Alessandro, Filippo Ubertini, Annibale Luigi Materazzi
Abstract:
The progress of nanotechnology resulted in the development of new instruments in the field of civil engineering. In particular, the introduction of carbon nanofillers into construction materials can enhance their mechanical and electrical properties. In construction, concrete is among the most used materials. Due to the characteristics of its components and its structure, concrete is suitable for modification, at the nanometer level too. Moreover, to guarantee structural safety, it is desirable to achieve a widespread monitoring of structures. The ideal thing would be to realize structures able to identify their behavior modifications, states of incipient damage or conditions of possible risk for people. This paper presents a research work about novel cementitious composites with conductive carbon nanoinclusions able of monitoring their state of deformation, with particular attention to concrete. The self-sensing ability is achieved through the correlation between the variation of stress or strain and that of electrical resistance. Carbon nanofillers appear particularly suitable for such applications. Nanomodified concretes with different carbon nanofillers has been tested. The samples have been subjected to cyclic and dynamic loads. The experimental campaign shows the potentialities of this new type of sensors made of nanomodified concrete for diffuse Structural Health Monitoring.Keywords: carbon nanofillers, cementitious nanocomposites, smart sensors, structural health monitoring.
Procedia PDF Downloads 3352514 A Case Study for User Rating Prediction on Automobile Recommendation System Using Mapreduce
Authors: Jiao Sun, Li Pan, Shijun Liu
Abstract:
Recommender systems have been widely used in contemporary industry, and plenty of work has been done in this field to help users to identify items of interest. Collaborative Filtering (CF, for short) algorithm is an important technology in recommender systems. However, less work has been done in automobile recommendation system with the sharp increase of the amount of automobiles. What’s more, the computational speed is a major weakness for collaborative filtering technology. Therefore, using MapReduce framework to optimize the CF algorithm is a vital solution to this performance problem. In this paper, we present a recommendation of the users’ comment on industrial automobiles with various properties based on real world industrial datasets of user-automobile comment data collection, and provide recommendation for automobile providers and help them predict users’ comment on automobiles with new-coming property. Firstly, we solve the sparseness of matrix using previous construction of score matrix. Secondly, we solve the data normalization problem by removing dimensional effects from the raw data of automobiles, where different dimensions of automobile properties bring great error to the calculation of CF. Finally, we use the MapReduce framework to optimize the CF algorithm, and the computational speed has been improved times. UV decomposition used in this paper is an often used matrix factorization technology in CF algorithm, without calculating the interpolation weight of neighbors, which will be more convenient in industry.Keywords: collaborative filtering, recommendation, data normalization, mapreduce
Procedia PDF Downloads 2172513 Mixotrophic Growth as a Tool for Increasing Polyhydroxyalkanoates (PHA) Production in Cyanobacteria
Authors: Zuzana Sedrlova, Eva Slaninova, Ines Fritz, Christina Daffert, Stanislav Obruca
Abstract:
Cyanobacteria are ecologically extremely important phototrophic gram-negative bacteria capable of oxygenic photosynthesis. They synthesize many interesting metabolites such as glycogen, carotenoids, but the most interesting metabolites are polyhydroxyalkanoates (PHA). The main advantage of cyanobacteria is the fact they do not require costly organic substrate and, oppositely, cyanobacteria can fix CO₂. PHA serves primarily as a carbon and energy source and occurs in the form of intracellular granules in bacterial cells. It is possible, PHA helps cyanobacteria to survive stress conditions since increased PHA synthesis was observed during cultivation in stress conditions. PHA is microbial biopolymers that are biodegradable with similar properties as petrochemical synthetic plastics. Production of PHA by heterotrophic bacteria is expensive; for price reduction waste materials as input, materials are used. Positively, cyanobacteria principally do not require organic carbon substrate since they are capable of CO₂ fixation. In this work, we demonstrated that stress conditions lead to the highest obtained yields of PHA in cyanobacterial cultures. Two cyanobacterial cultures from genera Synechocystis were used in this work. Cultivations were performed either in Erlenmayer flask or in tube multicultivator. Multiple stressors were applied on cyanobacterial cultures, and stressors include PHA precursors. PHA precursors are chemical substances and some of them do not occur naturally in the environment. Cultivation with the same PHA precursors in the same concentration led to a 1,6x higher amount of PHA when a multicultivator was used. The highest amount of PHA reached 25 % of PHA in dry cyanobacterial biomass. Both strains are capable of co-polymer synthesis in the presence of their structural precursor. The composition of co-polymer differs in Synechocystis sp. PCC 6803 and Synechocystis salina CCALA 192. Synechocystis sp. PCC 6803 cultivated with γ-butyrolakton accumulated co-polymer of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) the composition of the copolymer was 56 % of 4HB and 44 % of 3HB. The total amount of PHA, as well as yield of biomass, was lower than in control due to the toxic properties of γ-butyrolakton. Funding: This study was partly funded by the project GA19- 19-29651L of the Czech Science Foundation (GACR) and partly funded by the Austrian Science Fund (FWF), a project I 4082-B25. This work was supported by Brno, Ph.D. Talent – Funded by the Brno City Municipality.Keywords: co-polymer, cyanobacteria, PHA, synechocystis
Procedia PDF Downloads 2022512 Control of Microbial Pollution Using Biodegradable Polymer
Authors: Mahmoud H. Abu Elella, Riham R. Mohamed, Magdy W. Sabaa
Abstract:
Introduction: Microbial pollution is global problem threatening the human health. It is resulted by pathogenic microorganisms such as Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and other pathogenic strains. They cause a dangerous effect on human health, so great efforts have been exerted to produce new and effective antimicrobial agents. Nowadays, natural polysaccharides, such as chitosan and its derivatives are used as antimicrobial agents. The aim of our work is to synthesize of a biodegradable polymer such as N-quaternized chitosan (NQC) then Characterization of NQC by using different analysis techniques such as Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM) and using it as an antibacterial agent against different pathogenic bacteria. Methods: Synthesis of NQC using dimethylsulphate. Results: FTIR technique exhibited absorption peaks of NQC, SEM images illustrated that surface of NQC was smooth and antibacterial results showed that NQC had a high antibacterial effect. Discussion: NQC was prepared and it was proved by FTIR technique and SEM images antibacterial results exhibited that NQC was an antibacterial agent.Keywords: antimicrobial agent, N-quaternized chitosan chloride, silver nanocomposites, sodium polyacrylate
Procedia PDF Downloads 2882511 Development of Column-Filters of Sulfur Limonene Polysulfide to Mercury Removal from Contaminated Effluents
Authors: Galo D. Soria, Jenny S. Casame, Eddy F. Pazmino
Abstract:
In Ecuador, mining operations have significantly impacted water sources. Artisanal mining extensively relies in mercury amalgamation. Mercury is a neurotoxic substance even at low concentrations. The objective of this investigation is to exploit Hg-removal capacity of sulfur-limonene polysulfide (SLP), which is a low-cost polymer, in order to prepare granular media (sand) coated with SLP to be used in laboratory scale column-filtration systems. Preliminary results achieved 85% removal of Hg⁺⁺ from synthetic effluents using 20-cm length and 5-cm diameter columns at 119m/day average pore water velocity. During elution of the column, the SLP-coated sand indicated that Hg⁺⁺ is permanently fixed to the collector surface, in contrast, uncoated sand showed reversible retention in Hg⁺⁺ in the solid phase. Injection of 50 pore volumes decreased Hg⁺⁺ removal to 46%. Ongoing work has been focused in optimizing the synthesis of SLP and the polymer content in the porous media coating process to improve Hg⁺⁺ removal and extend the lifetime of the column-filter.Keywords: column-filter, mercury, mining, polysulfide, water treatment
Procedia PDF Downloads 1492510 Influence of Nitrogen Doping on the Catalytic Activity of Ni-Incorporated Carbon Nanofibers for Alkaline Direct Methanol Fuel Cells
Authors: Mohamed H. El-Newehy, Badr M. Thamer, Nasser A. M. Barakat, Mohammad A.Abdelkareem, Salem S. Al-Deyab, Hak Y. Kim
Abstract:
In this study, the influence of nitrogen doping on the electrocatalytic activity of carbon nanofibers with nickel nanoparticles toward methanol oxidation is introduced. The modified carbon nanofibers have been synthesized from calcination of electrospun nanofiber mats composed of nickel acetate tetrahydrate, poly(vinyl alcohol) and urea in argon atmosphere at 750oC. The utilized physicochemical characterizations indicated that the proposed strategy leads to form carbon nanofibers having nickel nanoparticles and doped by nitrogen. Moreover, due to the high-applied voltage during the electrospinning process, the utilized urea chemically bonds with the polymer matrix, which leads to form nitrogen-doped CNFs after the calcination process. Investigation of the electrocatalytic activity indicated that nitrogen doping NiCNFs strongly enhances the oxidation process of methanol as the current density increases from 52.5 to 198.5 mA/cm2 when the urea content in the original electrospun solution was 4 wt% urea. Moreover, the nanofibrous morphology exhibits distinct impact on the electrocatalytic activity. Also, nitrogen-doping enhanced the stability of the introduced Ni-based electrocatalyst. Overall, the present study introduces effective and simple strategy to modify the electrocatalytic activity of the nickel-based materials.Keywords: electrospinning, methanol electrooxidation, fuel cells, nitrogen-doping, nickel
Procedia PDF Downloads 4352509 Surfactant Free Synthesis of Magnetite/Hydroxyapatite Composites for Hyperthermia Treatment
Authors: M. Sneha, N. Meenakshi Sundaram
Abstract:
In recent times, magnetic hyperthermia is used for cancer treatment as a tool for active targeting of delivering drugs to the targeted site. It has a potential advantage over other heat treatment because there is no systemic buildup in organs and large doses are possible. The aim of this study is to develop a suitable magnetic biomaterial that can destroy the cancer cells as well as induce bone regeneration. In this work, the composite material was synthesized in two-steps. First, porous iron oxide nano needles were synthesized by hydrothermal process. Second, the hydroxyapatite, were synthesized from natural calcium (i.e., egg shell) and inorganic phosphorous source using wet chemical method. The crystalline nature is confirmed by powder X-ray diffraction analysis (XRD). Thermal analysis and the surface area of the material is studied by Thermo Gravimetric Analysis (TGA), Brunauer-Emmett and Teller (BET) technique. Scanning electron microscope (SEM) images show that the particles have nanoneedle-like morphology. The magnetic property is studied by vibrating sample magnetometer (VSM) technique which confirms the superparamagnetic behavior. This paper presents a simple and easy method for synthesis of magnetite/hydroxyapatite composites materials.Keywords: iron oxide nano needles, hydroxyapatite, superparamagnetic, hyperthermia
Procedia PDF Downloads 6412508 Chromatographic Preparation and Performance on Zinc Ion Imprinted Monolithic Column and Its Adsorption Property
Authors: X. Han, S. Duan, C. Liu, C. Zhou, W. Zhu, L. Kong
Abstract:
The ionic imprinting technique refers to the three-dimensional rigid structure with the fixed pore sizes, which was formed by the binding interactions of ions and functional monomers and used ions as the template, it has a high level of recognition to the ionic template. The preparation of monolithic column by the in-situ polymerization need to put the compound of template, functional monomers, cross-linking agent and initiating agent into the solution, dissolve it and inject to the column tube, and then the compound will have a polymerization reaction at a certain temperature, after the synthetic reaction, we washed out the unread template and solution. The monolithic columns are easy to prepare, low consumption and cost-effective with fast mass transfer, besides, they have many chemical functions. But the monolithic columns have some problems in the practical application, such as low-efficiency, quantitative analysis cannot be performed accurately because of the peak shape is wide and has tailing phenomena; the choice of polymerization systems is limited and the lack of theoretical foundations. Thus the optimization of components and preparation methods is an important research direction. During the preparation of ionic imprinted monolithic columns, pore-forming agent can make the polymer generate the porous structure, which can influence the physical properties of polymer, what’ s more, it can directly decide the stability and selectivity of polymerization reaction. The compounds generated in the pre-polymerization reaction could directly decide the identification and screening capabilities of imprinted polymer; thus the choice of pore-forming agent is quite critical in the preparation of imprinted monolithic columns. This article mainly focuses on the research that when using different pore-forming agents, the impact of zinc ion imprinted monolithic column on the enrichment performance of zinc ion.Keywords: high performance liquid chromatography (HPLC), ionic imprinting, monolithic column, pore-forming agent
Procedia PDF Downloads 2142507 Synthesis of Cardanol Oil Building Blocks for Polymer Synthesis
Authors: Sylvain Caillol
Abstract:
Uncertainty in terms of price and availability of petroleum, in addition to global political and institutional tendencies toward the principles of sustainable development, urge chemical industry to a sustainable chemistry and particularly the use of renewable resources in order to synthesize biobased chemicals and products. We propose a platform approach for the synthesis of various building blocks from cardanol in one or two-steps syntheses. Cardanol, which is a natural phenol, is issued from Cashew Nutshell Liquid (CNSL), a non-edible renewable resource, co-produced from cashew industry in large commercial volumes. Cardanol is particularly interesting to replace fossil aromatic groups in polymers and materials. Our team studied various routes for the synthesis of cardanol-derived biobased building blocks used after that in polymer syntheses. For example, we used phenolation to dimerize/oligomerize cardanol to propose increase functionality of cardanol. Thio-ene was used to synthesize new reactive amines. Epoxidation and (meth)acrylation were also used to insert oxirane or (meth)acrylate groups in order to synthesize polymers and materials.Keywords: cardanol, cashew nutshell liquid, epoxy, vinyl ester, latex, emulsion
Procedia PDF Downloads 1762506 Synergistic Behavior of Polymer Mixtures in Designing Hydrogels for Biomedical Applications
Authors: Maria Bercea, Monica Diana Olteanu
Abstract:
Investigation of polymer systems able to change inside of the body into networks represent an attractive approach, especially when there is a minimally invasive and patient friendly administration. Pharmaceutical formulations based on Pluronic F127 [poly (oxyethylene) (PEO) blocks (70%) and poly(oxypropylene) (PPO) blocks (30%)] present an excellent potential as drug delivery systems. The use of Pluronic F127 alone as gel-forming solution is limited by some characteristics, such as poor mechanical properties, short residence time, high permeability, etc. Investigation of the interactions between the natural and synthetic polymers and surfactants in solution is a subject of great interest from both scientific and practical point of view. As for example, formulations based on Pluronics and chitosan could be used to obtain dual phase transition hydrogels responsive to temperature and pH changes. In this study, different materials were prepared by using poly(vinyl alcohol), chitosan solutions mixed with aqueous solutions of Pluronic F127. The rheological properties of different formulations were investigated in temperature sweep experiments as well as at a constant temperature of 37oC for exploring in-situ gel formation in the human body conditions. In addition, some viscometric investigations were carried out in order to understand the interactions which determine the complex behaviour of these systems. Correlation between the thermodynamic and rheological parameters and phase separation phenomena observed for the investigated systems allowed the dissemination the constitutive response of polymeric materials at different external stimuli, such as temperature and pH. The rheological investigation demonstrated that the viscoelastic moduli of the hydrogels can be tuned depending on concentration of different components as well as pH and temperature conditions and cumulative contributions can be obtained.Keywords: hydrogel, polymer mixture, stimuli responsive, biomedical applications
Procedia PDF Downloads 3492505 Operational Challenges of Marine Fiber Reinforced Polymer Composite Structures Coupled with Piezoelectric Transducers
Authors: H. Ucar, U. Aridogan
Abstract:
Composite structures become intriguing for the design of aerospace, automotive and marine applications due to weight reduction, corrosion resistance and radar signature reduction demands and requirements. Studies on piezoelectric ceramic transducers (PZT) for diagnostics and health monitoring have gained attention for their sensing capabilities, however PZT structures are prone to fail in case of heavy operational loads. In this paper, we develop a piezo-based Glass Fiber Reinforced Polymer (GFRP) composite finite element (FE) model, validate with experimental setup, and identify the applicability and limitations of PZTs for a marine application. A case study is conducted to assess the piezo-based sensing capabilities in a representative marine composite structure. A FE model of the composite structure combined with PZT patches is developed, afterwards the response and functionality are investigated according to the sea conditions. Results of this study clearly indicate the blockers and critical aspects towards industrialization and wide-range use of PZTs for marine composite applications.Keywords: FRP composite, operational challenges, piezoelectric transducers, FE modeling
Procedia PDF Downloads 1742504 Experimental Investigation of Low Strength Concrete (LSC) Beams Using Carbon Fiber Reinforce Polymer (CFRP) Wrap
Authors: Furqan Farooq, Arslan Akbar, Sana Gul
Abstract:
Inadequate design of seismic structures and use of Low Strength Concrete (LSC) remains the major aspect of structure failure. Parametric investigation (LSC) beams based on experimental work using externally applied Carbon Fiber Reinforce Polymer (CFRP) warp in flexural behavior is studied. The ambition is to know the behavior of beams under loading condition, and its strengthening enhancement after inducing crack is studied, Moreover comparison of results using abacus software is studied. Results show significant enhancement in load carrying capacity, experimental work is compared with abacus software. The research is based on the conclusion that various existing structure but inadequacy in seismic design could increase the load carrying capacity by applying CFRP techniques, which not only strengthened but also provide them to resist even larger potential earthquake by improving its strength as well as ductility.Keywords: seismic design, carbon fiber, strengthening, ductility
Procedia PDF Downloads 2022503 Thermally Conductive Polymer Nanocomposites Based on Graphene-Related Materials
Authors: Alberto Fina, Samuele Colonna, Maria del Mar Bernal, Orietta Monticelli, Mauro Tortello, Renato Gonnelli, Julio Gomez, Chiara Novara, Guido Saracco
Abstract:
Thermally conductive polymer nanocomposites are of high interest for several applications including low-temperature heat recovery, heat exchangers in a corrosive environment and heat management in electronics and flexible electronics. In this paper, the preparation of thermally conductive nanocomposites exploiting graphene-related materials is addressed, along with their thermal characterization. In particular, correlations between 1- chemical and physical features of the nanoflakes and 2- processing conditions with the heat conduction properties of nanocomposites is studied. Polymers are heat insulators; therefore, the inclusion of conductive particles is the typical solution to obtain a sufficient thermal conductivity. In addition to traditional microparticles such as graphite and ceramics, several nanoparticles have been proposed, including carbon nanotubes and graphene, for the use in polymer nanocomposites. Indeed, thermal conductivities for both carbon nanotubes and graphenes were reported in the wide range of about 1500 to 6000 W/mK, despite such property may decrease dramatically as a function of the size, number of layers, the density of topological defects, re-hybridization defects as well as on the presence of impurities. Different synthetic techniques have been developed, including mechanical cleavage of graphite, epitaxial growth on SiC, chemical vapor deposition, and liquid phase exfoliation. However, the industrial scale-up of graphene, defined as an individual, single-atom-thick sheet of hexagonally arranged sp2-bonded carbons still remains very challenging. For large scale bulk applications in polymer nanocomposites, some graphene-related materials such as multilayer graphenes (MLG), reduced graphene oxide (rGO) or graphite nanoplatelets (GNP) are currently the most interesting graphene-based materials. In this paper, different types of graphene-related materials were characterized for their chemical/physical as well as for thermal properties of individual flakes. Two selected rGOs were annealed at 1700°C in vacuum for 1 h to reduce defectiveness of the carbon structure. Thermal conductivity increase of individual GNP with annealing was assessed via scanning thermal microscopy. Graphene nano papers were prepared from both conventional RGO and annealed RGO flakes. Characterization of the nanopapers evidenced a five-fold increase in the thermal diffusivity on the nano paper plane for annealed nanoflakes, compared to pristine ones, demonstrating the importance of structural defectiveness reduction to maximize the heat dissipation performance. Both pristine and annealed RGO were used to prepare polymer nanocomposites, by melt reactive extrusion. Thermal conductivity showed two- to three-fold increase in the thermal conductivity of the nanocomposite was observed for high temperature treated RGO compared to untreated RGO, evidencing the importance of using low defectivity nanoflakes. Furthermore, the study of different processing paremeters (time, temperature, shear rate) during the preparation of poly (butylene terephthalate) nanocomposites evidenced a clear correlation with the dispersion and fragmentation of the GNP nanoflakes; which in turn affected the thermal conductivity performance. Thermal conductivity of about 1.7 W/mK, i.e. one order of magnitude higher than for pristine polymer, was obtained with 10%wt of annealed GNPs, which is in line with state of the art nanocomposites prepared by more complex and less upscalable in situ polymerization processes.Keywords: graphene, graphene-related materials, scanning thermal microscopy, thermally conductive polymer nanocomposites
Procedia PDF Downloads 268