Search results for: penalized logistic regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3431

Search results for: penalized logistic regression

2111 Dispersion Rate of Spilled Oil in Water Column under Non-Breaking Water Waves

Authors: Hanifeh Imanian, Morteza Kolahdoozan

Abstract:

The purpose of this study is to present a mathematical phrase for calculating the dispersion rate of spilled oil in water column under non-breaking waves. In this regard, a multiphase numerical model is applied for which waves and oil phase were computed concurrently, and accuracy of its hydraulic calculations have been proven. More than 200 various scenarios of oil spilling in wave waters were simulated using the multiphase numerical model and its outcome were collected in a database. The recorded results were investigated to identify the major parameters affected vertical oil dispersion and finally 6 parameters were identified as main independent factors. Furthermore, some statistical tests were conducted to identify any relationship between the dependent variable (dispersed oil mass in the water column) and independent variables (water wave specifications containing height, length and wave period and spilled oil characteristics including density, viscosity and spilled oil mass). Finally, a mathematical-statistical relationship is proposed to predict dispersed oil in marine waters. To verify the proposed relationship, a laboratory example available in the literature was selected. Oil mass rate penetrated in water body computed by statistical regression was in accordance with experimental data was predicted. On this occasion, it was necessary to verify the proposed mathematical phrase. In a selected laboratory case available in the literature, mass oil rate penetrated in water body computed by suggested regression. Results showed good agreement with experimental data. The validated mathematical-statistical phrase is a useful tool for oil dispersion prediction in oil spill events in marine areas.

Keywords: dispersion, marine environment, mathematical-statistical relationship, oil spill

Procedia PDF Downloads 234
2110 Use of Real Time Ultrasound for the Prediction of Carcass Composition in Serrana Goats

Authors: Antonio Monteiro, Jorge Azevedo, Severiano Silva, Alfredo Teixeira

Abstract:

The objective of this study was to compare the carcass and in vivo real-time ultrasound measurements (RTU) and their capacity to predict the composition of Serrana goats up to 40% of maturity. Twenty one females (11.1 ± 3.97 kg) and Twenty one males (15.6 ± 5.38 kg) were utilized to made in vivo measurements with a 5 MHz probe (ALOKA 500V scanner) at the 9th-10th, 10th-11th thoracic vertebrae (uT910 and uT1011, respectively), at the 1st- 2nd, 3rd-4th, and 4th-5th lumbar vertebrae (uL12, ul34 and uL45, respectively) and also at the 3rd-4th sternebrae (EEST). It was recorded the images of RTU measurements of Longissimus thoracis et lumborum muscle (LTL) depth (EM), width (LM), perimeter (PM), area (AM) and subcutaneous fat thickness (SFD) above the LTL, as well as the depth of tissues of the sternum (EEST) between the 3rd-4th sternebrae. All RTU images were analyzed using the ImageJ software. After slaughter, the carcasses were stored at 4 ºC for 24 h. After this period the carcasses were divided and the left half was entirely dissected into muscle, dissected fat (subcutaneous fat plus intermuscular fat) and bone. Prior to the dissection measurements equivalent to those obtained in vivo with RTU were recorded. Using the Statistica 5, correlation and regression analyses were performed. The prediction of carcass composition was achieved by stepwise regression procedure, with live weight and RTU measurements with and without transformation of variables to the same dimension. The RTU and carcass measurements, except for SFD measurements, showed high correlation (r > 0.60, P < 0.001). The RTU measurements and the live weight, showed ability to predict carcass composition on muscle (R2 = 0.99, P < 0.001), subcutaneous fat (R2 = 0.41, P < 0.001), intermuscular fat (R2 = 0.84, P < 0.001), dissected fat (R2 = 0.71, P < 0.001) and bone (R2 = 0.94, P < 0.001). The transformation of variables allowed a slight increase of precision, but with the increase in the number of variables, with the exception of subcutaneous fat prediction. In vivo measurements by RTU can be applied to predict kid goat carcass composition, from 5 measurements of RTU and the live weight.

Keywords: carcass, goats, real time, ultrasound

Procedia PDF Downloads 261
2109 Effects of Crisis-Induced Emotions on in-Crisis Protective Behavior and Post-Crisis Perception: An Analysis of Survey Data for the 2015 Middle East Respiratory Syndrome in South Korea

Authors: Myoungsoon You, Heejung Son

Abstract:

Background: In the current study, we investigated the effects of emotions induced by an infectious disease outbreak on the various protective behaviors taken during the crisis and on the perception after the crisis. The investigation was based on two psychological theories of appraisal tendency and action tendency. Methods: A total of 900 participants in South Korea who experienced the 2015 Middle East Respiratory Syndrome outbreak were sampled by a professional survey agency. To assess the influence of the emotions fear and anger, a regression approach was used. The effect of emotions on various protective behaviors and perceptions was observed using a hierarchical regression method. Results: Fear and anger induced by the infectious disease outbreak were both associated with increased protective behaviors during the crisis. However, the differences between the emotions were observed. While protective behaviors with avoidance tendency (adherence to recommendations, self-mitigation), were raised by both fear and anger, protective behaviors with approach tendency (information-seeking) were increased by anger, but not fear. Regarding the effect of emotion on the risk perception after the crisis, only fear was associated with a higher level of risk perception. Conclusions: This study confirmed the role of emotions in crisis protective behaviors and post-crisis perceptions regarding an infectious disease outbreak. These findings could enhance understanding of the public’s protective behaviors during infectious disease outbreaks and afterward risk perception corresponding to emotions. The results also suggested strategies for communicating with the public that takes into account emotions that are prominently induced by crises associated with disease outbreaks.

Keywords: crisis communication, emotion, infectious disease outbreak, protective behavior, risk perception

Procedia PDF Downloads 277
2108 Economics of Milled Rice Marketing in Gombe Metropolis, Gombe State, Nigeria

Authors: Suleh Yusufu Godi, Ado Makama Adamu

Abstract:

Marketing involves all the legal, physical, and economic services which are necessary in moving products from producer to consumers. The more efficient the marketing functions are performed the better the marketing system for the farmers, marketing agents, and the society at large. Rice marketing ensures the flow of product from producers to consumers in the form, time and place of need. Therefore, this study examined profitability of milled rice marketing in Gombe metropolis, Gombe State. Data were collected using structured questionnaires from ninety randomly selected rice marketers in Gombe metropolis. The data were analyzed using descriptive statistics, farm budget technique and regression analysis. The study revealed the total rice marketing cost incurred by rice marketers to be N6, 610,214.70. This gave an average of N73, 446.83 per marketer and N37.30 per Kilogram of rice. The Gross Income for rice marketers in Gombe metropolis was N15, 064,600.00. This value gave an average of N167, 384.44 per rice marketer or N85.00 per kilogram of rice. The study also revealed net income for all rice marketers to be N8, 454,385.30. This gave an average of N93, 937.61 per rice marketer or N47.70 per Kilogram of rice. The study further revealed a marketing margin, marketing efficiency and return per naira invested on rice marketing to be 39.30%, 150.16% and N0.56, respectively. The result of regression analysis shows that age, sex and cost of transportation are positive and significantly affect marketing margin of rice marketers in Gombe Metropolis. However, the main constraints to rice marketing in Gombe metropolis include inadequate electricity, capital, high transportation cost, instability of prices and low patronage among others. The study recommends provision of adequate electrical power supply in the State especially the State capital and also encouraging rice marketers in Gombe metropolis to form cooperative societies so as to have easy access to credit facilities especially from the formal sources.

Keywords: rice marketers, milled rice, cost and return, marketing margin, efficiency, profitability

Procedia PDF Downloads 81
2107 The Relationships among Learning Emotion, Major Satisfaction, Learning Flow, and Academic Achievement in Medical School Students

Authors: S. J. Yune, S. Y. Lee, S. J. Im, B. S. Kam, S. Y. Baek

Abstract:

This study explored whether academic emotion, major satisfaction, and learning flow are associated with academic achievement in medical school. We know that emotion and affective factors are important factors in students' learning and performance. Emotion has taken the stage in much of contemporary educational psychology literature, no longer relegated to secondary status behind traditionally studied cognitive constructs. Medical school students (n=164) completed academic emotion, major satisfaction, and learning flow online survey. Academic performance was operationalized as students' average grade on two semester exams. For data analysis, correlation analysis, multiple regression analysis, hierarchical multiple regression analyses and ANOVA were conducted. The results largely confirmed the hypothesized relations among academic emotion, major satisfaction, learning flow and academic achievement. Positive academic emotion had a correlation with academic achievement (β=.191). Positive emotion had 8.5% explanatory power for academic achievement. Especially, sense of accomplishment had a significant impact on learning performance (β=.265). On the other hand, negative emotion, major satisfaction, and learning flow did not affect academic performance. Also, there were differences in sense of great (F=5.446, p=.001) and interest (F=2.78, p=.043) among positive emotion, boredom (F=3.55, p=.016), anger (F=4.346, p=.006), and petulance (F=3.779, p=.012) among negative emotion by grade. This study suggested that medical students' positive emotion was an important contributor to their academic achievement. At the same time, it is important to consider that some negative emotions can act to increase one’s motivation. Of particular importance is the notion that instructors can and should create learning environment that foster positive emotion for students. In doing so, instructors improve their chances of positively impacting students’ achievement emotions, as well as their subsequent motivation, learning, and performance. This result had an implication for medical educators striving to understand the personal emotional factors that influence learning and performance in medical training.

Keywords: academic achievement, learning emotion, learning flow, major satisfaction

Procedia PDF Downloads 274
2106 Kenaf MDF Panels with Soy Based Adhesive. The Influence of Preparation Parameters on Physciomechanical Properties

Authors: Imtiaz Ali, Krishnan Jayaraman, Debes Bhattacharyya

Abstract:

Soybean concentrate is abundant material and renewable product that is recently been explored as an alternative to conventional formaldehyde based resins in wood based products. The main goal of this study is to evaluate the technical feasibility of manufacturing environment friendly MDF panels from renewable resources. The panels are made by using kenaf bast fibers (KB) as wood substitute and soy based adhesive as bonding material. Second order response surface regression models are used to understand the effects and interactions of resin content (RC) and pressing time (PT) on the mechanical and water soaking properties of kenaf panels. The mechanical and water soaking properties are significantly improved as the RC increased and reached at the highest level at maximum resin loading (12%). The effect of pressing time is significant in the first phase when the pressing time increased from 4 to 6 min; however the effect was not as significant when pressing time further increased to 8 min. The second order regression equations further confirm that the variation in process parameters has strong relationship with the physciomechanical properties. The MDF panels the minimum requirements of internal bond strength, modulus of rupture and modulus of elasticity as recommended by US wood MDF standard specifications for G110, G120, G130 and G140 grade MDF panels. However, the thickness swelling results are considerably poorer than the recommended values of general purpose standard requirements. This deficiency can be counterbalanced by the advantage of being formaldehyde free panels made from renewable sources and by making them suitable alternative for less humid environment applications.

Keywords: kenaf, Medium density fibreboard, soy adhesive, mechanical properties, water soaking properties

Procedia PDF Downloads 378
2105 The Inherent Flaw in the NBA Playoff Structure

Authors: Larry Turkish

Abstract:

Introduction: The NBA is an example of mediocrity and this will be evident in the following paper. The study examines and evaluates the characteristics of the NBA champions. As divisions and playoff teams increase, there is an increase in the probability that the champion originates from the mediocre category. Since it’s inception in 1947, the league has been mediocre and continues to this day. Why does a professional league allow any team with a less than 50% winning percentage into the playoffs? As long as the finances flow into the league, owners will not change the current algorithm. The objective of this paper is to determine if the regular season has meaning in finding an NBA champion. Statistical Analysis: The data originates from the NBA website. The following variables are part of the statistical analysis: Rank, the rank of a team relative to other teams in the league based on the regular season win-loss record; Winning Percentage of a team based on the regular season; Divisions, the number of divisions within the league and Playoff Teams, the number of playoff teams relative to a particular season. The following statistical applications are applied to the data: Pearson Product-Moment Correlation, Analysis of Variance, Factor and Regression analysis. Conclusion: The results indicate that the divisional structure and number of playoff teams results in a negative effect on the winning percentage of playoff teams. It also prevents teams with higher winning percentages from accessing the playoffs. Recommendations: 1. Teams that have a winning percentage greater than 1 standard deviation from the mean from the regular season will have access to playoffs. (Eliminates mediocre teams.) 2. Eliminate Divisions (Eliminates weaker teams from access to playoffs.) 3. Eliminate Conferences (Eliminates weaker teams from access to the playoffs.) 4. Have a balanced regular season schedule, (Reduces the number of regular season games, creates equilibrium, reduces bias) that will reduce the need for load management.

Keywords: alignment, mediocrity, regression, z-score

Procedia PDF Downloads 130
2104 Trends in Blood Pressure Control and Associated Risk Factors Among US Adults with Hypertension from 2013 to 2020: Insights from NHANES Data

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Controlling blood pressure is critical to reducing the risk of cardiovascular disease. However, BP control rates (systolic BP < 140 mm Hg and diastolic BP < 90 mm Hg) have declined since 2013, warranting further analysis to identify contributing factors and potential interventions. This study investigates the factors associated with the decline in blood pressure (BP) control among U.S. adults with hypertension over the past decade. Data from the U.S. National Health and Nutrition Examination Survey (NHANES) were used to assess BP control trends between 2013 and 2020. The analysis included 18,927 U.S. adults with hypertension aged 18 years and older who completed study interviews and examinations. The dataset, obtained from the cardioStatsUSA and RNHANES R packages, was merged based on survey IDs. Key variables analyzed included demographic factors, lifestyle behaviors, hypertension status, BMI, comorbidities, antihypertensive medication use, and cardiovascular disease history. The prevalence of BP control declined from 78.0% in 2013-2014 to 71.6% in 2017-2020. Non-Hispanic Whites had the highest BP control prevalence (33.6% in 2013-2014), but this declined to 26.5% by 2017-2020. In contrast, BP control among Non-Hispanic Blacks increased slightly. Younger adults (aged 18-44) exhibited better BP control, but control rates declined over time. Obesity prevalence increased, contributing to poorer BP control. Antihypertensive medication use rose from 26.1% to 29.2% across the study period. Lifestyle behaviors, such as smoking and diet, also affected BP control, with nonsmokers and those with better diets showing higher control rates. Key findings indicate significant disparities in blood pressure control across racial/ethnic groups. Non-Hispanic Black participants had consistently higher odds (OR ranging from 1.84 to 2.33) of poor blood pressure control compared to Non-Hispanic Whites, while odds among Non-Hispanic Asians varied by cycle. Younger age groups (18-44 and 45-64) showed significantly lower odds of poor blood pressure control compared to those aged 75+, highlighting better control in younger populations. Men had consistently higher odds of poor control compared to women, though this disparity slightly decreased in 2017-2020. Medical comorbidities such as diabetes and chronic kidney disease were associated with significantly higher odds of poor blood pressure control across all cycles. Participants with chronic kidney disease had particularly elevated odds (OR=5.54 in 2015-2016), underscoring the challenge of managing hypertension in these populations. Antihypertensive medication use was also linked with higher odds of poor control, suggesting potential difficulties in achieving target blood pressure despite treatment. Lifestyle factors such as alcohol consumption and physical activity showed no consistent association with blood pressure control. However, dietary quality appeared protective, with those reporting an excellent diet showing lower odds (OR=0.64) of poor control in the overall sample. Increased BMI was associated with higher odds of poor blood pressure control, particularly in the 30-35 and 35+ BMI categories during 2015-2016. The study highlights a significant decline in BP control among U.S. adults with hypertension, particularly among certain demographic groups and those with increasing obesity rates. Lifestyle behaviors, antihypertensive medication use, and socioeconomic factors all played a role in these trends.

Keywords: diabetes, blood pressure, obesity, logistic regression, odd ratio

Procedia PDF Downloads 16
2103 The Relation between Coping Strategies with Stress and Mental Health Situation in Flying Addicted Family of Self Introducer and Private

Authors: Farnoush Haghanipour

Abstract:

Recent research studies relation between coping strategies with stress and mental health situation in flying addicted family of self-introducer and private, Units of Guilan province. For this purpose 251 family (parent, spouse), that referred to private and self-introducer centers to break out of drug are selected in random sampling form. Research method was cross sectional-descriptive and purpose of research was fixing of between kinds of coping strategies with stress and mental health condition with attention to demographic variables. Therefore to collection of information, coping strategies questionnaire (CSQ) and mental health questionnaire (GHQ) was used and finally data analyzed by descriptive statistical methods (average, standard deviation) and inferential statistical correlation coefficient and regression. Study of correlation coefficient between mental healths with problem focused emotional focused and detachment strategies in level more than %99 is confirmed. Also mental health with avoidant focused hasn't correlation in other words relation is between mental health with problem focused strategies (r= 0/34) and emotional focused with mental health (r=0.52) and detachment with mental health (r= 0.18) in meaningful level 0.05. And also relation is between emotional focused strategies and mental health (r= 0.034) that is meaningless in Alpha 0.05. Also relation between problem processed coping strategies and mental health situation with attention to demographic variable is meaningful and relation level verified in confidence level more than 0.99. And result of anticipation equation regression statistical test has most a have in problem focused coping strategy, mental health, but relation of the avoidant emotional, detachment strategy with mental health was meaningless with attention to demographic variables.

Keywords: stress, coping strategy with stress, mental health, self introducer and private

Procedia PDF Downloads 311
2102 Business Survival During Economic Crises: A Comparison Between Family and Non-family Firms

Authors: A. Hayrapetyan, A. Simon, P. Marques, G. Renart

Abstract:

Business survival is a question of greatest interest for any economy. Firm characteristics that can explain or predict performance and, ultimately, business survival become of the greatest significance, as the sustainable longevity of any business can mean health for the future of the country. Family Firms (FFs) are one of the most ubiquitous forms of business worldwide, as more than half of European firms (60%) are considered as family firms. Therefore, the inherent characteristics of FFs are one of the possible explanatory variables for firm survival because FFs have strategic goals that differentiate them from other types of businesses. Although there is literature on the performance of FFs across generations, there are fewer studies on the factors that impact the survival of family and non-family FFs, as there is a lack of data on failed firms. To address this gap, this paper explores the differential survival of family firms versus non-family firms with a representative sample of companies of the region of Catalonia (Northeast of Spain) that were adhoc classified as family or nonfamily firms, as well as classified as failed or surviving, since no census data for family firms or for failed firms is available in Spain. By using the COX regression model on a representative sample of 629 family and non-family firms, this study investigates to what extent financial ratios, such as Liquidity, Solvency Rate can impact business survival, taking into consideration the socioemotional side of family firms, as well as revealing the differences between family and non-family firms. The findings show that the liquidity rate is significant for non-family firm survival, whereas not for family firms. On the other hand, FFs can benefit while having a higher solvency rate. Ultimately, this paper discovers that FFs increase their chances of survival when they are small, as the growth in size starts negatively impacting the socioemotional objectives of the firm. This study proves the existence of significant differences between family and non-family firms’ survival during economic crises, suggesting that the prioritization of emotional wealth creates distinct conditions for both types of firms.

Keywords: COX regression, economy crises, family firm, non-family firm, survival

Procedia PDF Downloads 72
2101 Socio-Economic Determinants of Physical Activity of Non-Manual Workers, Including the Early Senior Group, from the City of Wroclaw in Poland

Authors: Daniel Puciato, Piotr Oleśniewicz, Julita Markiewicz-Patkowska, Krzysztof Widawski, Michał Rozpara, Władysław Mynarski, Agnieszka Gawlik, Małgorzata Dębska, Soňa Jandová

Abstract:

Physical activity as a part of people’s everyday life reduces the risk of many diseases, including those induced by lifestyle, e.g. obesity, type 2 diabetes, osteoporosis, coronary heart disease, degenerative arthritis, and certain types of cancer. That refers particularly to professionally active people, including the early senior group working on non-manual positions. The aim of the study is to evaluate the relationship between physical activity and the socio-economic status of non-manual workers from Wroclaw—one of the biggest cities in Poland, a model setting for such investigations in this part of Europe. The crucial problem in the research is to find out the percentage of respondents who meet the health-related recommendations of the World Health Organization (WHO) concerning the volume, frequency, and intensity of physical activity, as well as to establish if the most important socio-economic factors, such as gender, age, education, marital status, per capita income, savings and debt, determine the compliance with the WHO physical activity recommendations. During the research, conducted in 2013, 1,170 people (611 women and 559 men) aged 21–60 years were examined. A diagnostic poll method was applied to collect the data. Physical activity was measured with the use of the short form of the International Physical Activity Questionnaire with extended socio-demographic questions, i.e. concerning gender, age, education, marital status, income, savings or debts. To evaluate the relationship between physical activity and selected socio-economic factors, logistic regression was used (odds ratio statistics). Statistical inference was conducted on the adopted ex ante probability level of p<0.05. The majority of respondents met the volume of physical effort recommended for health benefits. It was particularly noticeable in the case of the examined men. The probability of compliance with the WHO physical activity recommendations was highest for workers aged 21–30 years with secondary or higher education who were single, received highest incomes and had savings. The results indicate the relations between physical activity and socio-economic status in the examined women and men. People with lower socio-economic status (e.g. manual workers) are physically active primarily at work, whereas those better educated and wealthier implement physical effort primarily in their leisure time. Among the investigated subjects, the youngest group of non-manual workers have the best chances to meet the WHO standards of physical activity. The study also confirms that secondary education has a positive effect on the public awareness on the role of physical activity in human life. In general, the analysis of the research indicates that there is a relationship between physical activity and some socio-economic factors of the respondents, such as gender, age, education, marital status, income per capita, and the possession of savings. Although the obtained results cannot be applied for the general population, they show some important trends that will be verified in subsequent studies conducted by the authors of the paper.

Keywords: IPAQ, nonmanual workers, physical activity, socioeconomic factors, WHO

Procedia PDF Downloads 536
2100 Fiqh Challenge in Production of Halal Pharmaceutical Products

Authors: Saadan Man, Razidah Othmanjaludin, Madiha Baharuddin

Abstract:

Nowadays, the pharmaceutical products are produced through the mixing of active and complex ingredient, naturally or synthetically; and involve extensive use of prohibited animal products. This article studies the challenges faced from fiqh perspective in the production of halal pharmaceutical products which frequently contain impure elements or prohibited animal derivatives according to Islamic law. This study is qualitative which adopts library research as well as field research by conducting series of interviews with the several related parties. The gathered data is analyzed from Sharia perspective by using some instruments especially the principle of Maqasid of Sharia. This study shows that the halal status of pharmaceutical products depends on the three basic elements: the sources of the basic ingredient; the processes involved in three phases of production, i.e., before, during and after; and the possible effects of the products. Various fiqh challenges need to be traversed in producing halal pharmaceutical products including the sources of the ingredients, the logistic process, the tools used, and the procedures of productions. Thus, the whole supply chain of production of pharmaceutical products must be well managed in accordance to the halal standard.

Keywords: fiqh, halal pharmaceutical, pharmaceutical products, Malaysia

Procedia PDF Downloads 194
2099 Analysing the Interactive Effects of Factors Influencing Sand Production on Drawdown Time in High Viscosity Reservoirs

Authors: Gerald Gwamba, Bo Zhou, Yajun Song, Dong Changyin

Abstract:

The challenges that sand production presents to the oil and gas industry, particularly while working in poorly consolidated reservoirs, cannot be overstated. From restricting production to blocking production tubing, sand production increases the costs associated with production as it elevates the cost of servicing production equipment over time. Production in reservoirs that present with high viscosities, flow rate, cementation, clay content as well as fine sand contents is even more complex and challenging. As opposed to the one-factor at a-time testing, investigating the interactive effects arising from a combination of several factors offers increased reliability of results as well as representation of actual field conditions. It is thus paramount to investigate the conditions leading to the onset of sanding during production to ensure the future sustainability of hydrocarbon production operations under viscous conditions. We adopt the Design of Experiments (DOE) to analyse, using Taguchi factorial designs, the most significant interactive effects of sanding. We propose an optimized regression model to predict the drawdown time at sand production. The results obtained underscore that reservoirs characterized by varying (high and low) levels of viscosity, flow rate, cementation, clay, and fine sand content have a resulting impact on sand production. The only significant interactive effect recorded arises from the interaction between BD (fine sand content and flow rate), while the main effects included fluid viscosity and cementation, with percentage significances recorded as 31.3%, 37.76%, and 30.94%, respectively. The drawdown time model presented could be useful for predicting the time to reach the maximum drawdown pressure under viscous conditions during the onset of sand production.

Keywords: factorial designs, DOE optimization, sand production prediction, drawdown time, regression model

Procedia PDF Downloads 153
2098 Settlement Prediction in Cape Flats Sands Using Shear Wave Velocity – Penetration Resistance Correlations

Authors: Nanine Fouche

Abstract:

The Cape Flats is a low-lying sand-covered expanse of approximately 460 square kilometres, situated to the southeast of the central business district of Cape Town in the Western Cape of South Africa. The aeolian sands masking this area are often loose and compressible in the upper 1m to 1.5m of the surface, and there is a general exceedance of the maximum allowable settlement in these sands. The settlement of shallow foundations on Cape Flats sands is commonly predicted using the results of in-situ tests such as the SPT or DPSH due to the difficulty of retrieving undisturbed samples for laboratory testing. Varying degrees of accuracy and reliability are associated with these methods. More recently, shear wave velocity (Vs) profiles obtained from seismic testing, such as continuous surface wave tests (CSW), are being used for settlement prediction. Such predictions have the advantage of considering non-linear stress-strain behaviour of soil and the degradation of stiffness with increasing strain. CSW tests are rarely executed in the Cape Flats, whereas SPT’s are commonly performed. For this reason, and to facilitate better settlement predictions in Cape Flats sand, equations representing shear wave velocity (Vs) as a function of SPT blow count (N60) and vertical effective stress (v’) were generated by statistical regression of site investigation data. To reveal the most appropriate method of overburden correction, analyses were performed with a separate overburden term (Pa/σ’v) as well as using stress corrected shear wave velocity and SPT blow counts (correcting Vs. and N60 to Vs1and (N1)60respectively). Shear wave velocity profiles and SPT blow count data from three sites masked by Cape Flats sands were utilised to generate 80 Vs-SPT N data pairs for analysis. Investigated terrains included sites in the suburbs of Athlone, Muizenburg, and Atlantis, all underlain by windblown deposits comprising fine and medium sand with varying fines contents. Elastic settlement analysis was also undertaken for the Cape Flats sands, using a non-linear stepwise method based on small-strain stiffness estimates, which was obtained from the best Vs-N60 model and compared to settlement estimates using the general elastic solution with stiffness profiles determined using Stroud’s (1989) and Webb’s (1969) SPT N60-E transformation models. Stroud’s method considers strain level indirectly whereasWebb’smethod does not take account of the variation in elastic modulus with strain. The expression of Vs. in terms of N60 and Pa/σv’ derived from the Atlantis data set revealed the best fit with R2 = 0.83 and a standard error of 83.5m/s. Less accurate Vs-SPT N relations associated with the combined data set is presumably the result of inversion routines used in the analysis of the CSW results showcasing significant variation in relative density and stiffness with depth. The regression analyses revealed that the inclusion of a separate overburden term in the regression of Vs and N60, produces improved fits, as opposed to the stress corrected equations in which the R2 of the regression is notably lower. It is the correction of Vs and N60 to Vs1 and (N1)60 with empirical constants ‘n’ and ‘m’ prior to regression, that introduces bias with respect to overburden pressure. When comparing settlement prediction methods, both Stroud’s method (considering strain level indirectly) and the small strain stiffness method predict higher stiffnesses for medium dense and dense profiles than Webb’s method, which takes no account of strain level in the determination of soil stiffness. Webb’s method appears to be suitable for loose sands only. The Versak software appears to underestimate differences in settlement between square and strip footings of similar width. In conclusion, settlement analysis using small-strain stiffness data from the proposed Vs-N60 model for Cape Flats sands provides a way to take account of the non-linear stress-strain behaviour of the sands when calculating settlement.

Keywords: sands, settlement prediction, continuous surface wave test, small-strain stiffness, shear wave velocity, penetration resistance

Procedia PDF Downloads 175
2097 A Study on Wage Discrimination Between Young and Middle-Aged Workers in Indian Informal Sector: Evidence from Periodic Labour Force Survey

Authors: Dharshini S.

Abstract:

India is currently experiencing a shift in wage discrimination from gender, caste and religion to different age groups in both formal and informal sectors. In this milieu, this study examines wage discrimination in the informal labour market between young people (15-29 years) and middle-aged people (30-59 years) among regular and casual employees in the Indian informal sector. The data was collected using periodic labour force (PLFS), and the original data was extracted from the National Sample Survey Office (NSSO) under the Ministry of Statistics and Programme Implementation (MOSPI), Government of India. The OLS regression model explores the determinants of wages for both regular and casual employees. Moreover, the Blinder Oaxaca decomposition method is used to explore the explained and unexplained components of this wage discrimination. The younger people (regular and casual employees) get lower wages as compared to middle-aged employees in the informal sector. The regression result follows the human capital theory, where education, job experience and higher occupation help to raise the wage rate of middle-aged people more than young-aged people in regular work. Furthermore, we found the rising trend of wage discrimination between the above groups over the years from 2017-18 to 2022-23. Unexplained factors (discrimination effects) contribute more to the wage differentiation between the young and middle age groups. It indicates that wage discrimination persists among regular and casual employees in the informal labour market, which is not a good sign for the economy. For the betterment of workers who face discrimination for age, the policies and programs should be implemented like other countries such as the U.S.A to stop age discrimination due to stereotypes in India.

Keywords: wage discrimination, young workers, middle workers, Informal sector, blinder oaxaca decomposition, PLFS.

Procedia PDF Downloads 13
2096 Machine Learning Techniques in Seismic Risk Assessment of Structures

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.

Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine

Procedia PDF Downloads 106
2095 Trajectories of PTSD from 2-3 Years to 5-6 Years among Asian Americans after the World Trade Center Attack

Authors: Winnie Kung, Xinhua Liu, Debbie Huang, Patricia Kim, Keon Kim, Xiaoran Wang, Lawrence Yang

Abstract:

Considerable Asian Americans were exposed to the World Trade Center attack due to the proximity of the site to Chinatown and a sizeable number of South Asians working in the collapsed and damaged buildings nearby. Few studies focused on Asians in examining the disaster’s mental health impact, and even less longitudinal studies were reported beyond the first couple of years after the event. Based on the World Trade Center Health Registry, this study examined the trajectory of PTSD of individuals directly exposed to the attack from 2-3 to 5-6 years after the attack, comparing Asians against the non-Hispanic White group. Participants included 2,431 Asians and 31,455 Whites. Trajectories were delineated into the resilient, chronic, delayed-onset and remitted groups using PTSD checklist cut-off score at 44 at the 2 waves. Logistic regression analyses were conducted to compare the poorer trajectories against the resilient as a reference group, using predictors of baseline sociodemographic, exposure to the disaster, lower respiratory symptoms and previous depression/anxiety disorder diagnosis, and recruitment source as the control variable. Asians had significant lower socioeconomic status in terms of income, education and employment status compared to Whites. Over 3/4 of participants from both races were resilient, though slightly less for Asians than Whites (76.5% vs 79.8%). Asians had a higher proportion with chronic PTSD (8.6% vs 7.4%) and remission (5.9% vs 3.4%) than Whites. A considerable proportion of participants had delayed-onset in both races (9.1% Asians vs 9.4% Whites). The distribution of trajectories differed significantly by race (p<0.0001) with Asians faring poorer. For Asians, in the chronic vs resilient group, significant protective factors included age >65, annual household income >$50,000, and never married vs married/cohabiting; risk factors were direct disaster exposure, job loss due to 9/11, lost someone, and tangible loss; lower respiratory symptoms and previous mental disorder diagnoses. Similar protective and risk factors were noted for the delayed-onset group, except education being protective; and being an immigrant a risk. Between the 2 comparisons, the chronic group was more vulnerable than the delayed-onset as expected. It should also be noted that in both comparisons, Asians’ current employment status had no significant impact on their PTSD trajectory. Comparing between Asians against Whites, the direction of the relationships between the predictors and the PTSD trajectories were mostly the same, although more factors were significant for Whites than for Asians. A few factors showed significant racial difference: Higher risk for lower respiratory symptoms for Whites than Asians, higher risk for pre-9/11 mental disorder diagnosis for Asians than Whites, and immigrant a risk factor for the remitted vs resilient groups for Whites but not for Asians. Over 17% Asians still suffered from PTSD 5-6 years after the WTC attack signified its persistent impact which incurred substantial human, social and economic costs. The more disadvantaged socioeconomic status of Asians rendered them more vulnerable in their mental health trajectories relative to Whites. Together with their well-documented low tendency to seek mental health help, outreach effort to this population is needed to ensure follow-up treatment and prevention.

Keywords: PTSD, Asian Americans, World Trade Center Attack, racial differences

Procedia PDF Downloads 266
2094 An Exploration of the Association Between the Physical Activity and Academic Performance in Internship Medical Students

Authors: Ali Ashraf, Ghazaleh Aghaee, Sedigheh Samimian, Mohaya Farzin

Abstract:

Objectives: Previous studies have indicated the positive effect of physical activity and sports on different aspects of health, such as muscle endurance and sleep cycle. However, in university students, particularly medical students, who have limited time and a stressful lifestyle, there have been limited studies exploring this matter with proven statistical results. In this regard, this study aims to find out how regular physical activity can influence the academic performance of medical students during their internship period. Methods: This was a descriptive-analytical study. Overall, 160 medical students (including 80 women and 88 men) voluntarily participated in the study. The Baecke Physical Activity Questionnaire was applied to determine the student’s physical activity levels. The student's academic performance was determined based on their total average academic scores. The data were analyzed in SPSS version 16 software using the independent t-test, Pearson correlation, and linear regression. Results: The average age of the students was 26.0±1.5 years. Eighty-eight students (52.4%) were male, and 142 (84.5%) were single. The student's mean total average academic score was 16.2±1.2, and their average physical activity score was 8.3±1.1. The student's average academic score was not associated with their gender (P=0.427), marital status (P=0.645), and age (P=0.320). However, married students had a significantly lower physical activity level compared to single students (P=0.020). The results indicated a significant positive correlation between student's physical activity levels and average academic scores (r=+0.410 and P<0.001). This correlation was independent of the student’s age, gender, and marital status based on the regression analysis. Conclusion: The results of the current study suggested that the physical activity level in medical students was low to moderate in most cases, and there was a significant direct relationship between student’s physical activity level and academic performance, independent of age, gender, and marital status.

Keywords: exercise, education, physical activity, academic performance

Procedia PDF Downloads 49
2093 Logistics Model for Improving Quality in Railway Transport

Authors: Eva Nedeliakova, Juraj Camaj, Jaroslav Masek

Abstract:

This contribution is focused on the methodology for identifying levels of quality and improving quality through new logistics model in railway transport. It is oriented on the application of dynamic quality models, which represent an innovative method of evaluation quality services. Through this conception, time factor, expected, and perceived quality in each moment of the transportation process within logistics chain can be taken into account. Various models describe the improvement of the quality which emphases the time factor throughout the whole transportation logistics chain. Quality of services in railway transport can be determined by the existing level of service quality, by detecting the causes of dissatisfaction employees but also customers, to uncover strengths and weaknesses. This new logistics model is able to recognize critical processes in logistic chain. It includes service quality rating that must respect its specific properties, which are unrepeatability, impalpability, their use right at the time they are provided and particularly changeability, which is significant factor in the conditions of rail transport as well. These peculiarities influence the quality of service regarding the constantly increasing requirements and that result in new ways of finding progressive attitudes towards the service quality rating.

Keywords: logistics model, quality, railway transport

Procedia PDF Downloads 571
2092 Impact of Leadership Styles on Work Motivation and Organizational Commitment among Faculty Members of Public Sector Universities in Punjab

Authors: Wajeeha Shahid

Abstract:

The study was designed to assess the impact of transformational and transactional leadership styles on work motivation and organizational commitment among faculty members of universities of Punjab. 713 faculty members were selected as sample through convenient random sampling technique. Three self-constructed questionnaires namely Leadership Styles Questionnaire (LSQ), Work Motivation Questionnaire (WMQ) and Organizational Commitment Questionnaire (OCMQ) were used as research instruments. Major objectives of the study included assessing the effect and impact of transformational and transactional leadership styles on work motivation and organizational commitment. Theoretical frame work of the study included Idealized Influence, Inspirational Motivation, Intellectual Stimulation, Individualized Consideration, Contingent Rewards and Management by Exception as independent variables and Extrinsic motivation, Intrinsic motivation, Affective commitment, Continuance commitment and Normative commitment as dependent variables. SPSS Version 21 was used to analyze and tabulate data. Cronbach's Alpha reliability, Pearson Correlation and Multiple regression analysis were applied as statistical treatments for the analysis. Results revealed that Idealized Influence correlated significantly with intrinsic motivation and Affective commitment whereas Contingent rewards had a strong positive correlation with extrinsic motivation and affective commitment. Multiple regression models revealed a variance of 85% for transformational leadership style over work motivation and organizational commitment. Whereas transactional style as a predictor manifested a variance of 79% for work motivation and 76% for organizational commitment. It was suggested that changing organizational cultures are demanding more from their leadership. All organizations need to consider transformational leadership style as an important part of their equipment in leveraging both soft and hard organizational targets.

Keywords: leadership styles, work motivation, organizational commitment, faculty member

Procedia PDF Downloads 311
2091 Determination of Genetic Markers, Microsatellites Type, Liked to Milk Production Traits in Goats

Authors: Mohamed Fawzy Elzarei, Yousef Mohammed Al-Dakheel, Ali Mohamed Alseaf

Abstract:

Modern molecular techniques, like single marker analysis for linked traits to these markers, can provide us with rapid and accurate genetic results. In the last two decades of the last century, the applications of molecular techniques were reached a faraway point in cattle, sheep, and pig. In goats, especially in our region, the application of molecular techniques is still far from other species. As reported by many researchers, microsatellites marker is one of the suitable markers for lie studies. The single marker linked to traits of interest is one technique allowed us to early select animals without the necessity for mapping the entire genome. Simplicity, applicability, and low cost of this technique gave this technique a wide range of applications in many areas of genetics and molecular biology. Also, this technique provides a useful approach for evaluating genetic differentiation, particularly in populations that are poorly known genetically. The expected breeding value (EBV) and yield deviation (YD) are considered as the most parameters used for studying the linkage between quantitative characteristics and molecular markers, since these values are raw data corrected for the non-genetic factors. A total of 17 microsatellites markers (from chromosomes 6, 14, 18, 20 and 23) were used in this study to search for areas that could be responsible for genetic variability for some milk traits and search of chromosomal regions that explain part of the phenotypic variance. Results of single-marker analyses were used to identify the linkage between microsatellite markers and variation in EBVs of these traits, Milk yield, Protein percentage, Fat percentage, Litter size and weight at birth, and litter size and weight at weaning. The estimates of the parameters from forward and backward solutions using stepwise regression procedure on milk yield trait, only two markers, OARCP9 and AGLA29, showed a highly significant effect (p≤0.01) in backward and forward solutions. The forward solution for different equations conducted that R2 of these equations were highly depending on only two partials regressions coefficient (βi,) for these markers. For the milk protein trait, four marker showed significant effect BMS2361, CSSM66 (p≤0.01), BMS2626, and OARCP9 (p≤0.05). By the other way, four markers (MCM147, BM1225, INRA006, andINRA133) showed highly significant effect (p≤0.01) in both backward and forward solutions in association with milk fat trait. For both litter size at birth and at weaning traits, only one marker (BM143(p≤0.01) and RJH1 (p≤0.05), respectively) showed a significant effect in backward and forward solutions. The estimates of the parameters from forward and backward solution using stepwise regression procedure on litter weight at birth (LWB) trait only one marker (MCM147) showed highly significant effect (p≤0.01) and two marker (ILSTS011, CSSM66) showed a significant effect (p≤0.05) in backward and forward solutions.

Keywords: microsatellites marker, estimated breeding value, stepwise regression, milk traits

Procedia PDF Downloads 93
2090 Market Chain Analysis of Onion: The Case of Northern Ethiopia

Authors: Belayneh Yohannes

Abstract:

In Ethiopia, onion production is increasing from time to time mainly due to its high profitability per unit area. Onion has a significant contribution to generating cash income for farmers in the Raya Azebo district. Therefore, enhancing onion producers’ access to the market and improving market linkage is an essential issue. Hence, this study aimed to analyze structure-conduct-performance of onion market and identifying factors affecting the market supply of onion producers. Data were collected from both primary and secondary sources. Primary data were collected from 150 farm households and 20 traders. Four onion marketing channels were identified in the study area. The highest total gross margin is 27.6 in channel IV. The highest gross marketing margin of producers of the onion market is 88% in channel II. The result from the analysis of market concentration indicated that the onion market is characterized by a strong oligopolistic market structure, with the buyers’ concentration ratio of 88.7 in Maichew town and 82.7 in Mekelle town. Lack of capital, licensing problems, and seasonal supply was identified as the major entry barrier to onion marketing. Market conduct shows that the price of onion is set by traders while producers are price takers. Multiple linear regression model results indicated that family size in adult equivalent, irrigated land size, access to information, frequency of extension contact, and ownership of transport significantly determined the quantity of onion supplied to the market. It is recommended that strengthening and diversifying extension services in information, marketing, post-harvest handling, irrigation application, and water harvest technology is highly important.

Keywords: oligopoly, onion, market chain, multiple linear regression

Procedia PDF Downloads 150
2089 Adoption of Climate-Smart Agriculture Practices Among Farmers and Its Effect on Crop Revenue in Ethiopia

Authors: Fikiru Temesgen Gelata

Abstract:

Food security, adaptation, and climate change mitigation are all problems that can be resolved simultaneously with Climate-Smart Agriculture (CSA). This study examines determinants of climate-smart agriculture (CSA) practices among smallholder farmers, aiming to understand the factors guiding adoption decisions and evaluate the impact of CSA on smallholder farmer income in the study areas. For this study, three-stage sampling techniques were applied to select 230 smallholders randomly. Mann-Kendal test and multinomial endogenous switching regression model were used to analyze trends of decrease or increase within long-term temporal data and the impact of CSA on the smallholder farmer income, respectively. Findings revealed education level, household size, land ownership, off-farm income, climate information, and contact with extension agents found to be highly adopted CSA practices. On the contrary, erosion exerted a detrimental impact on all the agricultural practices examined within the study region. Various factors such as farming methods, the size of farms, proximity to irrigated farmlands, availability of extension services, distance to market hubs, and access to weather forecasts were recognized as key determinants influencing the adoption of CSA practices. The multinomial endogenous switching regression model (MESR) revealed that joint adoption of crop rotation and soil and water conservation practices significantly increased farm income by 1,107,245 ETB. The study recommends that counties and governments should prioritize addressing climate change in their development agendas to increase the adoption of climate-smart farming techniques.

Keywords: climate-smart practices, food security, Oincome, MERM, Ethiopia

Procedia PDF Downloads 41
2088 Recent Climate Variability and Crop Production in the Central Highlands of Ethiopia

Authors: Arragaw Alemayehu, Woldeamlak Bewket

Abstract:

The aim of this study was to understand the influence of current climate variability on crop production in the central highlands of Ethiopia. We used monthly rainfall and temperature data from 132 points each representing a pixel of 10×10 km. The data are reconstructions based on station records and meteorological satellite observations. Production data of the five major crops in the area were collected from the Central Statistical Agency for the period 2004-2013 and for the main cropping season, locally known as Meher. The production data are at the Enumeration Area (EA ) level and hence the best available dataset on crop production. The results show statistically significant decreasing trends in March–May (Belg) rainfall in the area. However, June – September (Kiremt) rainfall showed increasing trends in Efratana Gidim and Menz Gera Meder which the latter is statistically significant. Annual rainfall also showed positive trends in the area except Basona Werana where significant negative trends were observed. On the other hand, maximum and minimum temperatures showed warming trends in the study area. Correlation results have shown that crop production and area of cultivation have positive correlation with rainfall, and negative with temperature. When the trends in crop production are investigated, most crops showed negative trends and below average production was observed. Regression results have shown that rainfall was the most important determinant of crop production in the area. It is concluded that current climate variability has a significant influence on crop production in the area and any unfavorable change in the local climate in the future will have serious implications for household level food security. Efforts to adapt to the ongoing climate change should begin from tackling the current climate variability and take a climate risk management approach.

Keywords: central highlands, climate variability, crop production, Ethiopia, regression, trend

Procedia PDF Downloads 438
2087 Physical Health, Depression and Related Factors for Elementary School Students in Seoul, South Korea

Authors: Kyung-Sook Bang

Abstract:

Background: The health status of school-age children has a great influence on their growth and life-long health. The purposes of this study were to identify physical and mental health status of late school-age children in Seoul, South Korea and to investigate the related factors for their health. Methods: After gaining the approval from Institutional Review Board (IRB), a cross-sectional study was conducted with elementary students in grade 4 or 5. Questionnaires were distributed to eight elementary schools located different regions of Seoul in November, 2016, and 302 participants were finally included. From all participants, informed consents from the parents, and assents from children were received. Children's socioeconomic status, family functioning, peer relations, physical health symptoms, and depression were measured with self-reported questionnaires. Data were analyzed with descriptive statistics, t-test, Pearson’s correlations, and multiple regression. Results: Children's physical health symptoms and depression were not significantly different, and only their peer relations were significantly different according to their socioeconomic status (t=-3.93, p<.001). Depression showed significant positive correlation with physical health symptoms (r=.720, p<.001) and negative correlations with family functioning (r=-.428, p<.001) and peer relations (r=-.775, p<.001). The multiple regression model, which explained 73.5% of variance, showed peer relations (r2 =.604), physical health symptoms (r2 change=.125), and family functioning (r2 change=.005) as significant predictors for depression. Only the peer relations was significant predictor for their physical health symptoms and explained 50.6% of it. Conclusions: The peer relations was the most important factor in their physical and mental health at this age, and it can be affected by their socioeconomic status. Nursing interventions for promoting social relations and family functioning are required to improve children’s physical and mental health, especially for vulnerable population.

Keywords: child, depression, health, peer relation

Procedia PDF Downloads 232
2086 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain

Authors: Zachary Blanks, Solomon Sonya

Abstract:

Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.

Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection

Procedia PDF Downloads 294
2085 Metaphor Institutionalization as Phase Transition: Case Studies of Chinese Metaphors

Authors: Xuri Tang, Ting Pan

Abstract:

Metaphor institutionalization refers to the propagation of a metaphor that leads to its acceptance in speech community as a norm of the language. Such knowledge is important to both theoretical studies of metaphor and practical disciplines such as lexicography and language generation. This paper reports an empirical study of metaphor institutionalization of 14 Chinese metaphors. It first explores the pattern of metaphor institutionalization by fitting the logistic function (or S-shaped curve) to time series data of conventionality of the metaphors that are automatically obtained from a large-scale diachronic Chinese corpus. Then it reports a questionnaire-based survey on the propagation scale of each metaphor, which is measured by the average number of subjects that can easily understand the metaphorical expressions. The study provides two pieces of evidence supporting the hypothesis that metaphor institutionalization is a phrase transition: (1) the pattern of metaphor institutionalization is an S-shaped curve and (2) institutionalized metaphors generally do not propagate to the whole community but remain in equilibrium state. This conclusion helps distinguish metaphor institutionalization from topicalization and other types of semantic change.

Keywords: metaphor institutionalization, phase transition, propagation scale, s-shaped curve

Procedia PDF Downloads 172
2084 The Determinants of Financial Ratio Disclosures and Quality: Evidence from an Emerging Market

Authors: Ben Kwame Agyei-Mensah

Abstract:

This study investigated the influence of firm-specific characteristics which include proportion of Non-Executive Directors, ownership concentration, firm size, profitability, debt equity ratio, liquidity and leverage on the extent and quality of financial ratios disclosed by firms listed on the Ghana Stock Exchange. The research was conducted through detailed analysis of the 2012 financial statements of the listed firms. Descriptive analysis was performed to provide the background statistics of the variables examined. This was followed by regression analysis which forms the main data analysis. The results of the extent of financial ratio disclosure level, mean of 62.78%, indicate that most of the firms listed on the Ghana Stock Exchange did not overwhelmingly disclose such ratios in their annual reports. The results of the low quality of financial ratio disclosure mean of 6.64% indicate that the disclosures failed woefully to meet the International Accounting Standards Board's qualitative characteristics of relevance, reliability, comparability and understandability. The results of the multiple regression analysis show that leverage (gearing ratio) and return on investment (dividend per share) are associated on a statistically significant level as far as the extent of financial ratio disclosure is concerned. Board ownership concentration and proportion of (independent) non-executive directors, on the other hand were found to be statistically associated with the quality of financial ratio disclosed. There is a significant negative relationship between ownership concentration and the quality of financial ratio disclosure. This means that under a higher level of ownership concentration less quality financial ratios are disclosed. The findings also show that there is a significant positive relationship between board composition (proportion of non-executive directors) and the quality of financial ratio disclosure.

Keywords: voluntary disclosure, firm-specific characteristics, financial reporting, financial ratio disclosure, Ghana stock exchange

Procedia PDF Downloads 594
2083 Urban Retrofitting Application Based on Social-Media to Model the Malioboro Smart Central Business Design through Statistical Regression Approach

Authors: Muhammad Hardyan Prastyanto, Aisah Azhari Marwangi, Yulinda Rizky Pratiwi

Abstract:

Globalization has become a driving force for the current technological developments. The presence of the Virtual Space provides opportunities for people to self-actualization through access to a wider world, quickly and easily. Cities that are part of the existence of life, witness the history of civilization over time, also has been the major object to upgrading on technological sector. A smart city is one where the government and citizenry are using the best available means, including ICT, to achieve their shared goals. This often includes economic development, environmental sustainability, and improved quality of life for citizens. Thus theory is the basis for research of this study. This study aimed to know the implementation of the Urban Retrofitting at Malioboro area based on Information and Communication Technologies. The method of this study is by reviewing the effectiveness of the E-commerce uses as a major system to identification the Malioboro Smart Central Business District. By using a significance level of 5 %, it can be concluded that addresses have a significant influence on the ratings obtained, namely regarding the location of the hotel establishment. But despite the use of the website does not have a significant influence on the rating of the hotel, using the website still has influence significantly on the rating, because the p -value (Sig.) of the variable website is not so much different from the significance level determined by the researcher. In the interpretation, if a hotel is located on the Pasar Kembang streets and not to use the website, so the hotel is likely to have a rating of the constant value which is 3.183. However, if a hotel located on the Sosrowijayan streets, so the hotel rating will be increased by 0,302. Then if a hotel has been using a website, so the hotel rating will increase by 0,264. It is possible to conclude the effectiveness of ICT’s (Website) uses and location to identification the urban retrofitting through increasing of building rating in Malioboro Central Business District.

Keywords: urban retrofitting, e-commerce, information and communication technology, statistic regression, SCBD, Malioboro

Procedia PDF Downloads 301
2082 Nowcasting Indonesian Economy

Authors: Ferry Kurniawan

Abstract:

In this paper, we nowcast quarterly output growth in Indonesia by exploiting higher frequency data (monthly indicators) using a mixed-frequency factor model and exploiting both quarterly and monthly data. Nowcasting quarterly GDP in Indonesia is particularly relevant for the central bank of Indonesia which set the policy rate in the monthly Board of Governors Meeting; whereby one of the important step is the assessment of the current state of the economy. Thus, having an accurate and up-to-date quarterly GDP nowcast every time new monthly information becomes available would clearly be of interest for central bank of Indonesia, for example, as the initial assessment of the current state of the economy -including nowcast- will be used as input for longer term forecast. We consider a small scale mixed-frequency factor model to produce nowcasts. In particular, we specify variables as year-on-year growth rates thus the relation between quarterly and monthly data is expressed in year-on-year growth rates. To assess the performance of the model, we compare the nowcasts with two other approaches: autoregressive model –which is often difficult when forecasting output growth- and Mixed Data Sampling (MIDAS) regression. In particular, both mixed frequency factor model and MIDAS nowcasts are produced by exploiting the same set of monthly indicators. Hence, we compare the nowcasts performance of the two approaches directly. To preview the results, we find that by exploiting monthly indicators using mixed-frequency factor model and MIDAS regression we improve the nowcast accuracy over a benchmark simple autoregressive model that uses only quarterly frequency data. However, it is not clear whether the MIDAS or mixed-frequency factor model is better. Neither set of nowcasts encompasses the other; suggesting that both nowcasts are valuable in nowcasting GDP but neither is sufficient. By combining the two individual nowcasts, we find that the nowcast combination not only increases the accuracy - relative to individual nowcasts- but also lowers the risk of the worst performance of the individual nowcasts.

Keywords: nowcasting, mixed-frequency data, factor model, nowcasts combination

Procedia PDF Downloads 331