Search results for: parallel processing
3440 Experimental Investigation of Flow Structure around a Rectangular Cylinder in Different Configurations
Authors: Cemre Polat, Dogan B. Saydam, Mustafa Soyler, Coskun Ozalp
Abstract:
In this study, the flow structure was investigated by particle imaging velocimetry (PIV) method at Re = 26000 for two different rectangular cylinders placed perpendicular and parallel to the flow direction. After obtaining streamwise and spanwise velocity data, average vorticity, streamlines, velocity magnitude, turbulence kinetic energy, root mean square of streamwise and spanwise velocity fluctuations are calculated, and critical points of flow structure are explained. As a result of the study, it was seen that the vertical configuration has less effect on the flow structure in the back region of the body compared to the horizontal configuration. When the streamwise velocity component is examined in both configurations, it is seen that the negative velocity component is stronger on the long sides compared to the short sides. It has been observed that the vertically positioned cylinder expands the flow separation point compared to the horizontally positioned cylinder; also the vertical cylinder creates an increase in turbulence kinetic energy compared to the horizontal cylinder.Keywords: bluff body, flow characteristics, PIV, rectangular cylinder
Procedia PDF Downloads 1513439 Scalable CI/CD and Scalable Automation: Assisting in Optimizing Productivity and Fostering Delivery Expansion
Authors: Solanki Ravirajsinh, Kudo Kuniaki, Sharma Ankit, Devi Sherine, Kuboshima Misaki, Tachi Shuntaro
Abstract:
In software development life cycles, the absence of scalable CI/CD significantly impacts organizations, leading to increased overall maintenance costs, prolonged release delivery times, heightened manual efforts, and difficulties in meeting tight deadlines. Implementing CI/CD with standard serverless technologies using cloud services overcomes all the above-mentioned issues and helps organizations improve efficiency and faster delivery without the need to manage server maintenance and capacity. By integrating scalable CI/CD with scalable automation testing, productivity, quality, and agility are enhanced while reducing the need for repetitive work and manual efforts. Implementing scalable CI/CD for development using cloud services like ECS (Container Management Service), AWS Fargate, ECR (to store Docker images with all dependencies), Serverless Computing (serverless virtual machines), Cloud Log (for monitoring errors and logs), Security Groups (for inside/outside access to the application), Docker Containerization (Docker-based images and container techniques), Jenkins (CI/CD build management tool), and code management tools (GitHub, Bitbucket, AWS CodeCommit) can efficiently handle the demands of diverse development environments and are capable of accommodating dynamic workloads, increasing efficiency for faster delivery with good quality. CI/CD pipelines encourage collaboration among development, operations, and quality assurance teams by providing a centralized platform for automated testing, deployment, and monitoring. Scalable CI/CD streamlines the development process by automatically fetching the latest code from the repository every time the process starts, building the application based on the branches, testing the application using a scalable automation testing framework, and deploying the builds. Developers can focus more on writing code and less on managing infrastructure as it scales based on the need. Serverless CI/CD eliminates the need to manage and maintain traditional CI/CD infrastructure, such as servers and build agents, reducing operational overhead and allowing teams to allocate resources more efficiently. Scalable CI/CD adjusts the application's scale according to usage, thereby alleviating concerns about scalability, maintenance costs, and resource needs. Creating scalable automation testing using cloud services (ECR, ECS Fargate, Docker, EFS, Serverless Computing) helps organizations run more than 500 test cases in parallel, aiding in the detection of race conditions, performance issues, and reducing execution time. Scalable CI/CD offers flexibility, dynamically adjusting to varying workloads and demands, allowing teams to scale resources up or down as needed. It optimizes costs by only paying for the resources as they are used and increases reliability. Scalable CI/CD pipelines employ automated testing and validation processes to detect and prevent errors early in the development cycle.Keywords: achieve parallel execution, cloud services, scalable automation testing, scalable continuous integration and deployment
Procedia PDF Downloads 443438 Design, Modeling and Analysis of 2×2 Microstrip Patch Antenna Array System for 5G Applications
Authors: Vinay Kumar K. S., Shravani V., Spoorthi G., Udith K. S., Divya T. M., Venkatesha M.
Abstract:
In this work, the mathematical modeling, design and analysis of a 2×2 microstrip patch antenna array (MSPA) antenna configuration is presented. Array utilizes a tiny strip antenna module with two vertical slots for 5G applications at an operating frequency of 5.3 GHz. The proposed array of antennas where the phased array antenna systems (PAAS) are used ubiquitously everywhere, from defense radar applications to commercial applications like 5G/6G. Microstrip patch antennae with slot arrays for linear polarisation parallel and perpendicular to the axis, respectively, are fed through transverse slots in the side wall of the circular waveguide and fed through longitudinal slots in the small wall of the rectangular waveguide. The microstrip patch antenna is developed using Ansys HFSS (High-Frequency Structure Simulator), this simulation tool. The maximum gain of 6.14 dB is achieved at 5.3 GHz for a single MSPA. For 2×2 array structure, a gain of 7.713 dB at 5.3 GHz is observed. Such antennas find many applications in 5G devices and technology.Keywords: Ansys HFSS, gain, return loss, slot array, microstrip patch antenna, 5G antenna
Procedia PDF Downloads 1123437 For Post-traumatic Stress Disorder Counselors in China, the United States, and around the Globe, Cultural Beliefs Offer Challenges and Opportunities
Authors: Anne Giles
Abstract:
Trauma is generally defined as an experience, or multiple experiences, overwhelming a person's ability to cope. Over time, many people recover from the neurobiological, physical, and emotional effects of trauma on their own. For some people, however, troubling symptoms develop over time that can result in distress and disability. This cluster of symptoms is classified as Post-traumatic Stress Disorder (PTSD). People who meet the criteria for PTSD and other trauma-related disorder diagnoses often hold a set of understandable but unfounded beliefs about traumatic events that cause undue suffering. Becoming aware of unhelpful beliefs—termed "cognitive distortions"—and challenging them is the realm of Cognitive Behavior Therapy (CBT). A form of CBT found by researchers to be especially effective for PTSD is Cognitive Processing Therapy (CPT). Through the compassionate use of CPT, people identify, examine, challenge, and relinquish unhelpful beliefs, thereby reducing symptoms and suffering. Widely-held cultural beliefs can interfere with the progress of recovery from trauma-related disorders. Although highly revered, largely unquestioned, and often stabilizing, cultural beliefs can be founded in simplistic, dichotomous thinking, i.e., things are all right, or all wrong, all good, or all bad. The reality, however, is nuanced and complex. After studying examples of cultural beliefs from China and the United States and how these might interfere with trauma recovery, trauma counselors can help clients derive criteria for preserving helpful beliefs, discover, examine, and jettison unhelpful beliefs, reduce trauma symptoms, and live their lives more freely and fully.Keywords: cognitive processing therapy (CPT), cultural beliefs, post-traumatic stress disorder (PTSD), trauma recovery
Procedia PDF Downloads 2503436 Competition between Verb-Based Implicit Causality and Theme Structure's Influence on Anaphora Bias in Mandarin Chinese Sentences: Evidence from Corpus
Authors: Linnan Zhang
Abstract:
Linguists, as well as psychologists, have shown great interests in implicit causality in reference processing. However, most frequently-used approaches to this issue are psychological experiments (such as eye tracking or self-paced reading, etc.). This research is a corpus-based one and is assisted with statistical tool – software R. The main focus of the present study is about the competition between verb-based implicit causality and theme structure’s influence on anaphora bias in Mandarin Chinese sentences. In Accessibility Theory, it is believed that salience, which is also known as accessibility, and relevance are two important factors in reference processing. Theme structure, which is a special syntactic structure in Chinese, determines the salience of an antecedent on the syntactic level while verb-based implicit causality is a key factor to the relevance between antecedent and anaphora. Therefore, it is a study about anaphora, combining psychology with linguistics. With analysis of the sentences from corpus as well as the statistical analysis of Multinomial Logistic Regression, major findings of the present study are as follows: 1. When the sentence is stated in a ‘cause-effect’ structure, the theme structure will always be the antecedent no matter forward biased verbs or backward biased verbs co-occur; in non-theme structure, the anaphora bias will tend to be the opposite of the verb bias; 2. When the sentence is stated in a ‘effect-cause’ structure, theme structure will not always be the antecedent and the influence of verb-based implicit causality will outweigh that of theme structure; moreover, the anaphora bias will be the same with the bias of verbs. All the results indicate that implicit causality functions conditionally and the noun in theme structure will not be the high-salience antecedent under any circumstances.Keywords: accessibility theory, anaphora, theme strcture, verb-based implicit causality
Procedia PDF Downloads 1983435 Effect of Extrusion Processing Parameters on Protein in Banana Flour Extrudates: Characterisation Using Fourier-Transform Infrared Spectroscopy
Authors: Surabhi Pandey, Pavuluri Srinivasa Rao
Abstract:
Extrusion processing is a high-temperature short time (HTST) treatment which can improve protein quality and digestibility together with retaining active nutrients. In-vitro protein digestibility of plant protein-based foods is generally enhanced by extrusion. The current study aimed to investigate the effect of extrusion cooking on in-vitro protein digestibility (IVPD) and conformational modification of protein in green banana flour extrudates. Green banana flour was extruded through a co-rotating twin-screw extruder varying the moisture content, barrel temperature, screw speed in the range of 10-20 %, 60-80 °C, 200-300 rpm, respectively, at constant feed rate. Response surface methodology was used to optimise the result for IVPD. Fourier-transform infrared spectroscopy (FTIR) analysis provided a convenient and powerful means to monitor interactions and changes in functional and conformational properties of extrudates. Results showed that protein digestibility was highest in extrudate produced at 80°C, 250 rpm and 15% feed moisture. FTIR analysis was done for the optimised sample having highest IVPD. FTIR analysis showed that there were no changes in primary structure of protein while the secondary protein structure changed. In order to explain this behaviour, infrared spectroscopy analysis was carried out, mainly in the amide I and II regions. Moreover, curve fitting analysis showed the conformational changes produced in the flour due to protein denaturation. The quantitative analysis of the changes in the amide I and II regions provided information about the modifications produced in banana flour extrudates.Keywords: extrusion, FTIR, protein conformation, raw banana flour, SDS-PAGE method
Procedia PDF Downloads 1623434 Microencapsulation of Phenobarbital by Ethyl Cellulose Matrix
Authors: S. Bouameur, S. Chirani
Abstract:
The aim of this study was to evaluate the potential use of EthylCellulose in the preparation of microspheres as a Drug Delivery System for sustained release of phenobarbital. The microspheres were prepared by solvent evaporation technique using ethylcellulose as polymer matrix with a ratio 1:2, dichloromethane as solvent and Polyvinyl alcohol 1% as processing medium to solidify the microspheres. Size, shape, drug loading capacity and entrapement efficiency were studied.Keywords: phenobarbital, microspheres, ethylcellulose, polyvinylacohol
Procedia PDF Downloads 3613433 Effects and Mechanisms of an Online Short-Term Audio-Based Mindfulness Intervention on Wellbeing in Community Settings and How Stress and Negative Affect Influence the Therapy Effects: Parallel Process Latent Growth Curve Modeling of a Randomized Control
Authors: Man Ying Kang, Joshua Kin Man Nan
Abstract:
The prolonged pandemic has posed alarming public health challenges to various parts of the world, and face-to-face mental health treatment is largely discounted for the control of virus transmission, online psychological services and self-help mental health kits have become essential. Online self-help mindfulness-based interventions have proved their effects on fostering mental health for different populations over the globe. This paper was to test the effectiveness of an online short-term audio-based mindfulness (SAM) program in enhancing wellbeing, dispositional mindfulness, and reducing stress and negative affect in community settings in China, and to explore possible mechanisms of how dispositional mindfulness, stress, and negative affect influenced the intervention effects on wellbeing. Community-dwelling adults were recruited via online social networking sites (e.g., QQ, WeChat, and Weibo). Participants (n=100) were randomized into the mindfulness group (n=50) and a waitlist control group (n=50). In the mindfulness group, participants were advised to spend 10–20 minutes listening to the audio content, including mindful-form practices (e.g., eating, sitting, walking, or breathing). Then practice daily mindfulness exercises for 3 weeks (a total of 21 sessions), whereas those in the control group received the same intervention after data collection in the mindfulness group. Participants in the mindfulness group needed to fill in the World Health Organization Five Well-Being Index (WHO), Positive and Negative Affect Schedule (PANAS), Perceived Stress Scale (PSS), and Freiburg Mindfulness Inventory (FMI) four times: at baseline (T0) and at 1 (T1), 2 (T2), and 3 (T3) weeks while those in the waitlist control group only needed to fill in the same scales at pre- and post-interventions. Repeated-measure analysis of variance, paired sample t-test, and independent sample t-test was used to analyze the variable outcomes of the two groups. The parallel process latent growth curve modeling analysis was used to explore the longitudinal moderated mediation effects. The dependent variable was WHO slope from T0 to T3, the independent variable was Group (1=SAM, 2=Control), the mediator was FMI slope from T0 to T3, and the moderator was T0NA and T0PSS separately. The different levels of moderator effects on WHO slope was explored, including low T0NA or T0PSS (Mean-SD), medium T0NA or T0PSS (Mean), and high T0NA or T0PSS (Mean+SD). The results found that SAM significantly improved and predicted higher levels of WHO slope and FMI slope, as well as significantly reduced NA and PSS. FMI slope positively predict WHO slope. FMI slope partially mediated the relationship between SAM and WHO slope. Baseline NA and PSS as the moderators were found to be significant between SAM and WHO slope and between SAM and FMI slope, respectively. The conclusion was that SAM was effective in promoting levels of mental wellbeing, positive affect, and dispositional mindfulness as well as reducing negative affect and stress in community settings in China. SAM improved wellbeing faster through the faster enhancement of dispositional mindfulness. Participants with medium-to-high negative affect and stress buffered the therapy effects of SAM on wellbeing improvement speed.Keywords: mindfulness, negative affect, stress, wellbeing, randomized control trial
Procedia PDF Downloads 1093432 Recent Developments in the Application of Deep Learning to Stock Market Prediction
Authors: Shraddha Jain Sharma, Ratnalata Gupta
Abstract:
Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume
Procedia PDF Downloads 903431 Benders Decomposition Approach to Solve the Hybrid Flow Shop Scheduling Problem
Authors: Ebrahim Asadi-Gangraj
Abstract:
Hybrid flow shop scheduling problem (HFS) contains sequencing in a flow shop where, at any stage, there exist one or more related or unrelated parallel machines. This production system is a common manufacturing environment in many real industries, such as the steel manufacturing, ceramic tile manufacturing, and car assembly industries. In this research, a mixed integer linear programming (MILP) model is presented for the hybrid flow shop scheduling problem, in which, the objective consists of minimizing the maximum completion time (makespan). For this purpose, a Benders Decomposition (BD) method is developed to solve the research problem. The proposed approach is tested on some test problems, small to moderate scale. The experimental results show that the Benders decomposition approach can solve the hybrid flow shop scheduling problem in a reasonable time, especially for small and moderate-size test problems.Keywords: hybrid flow shop, mixed integer linear programming, Benders decomposition, makespan
Procedia PDF Downloads 1893430 Preserving Urban Cultural Heritage with Deep Learning: Color Planning for Japanese Merchant Towns
Authors: Dongqi Li, Yunjia Huang, Tomo Inoue, Kohei Inoue
Abstract:
With urbanization, urban cultural heritage is facing the impact and destruction of modernization and urbanization. Many historical areas are losing their historical information and regional cultural characteristics, so it is necessary to carry out systematic color planning for historical areas in conservation. As an early focus on urban color planning, Japan has a systematic approach to urban color planning. Hence, this paper selects five merchant towns from the category of important traditional building preservation areas in Japan as the subject of this study to explore the color structure and emotion of this type of historic area. First, the image semantic segmentation method identifies the buildings, roads, and landscape environments. Their color data were extracted for color composition and emotion analysis to summarize their common features. Second, the obtained Internet evaluations were extracted by natural language processing for keyword extraction. The correlation analysis of the color structure and keywords provides a valuable reference for conservation decisions for this historic area in the town. This paper also combines the color structure and Internet evaluation results with generative adversarial networks to generate predicted images of color structure improvements and color improvement schemes. The methods and conclusions of this paper can provide new ideas for the digital management of environmental colors in historic districts and provide a valuable reference for the inheritance of local traditional culture.Keywords: historic districts, color planning, semantic segmentation, natural language processing
Procedia PDF Downloads 883429 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network
Authors: Ziying Wu, Danfeng Yan
Abstract:
Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network
Procedia PDF Downloads 1183428 Deformation Mechanisms of Mg-Based Composite Studied by Neutron Diffraction and Acoustic Emission
Authors: G. Farkas, K. Mathis, J. Pilch, P. Minarik
Abstract:
Deformation mechanisms in an Mg-Al-Ca alloy reinforced with short alumina fibres were studied by acoustic emission and in-situ neutron diffraction method. The fibres plane orientation with respect to the loading axis was found to be a key parameter, which influences the acting deformation processes, such as twinning or dislocation slip. In-situ neutron diffraction tests were measured at different temperatures from room temperature (RT) to 200°C. The measurement shows the lattice strain changes in the matrix and also in the reinforcement phase depending on macroscopic compressive deformation and stress. In case of parallel fibre plane orientation, the increment of compressive lattice strain is lower in the matrix and higher in the fibres in comparison to perpendicular fibre orientation. Furthermore, acoustic emission results indicate a larger twinning activity and more frequent fibre cracking in sample with perpendicular fibre plane orientation. Both types of mechanisms are more dominant at elevated temperatures.Keywords: neutron diffraction, acoustic emission, magnesium based composite, deformation mechanisms
Procedia PDF Downloads 1623427 Numerical Analysis of the Effects of Transpiration on Transient/Steady Natural Convection Flow of Reactive Viscous Fluid in a Vertical Channel Formed by Two Vertical Porous Plates
Authors: Ahmad K. Samaila, Basant K. Jha
Abstract:
This study is devoted to investigate the effect of transpiration on transient as well as steady-state natural convection flow of a reactive viscous fluid in a vertical channel formed by two infinite vertical parallel porous plates. The Boussinesq assumption is applied and the nonlinear governing equations of energy and momentum are developed. The problem is solved numerically using implicit finite difference method and analytically for steady-state case using perturbation method. Solutions are presented in graphical form for fluid temperature, velocity, and skin-friction and wall heat transfer rate for various parametric values. It is found that velocity, temperature, rate of heat transfer as well as skin-friction are strongly affected by mass leakage through the porous plates.Keywords: transpiration, reactive viscous fluid, porous plates, natural convection, suction/injection
Procedia PDF Downloads 3733426 Long-Term Mechanical and Structural Properties of Metakaolin-Based Geopolymers
Authors: Lenka Matulova
Abstract:
Geopolymers are alumosilicate materials that have long been studied. Despite this fact, little is known about the long-term stability of geopolymer mechanical and structural properties, so crucial for their successful industrial application. To improve understanding, we investigated the effect of four different types of environments on the mechanical and structural properties of a metakaolin-based geopolymer (MK GP). The MK GP samples were stored in laboratory conditions (control samples), in water at 20 °C, in water at 80 °C, and outside exposed to the weather. Compressive and tensile strengths were measured after 28, 56, 90, and 360 days. In parallel, structural properties were analyzed using XRD, SEM, and mercury intrusion porosimetry. Whereas the mechanical properties of the samples in laboratory conditions and in 20 °C water were stable, the mechanical properties of the outdoor samples and the samples 80 °C water decreased noticeably after 360 days. Structural analyses were focused on changes in sample microstructure (developing microcrack network, porosity) and identifying zeolites, the presence of which would indicate detrimental processes in the structure that can change it from amorphous to crystalline. No zeolites were found during the 360-day period in MK GP samples, but the reduction in mechanical properties coincided with a developing network of microcracks and changes in pore size distribution.Keywords: geopolymer, long-term properties, mechanical properties, metakaolin, structural properties
Procedia PDF Downloads 2413425 Small Scale Mobile Robot Auto-Parking Using Deep Learning, Image Processing, and Kinematics-Based Target Prediction
Authors: Mingxin Li, Liya Ni
Abstract:
Autonomous parking is a valuable feature applicable to many robotics applications such as tour guide robots, UV sanitizing robots, food delivery robots, and warehouse robots. With auto-parking, the robot will be able to park at the charging zone and charge itself without human intervention. As compared to self-driving vehicles, auto-parking is more challenging for a small-scale mobile robot only equipped with a front camera due to the camera view limited by the robot’s height and the narrow Field of View (FOV) of the inexpensive camera. In this research, auto-parking of a small-scale mobile robot with a front camera only was achieved in a four-step process: Firstly, transfer learning was performed on the AlexNet, a popular pre-trained convolutional neural network (CNN). It was trained with 150 pictures of empty parking slots and 150 pictures of occupied parking slots from the view angle of a small-scale robot. The dataset of images was divided into a group of 70% images for training and the remaining 30% images for validation. An average success rate of 95% was achieved. Secondly, the image of detected empty parking space was processed with edge detection followed by the computation of parametric representations of the boundary lines using the Hough Transform algorithm. Thirdly, the positions of the entrance point and center of available parking space were predicted based on the robot kinematic model as the robot was driving closer to the parking space because the boundary lines disappeared partially or completely from its camera view due to the height and FOV limitations. The robot used its wheel speeds to compute the positions of the parking space with respect to its changing local frame as it moved along, based on its kinematic model. Lastly, the predicted entrance point of the parking space was used as the reference for the motion control of the robot until it was replaced by the actual center when it became visible again by the robot. The linear and angular velocities of the robot chassis center were computed based on the error between the current chassis center and the reference point. Then the left and right wheel speeds were obtained using inverse kinematics and sent to the motor driver. The above-mentioned four subtasks were all successfully accomplished, with the transformed learning, image processing, and target prediction performed in MATLAB, while the motion control and image capture conducted on a self-built small scale differential drive mobile robot. The small-scale robot employs a Raspberry Pi board, a Pi camera, an L298N dual H-bridge motor driver, a USB power module, a power bank, four wheels, and a chassis. Future research includes three areas: the integration of all four subsystems into one hardware/software platform with the upgrade to an Nvidia Jetson Nano board that provides superior performance for deep learning and image processing; more testing and validation on the identification of available parking space and its boundary lines; improvement of performance after the hardware/software integration is completed.Keywords: autonomous parking, convolutional neural network, image processing, kinematics-based prediction, transfer learning
Procedia PDF Downloads 1323424 Income Generation and Employment Opportunity of the Entrepreneurs and Farmers Through Production, Processing, and Marketing of Medicinal Plants in Bangladesh
Authors: Md. Nuru Miah, A. F. M. Akhter Uddin
Abstract:
Medicinal plants are grown naturally in a tropical environment in Bangladesh and used as drug and therapeutic agents in the health care system. According to Bangladesh Agricultural Research Institute (BARI), there are 722 species of medicinal plants in the country. Of them, 255 plants are utilized by the manufacturers of Ayurvedic and Unani medicines. Medicinal plants like Aloevera, Ashwagonda, shotomul,Tulsi, Vuikumra, Misridana are extensively cultivated in some selected areas as well; where Aloevera scored the highest position in production. In the early 1980, Ayurvedic and Unani companies procured 80 percent of medicinal plants from natural forests, and the rest 20 percent was imported. Now the scenario has changed; 80 percent is imported, and the rest 20 percent is collected from local products(Source: Astudy on sectorbased need assessment of Business promotion council-Herbal products and medicinal plants, page-4). Uttara Development Program Society, a leading Non- Government development organization in Bangladesh, has been implementing a value chain development project under promoting Agricultural commercialization and Enterprises of Pally Karma Sahayak Foundation (PKSF) funded by the International Fund for Agricultural Development (IFAD) in Natore Sadar Upazila from April 2017 to sustainably develop the technological interventions for products and market development. The ultimate goal of the project is to increase income, generate employment and develop this sector as a sustainable business enterprise. Altogether 10,000 farmers (Nursery owners, growers, input supplier, processors, whole sellers, and retailers) are engaged in different activities of the project. The entrepreneurs engaged in medicinal plant cultivation did not know and follow environmental and good agricultural practices. They used to adopt traditional methodology in production and processing. Locally the farmers didn’t have any positive initiative to expand their business as well as developvalue added products. A lot of diversified products could be possible to develop and marketed with the introduction of post-harvest processing technology and market linkage with the local and global buyer. Training is imparted to the nursery owners and herbal growers on production technologies, sowing method, use of organic fertilizers/compost/pesticides, harvesting procedures, and storage facilities. Different types of herbal tea like Rosella, Moringa, Tulshi, and Basak are being produced and packed locally with a good scope of its marketing in different cities of the country. The project has been able to achieve a significant impact in the development of production technologies, but still, there is room for further improvement in processing, packaging, and marketing level. The core intervention of the current project to develop some entrepreneurs for branding, packaging, promotion, and marketing while considering environment friendly practices. The present strategies will strengthen the knowledge and skills of the entrepreneurs for the production and marketing of their products, maintaining worldwide accepted compliance system for easy access to the global market.Keywords: aloe vera, herbs and shrubs, market, interventions
Procedia PDF Downloads 963423 Supply Network Design for Production-Distribution of Fish: A Sustainable Approach Using Mathematical Programming
Authors: Nicolás Clavijo Buriticá, Laura Viviana Triana Sanchez
Abstract:
This research develops a productive context associated with the aquaculture industry in northern Tolima-Colombia, specifically in the town of Lerida. Strategic aspects of chain of fish Production-Distribution, especially those related to supply network design of an association devoted to cultivating, farming, processing and marketing of fish are addressed. This research is addressed from a special approach of Supply Chain Management (SCM) which guides management objectives to the system sustainability; this approach is called Sustainable Supply Chain Management (SSCM). The network design of fish production-distribution system is obtained for the case study by two mathematical programming models that aims to maximize the economic benefits of the chain and minimize total supply chain costs, taking into account restrictions to protect the environment and its implications on system productivity. The results of the mathematical models validated in the productive situation of the partnership under study, called Asopiscinorte shows the variation in the number of open or closed locations in the supply network that determines the final network configuration. This proposed result generates for the case study an increase of 31.5% in the partial productivity of storage and processing, in addition to possible favorable long-term implications, such as attending an agile or not a consumer area, increase or not the level of sales in several areas, to meet in quantity, time and cost of work in progress and finished goods to various actors in the chain.Keywords: Sustainable Supply Chain, mathematical programming, aquaculture industry, Supply Chain Design, Supply Chain Configuration
Procedia PDF Downloads 5393422 Ground State Phases in Two-Mode Quantum Rabi Models
Authors: Suren Chilingaryan
Abstract:
We study two models describing a single two-level system coupled to two boson field modes in either a parallel or orthogonal setup. Both models may be feasible for experimental realization through Raman adiabatic driving in cavity QED. We study their ground state configurations; that is, we find the quantum precursors of the corresponding semi-classical phase transitions. We found that the ground state configurations of both models present the same critical coupling as the quantum Rabi model. Around this critical coupling, the ground state goes from the so-called normal configuration with no excitation, the qubit in the ground state and the fields in the quantum vacuum state, to a ground state with excitations, the qubit in a superposition of ground and excited state, while the fields are not in the vacuum anymore, for the first model. The second model shows a more complex ground state configuration landscape where we find the normal configuration mentioned above, two single-mode configurations, where just one of the fields and the qubit are excited, and a dual-mode configuration, where both fields and the qubit are excited.Keywords: quantum optics, quantum phase transition, cavity QED, circuit QED
Procedia PDF Downloads 3683421 Hierarchical Queue-Based Task Scheduling with CloudSim
Authors: Wanqing You, Kai Qian, Ying Qian
Abstract:
The concepts of Cloud Computing provide users with infrastructure, platform and software as service, which make those services more accessible for people via Internet. To better analysis the performance of Cloud Computing provisioning policies as well as resources allocation strategies, a toolkit named CloudSim proposed. With CloudSim, the Cloud Computing environment can be easily constructed by modelling and simulating cloud computing components, such as datacenter, host, and virtual machine. A good scheduling strategy is the key to achieve the load balancing among different machines as well as to improve the utilization of basic resources. Recently, the existing scheduling algorithms may work well in some presumptive cases in a single machine; however they are unable to make the best decision for the unforeseen future. In real world scenario, there would be numbers of tasks as well as several virtual machines working in parallel. Based on the concepts of multi-queue, this paper presents a new scheduling algorithm to schedule tasks with CloudSim by taking into account several parameters, the machines’ capacity, the priority of tasks and the history log.Keywords: hierarchical queue, load balancing, CloudSim, information technology
Procedia PDF Downloads 4223420 Robust Numerical Scheme for Pricing American Options under Jump Diffusion Models
Authors: Salah Alrabeei, Mohammad Yousuf
Abstract:
The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. However, most of the option pricing models have no analytical solution. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, we solve the American option under jump diffusion models by using efficient time-dependent numerical methods. several techniques are integrated to reduced the overcome the computational complexity. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). Partial fraction decomposition technique is applied to rational approximation schemes to overcome the complexity of inverting polynomial of matrices. The proposed method is easy to implement on serial or parallel versions. Numerical results are presented to prove the accuracy and efficiency of the proposed method.Keywords: integral differential equations, jump–diffusion model, American options, rational approximation
Procedia PDF Downloads 1203419 Design and Development of Real-Time Optimal Energy Management System for Hybrid Electric Vehicles
Authors: Masood Roohi, Amir Taghavipour
Abstract:
This paper describes a strategy to develop an energy management system (EMS) for a charge-sustaining power-split hybrid electric vehicle. This kind of hybrid electric vehicles (HEVs) benefit from the advantages of both parallel and series architecture. However, it gets relatively more complicated to manage power flow between the battery and the engine optimally. The applied strategy in this paper is based on nonlinear model predictive control approach. First of all, an appropriate control-oriented model which was accurate enough and simple was derived. Towards utilization of this controller in real-time, the problem was solved off-line for a vast area of reference signals and initial conditions and stored the computed manipulated variables inside look-up tables. Look-up tables take a little amount of memory. Also, the computational load dramatically decreased, because to find required manipulated variables the controller just needed a simple interpolation between tables.Keywords: hybrid electric vehicles, energy management system, nonlinear model predictive control, real-time
Procedia PDF Downloads 3523418 Physical, Microstructural and Functional Quality Improvements of Cassava-Sorghum Composite Snacks
Authors: Adil Basuki Ahza, Michael Liong, Subarna Suryatman
Abstract:
Healthy chips now dominating the snack market shelves. More than 80% processed snack foods in the market are chips. This research takes the advantages of twin extrusion technology to produce two types of product, i.e. directly expanded and intermediate ready-to-fry or microwavable chips. To improve the functional quality, the cereal-tuber based mix was enriched with antioxidant rich mix of temurui, celery, carrot and isolated soy protein (ISP) powder. Objectives of this research were to find best composite cassava-sorghum ratio, i.e. 60:40, 70:30 and 80:20, to optimize processing conditions of extrusion and study the microstructural, physical and sensorial characteristics of the final products. Optimization was firstly done by applying metering section of extruder barrel temperatures of 120, 130 and 140 °C with screw speeds of 150, 160 and 170 rpm to produce direct expanded product. The intermediate product was extruded in 100 °C and 100 rpm screw speed with feed moisture content of 35, 40 and 45%. The directly expanded products were analyzed for color, hardness, density, microstructure, and organoleptic properties. The results showed that interaction of ratio of cassava-sorghum and cooking methods affected the product's color, hardness, and bulk density (p<0.05). Extrusion processing conditions also significantly affected product's microstructure (p<0.05). The direct expanded snacks of 80:20 cassava-sorghum ratio and fried expanded one 70:30 and 80:20 ratio shown the best organoleptic score (slightly liked) while baking the intermediate product with microwave were resulted sensorial not acceptable quality chips.Keywords: cassava-sorghum composite, extrusion, microstructure, physical characteristics
Procedia PDF Downloads 2823417 The Effects of Sous Vide Technology Combined with Different Herbals on Sensorial and Physical Quality of Fish Species Caught in the Northern Aegean Sea and Marmara Sea
Authors: Zafer Ceylan, Gülgün F.Unal Şengör, Onur Gönülal
Abstract:
In this study, sous vide technology were treated with different herbs into different fish species which were caught from northern Aegean and Marmara Sea. Before samples were packaged under vacuum, herbs had been cut and added at the same ratio into the package. Samples were sliced, the weight of each sample was about 150 g, and packaged under vacuum. During the storage period at 4ºC, taste, odor, texture properties of fish samples treated with sous vide were evaluated by trained panelists. Meanwhile, the effect of different herbs on pH values of the samples was investigated. These results were correlated with sensorial results. Furthermore, the effects of different herbs on L, a, b values of fish samples treated with sous vide were evaluated by color measurement. All sensorial results indicated that the values of samples treated with herbs were higher than that of the control group. Color measurement results and pH values were found parallel with sensorial results.Keywords: Sous vide, fish, herbs, consumer preferences, pH, color measurement
Procedia PDF Downloads 4933416 Experimental Investigation of Air Gap Membrane Distillation System with Heat Recovery
Authors: Yasser Elhenaw, A. Farag, Mohamed El-Ghandour, M. Shatat, G. H. Moustafa
Abstract:
This study investigates the performance of two spiral-wound Air Gap Membrane Distillation (AGMD) units. These units are connected in two different configurations in order to be tested and compared experimentally. In AGMD, the coolant water is used to condensate water vapor leaving membrane via condensing plate. The rejected cooling water has a relativity high temperature which can be used, depending on operation parameters, to increase the thermal efficiency and water productivity. In the first configuration, the seawater feed flows parallel and equally through both units then rejected. The coolant water is divided into the two units, and the heat source is divided into the two heat exchangers. In the second one, only the feed of the first unit is heated while the cooling rejected from the unit is used in heating the feed to the second. The performance of the system, estimated by the water productivity as well as the Gain Output Ratio (GOR), is measured for the two configurations at different feed flow rates, temperatures and salinities. The results show that at steady state condition, the heat recovery configurations lead to an increase in water productivity by 25%.Keywords: membrane distillation, heat transfer, heat recovery, desalination
Procedia PDF Downloads 2673415 Experimental Exploration of Recycled Materials for Potential Application in Interior Design
Authors: E. P. Bhowmik, R. Singh
Abstract:
Certain materials casually thrown away as by-product household waste, such as used tea leaves, used coffee remnants, eggshells, peanut husks, coconut coir, unwanted paper, and pencil shavings- have scope in the hidden properties that they offer as recyclable raw ingredients. This paper aims to explore and experiment with the sustainable potential of such disposed wastes, obtained from domestic and commercial backgrounds, that could otherwise contribute to the field of interior design if mass-collected and repurposed. Research has been conducted on available recorded methods of mass-collection, storage, and processing of such materials by certain brands, designers, and researchers, as well as the various application and angles possible with regards to re-usage. A questionnaire survey was carried out to understand the willingness of the demographics for efforts of the mass collection and their openness to such unconventional materials for interiors. An experiment was also conducted where the selected waste ingredients were used to create small samples that could be used as decorative panels. Comparisons were made for properties like color, smell, texture, relative durability, and weight- and accordingly, applications were suggested. The experiment, therefore, helped to propose to recycle of the common household as a potential surface finish for floors, walls, and ceilings, and even founding material for furniture and decor accessories such as pottery and lamp shades; for non-structural application in both residential and commercial interiors. Common by-product wastes often see their ends at landfills- laymen unaware of their sustainable possibilities dispose of them. However, processing these waste materials and repurposing them by incorporating them into interiors would serve as a sustainable alternative to ethical dilemmas in the construction of interior design/architecture elements.Keywords: interior materials, mass-collection, sustainable, waste recycle
Procedia PDF Downloads 1043414 High Resolution Sandstone Connectivity Modelling: Implications for Outcrop Geological and Its Analog Studies
Authors: Numair Ahmed Siddiqui, Abdul Hadi bin Abd Rahman, Chow Weng Sum, Wan Ismail Wan Yousif, Asif Zameer, Joel Ben-Awal
Abstract:
Advances in data capturing from outcrop studies have made possible the acquisition of high-resolution digital data, offering improved and economical reservoir modelling methods. Terrestrial laser scanning utilizing LiDAR (Light detection and ranging) provides a new method to build outcrop based reservoir models, which provide a crucial piece of information to understand heterogeneities in sandstone facies with high-resolution images and data set. This study presents the detailed application of outcrop based sandstone facies connectivity model by acquiring information gathered from traditional fieldwork and processing detailed digital point-cloud data from LiDAR to develop an intermediate small-scale reservoir sandstone facies model of the Miocene Sandakan Formation, Sabah, East Malaysia. The software RiScan pro (v1.8.0) was used in digital data collection and post-processing with an accuracy of 0.01 m and point acquisition rate of up to 10,000 points per second. We provide an accurate and descriptive workflow to triangulate point-clouds of different sets of sandstone facies with well-marked top and bottom boundaries in conjunction with field sedimentology. This will provide highly accurate qualitative sandstone facies connectivity model which is a challenge to obtain from subsurface datasets (i.e., seismic and well data). Finally, by applying this workflow, we can build an outcrop based static connectivity model, which can be an analogue to subsurface reservoir studies.Keywords: LiDAR, outcrop, high resolution, sandstone faceis, connectivity model
Procedia PDF Downloads 2263413 Crack Width Evaluation for Flexural RC Members with Axial Tension
Authors: Sukrit Ghorai
Abstract:
Proof of controlling crack width is a basic condition for securing suitable performance in serviceability limit state. The cracking in concrete can occur at any time from the casting of time to the years after the concrete has been set in place. Most codes struggle with offering procedure for crack width calculation. There is lack in availability of design charts for designers to compute crack width with ease. The focus of the study is to utilize design charts and parametric equations in calculating crack width with minimum error. The paper contains a simplified procedure to calculate crack width for reinforced concrete (RC) sections subjected to bending with axial tensile force following the guidelines of Euro code [DS EN-1992-1-1 & DS EN-1992-1-2]. Numerical examples demonstrate the application of the suggested procedure. Comparison with parallel analytical tools support the validity of result and show the percentage deviation of crack width in both the procedures. The technique is simple, user-friendly and ready to evolve for a greater spectrum of section sizes and materials.Keywords: concrete structures, crack width calculation, serviceability limit state, structural design, bridge engineering
Procedia PDF Downloads 3833412 Implementation of CNV-CH Algorithm Using Map-Reduce Approach
Authors: Aishik Deb, Rituparna Sinha
Abstract:
We have developed an algorithm to detect the abnormal segment/"structural variation in the genome across a number of samples. We have worked on simulated as well as real data from the BAM Files and have designed a segmentation algorithm where abnormal segments are detected. This algorithm aims to improve the accuracy and performance of the existing CNV-CH algorithm. The next-generation sequencing (NGS) approach is very fast and can generate large sequences in a reasonable time. So the huge volume of sequence information gives rise to the need for Big Data and parallel approaches of segmentation. Therefore, we have designed a map-reduce approach for the existing CNV-CH algorithm where a large amount of sequence data can be segmented and structural variations in the human genome can be detected. We have compared the efficiency of the traditional and map-reduce algorithms with respect to precision, sensitivity, and F-Score. The advantages of using our algorithm are that it is fast and has better accuracy. This algorithm can be applied to detect structural variations within a genome, which in turn can be used to detect various genetic disorders such as cancer, etc. The defects may be caused by new mutations or changes to the DNA and generally result in abnormally high or low base coverage and quantification values.Keywords: cancer detection, convex hull segmentation, map reduce, next generation sequencing
Procedia PDF Downloads 1363411 Numerical Simulation of Flow Past Inline Tandem Cylinders in Uniform Shear Flow
Authors: Rajesh Bhatt, Dilip Kumar Maiti
Abstract:
The incompressible shear flow past a square cylinder placed parallel to a plane wall of side length A in presence of upstream rectangular cylinder of height 0.5A and width 0.25A in an inline tandem arrangement are numerically investigated using finite volume method. The discretized equations are solved by an implicit, time-marching, pressure correction based SIMPLE algorithm. This study provides the qualitative insight in to the dependency of basic structure (i.e. vortex shedding or suppression) of flow over the downstream square cylinder and the upstream rectangular cylinder (and hence the aerodynamic characteristics) on inter-cylinder spacing (S) and Reynolds number (Re). The spacing between the cylinders is varied systematically from S = 0.5A to S = 7.0A so the sensitivity of the flow structure between the cylinders can be inspected. A sudden jump in strouhal number is observed, which shows the transition of flow pattern in the wake of the cylinders. The results are presented at Re = 100 and 200 in term of Strouhal number, RMS and mean of lift and drag coefficients and contour plots for different spacing.Keywords: square cylinder, vortex shedding, isolated, tandem arrangement, spacing distance
Procedia PDF Downloads 549