Search results for: CloudSim
7 Hierarchical Queue-Based Task Scheduling with CloudSim
Authors: Wanqing You, Kai Qian, Ying Qian
Abstract:
The concepts of Cloud Computing provide users with infrastructure, platform and software as service, which make those services more accessible for people via Internet. To better analysis the performance of Cloud Computing provisioning policies as well as resources allocation strategies, a toolkit named CloudSim proposed. With CloudSim, the Cloud Computing environment can be easily constructed by modelling and simulating cloud computing components, such as datacenter, host, and virtual machine. A good scheduling strategy is the key to achieve the load balancing among different machines as well as to improve the utilization of basic resources. Recently, the existing scheduling algorithms may work well in some presumptive cases in a single machine; however they are unable to make the best decision for the unforeseen future. In real world scenario, there would be numbers of tasks as well as several virtual machines working in parallel. Based on the concepts of multi-queue, this paper presents a new scheduling algorithm to schedule tasks with CloudSim by taking into account several parameters, the machines’ capacity, the priority of tasks and the history log.Keywords: hierarchical queue, load balancing, CloudSim, information technology
Procedia PDF Downloads 4226 ACO-TS: an ACO-based Algorithm for Optimizing Cloud Task Scheduling
Authors: Fahad Y. Al-dawish
Abstract:
The current trend by a large number of organizations and individuals to use cloud computing. Many consider it a significant shift in the field of computing. Cloud computing are distributed and parallel systems consisting of a collection of interconnected physical and virtual machines. With increasing request and profit of cloud computing infrastructure, diverse computing processes can be executed on cloud environment. Many organizations and individuals around the world depend on the cloud computing environments infrastructure to carry their applications, platform, and infrastructure. One of the major and essential issues in this environment related to allocating incoming tasks to suitable virtual machine (cloud task scheduling). Cloud task scheduling is classified as optimization problem, and there are several meta-heuristic algorithms have been anticipated to solve and optimize this problem. Good task scheduler should execute its scheduling technique on altering environment and the types of incoming task set. In this research project a cloud task scheduling methodology based on ant colony optimization ACO algorithm, we call it ACO-TS Ant Colony Optimization for Task Scheduling has been proposed and compared with different scheduling algorithms (Random, First Come First Serve FCFS, and Fastest Processor to the Largest Task First FPLTF). Ant Colony Optimization (ACO) is random optimization search method that will be used for assigning incoming tasks to available virtual machines VMs. The main role of proposed algorithm is to minimizing the makespan of certain tasks set and maximizing resource utilization by balance the load among virtual machines. The proposed scheduling algorithm was evaluated by using Cloudsim toolkit framework. Finally after analyzing and evaluating the performance of experimental results we find that the proposed algorithm ACO-TS perform better than Random, FCFS, and FPLTF algorithms in each of the makespaan and resource utilization.Keywords: cloud Task scheduling, ant colony optimization (ACO), cloudsim, cloud computing
Procedia PDF Downloads 4215 A Task Scheduling Algorithm in Cloud Computing
Authors: Ali Bagherinia
Abstract:
Efficient task scheduling method can meet users' requirements, and improve the resource utilization, then increase the overall performance of the cloud computing environment. Cloud computing has new features, such as flexibility, virtualization and etc., in this paper we propose a two levels task scheduling method based on load balancing in cloud computing. This task scheduling method meet user's requirements and get high resource utilization, that simulation results in CloudSim simulator prove this.Keywords: cloud computing, task scheduling, virtualization, SLA
Procedia PDF Downloads 4014 Resource Management Framework in Cloud Computing
Authors: Gagandeep Kaur, Sonal Chawla
Abstract:
In a Cloud Computing environment, resource provisioning, resource allocation and resource scheduling is the most complex issues these days. Cloud User expects the best resource utilization and Cloud Provider expects revenue maximization by considering budget and time constraints. In this research paper, Resource Management Framework has been proposed to allocate the resources to Cloud Users and Cloud Providers in Cloud environment. The main aim of the proposed work is to provide the resources and services to Cloud Providers and Cloud Users in an efficient and effective manner. The proposed framework has been simulated and tested using the CloudSim simulator tool.Keywords: cloud computing, resource allocation, auction, provisioning
Procedia PDF Downloads 1493 Multi-Level Priority Based Task Scheduling Algorithm for Workflows in Cloud Environment
Authors: Anju Bala, Inderveer Chana
Abstract:
Task scheduling is the key concern for the execution of performance-driven workflow applications. As efficient scheduling can have major impact on the performance of the system, task scheduling is often chosen for assigning the request to resources in an efficient way based on cloud resource characteristics. In this paper, priority based task scheduling algorithm has been proposed that prioritizes the tasks based on the length of the instructions. The proposed scheduling approach prioritize the tasks of Cloud applications according to the limits set by six sigma control charts based on dynamic threshold values. Further, the proposed algorithm has been validated through the CloudSim toolkit. The experimental results demonstrate that the proposed algorithm is effective for handling multiple task lists from workflows and in considerably reducing Makespan and Execution time.Keywords: cloud computing, priority based scheduling, task scheduling, VM allocation
Procedia PDF Downloads 5172 Standard Resource Parameter Based Trust Model in Cloud Computing
Authors: Shyamlal Kumawat
Abstract:
Cloud computing is shifting the approach IT capital are utilized. Cloud computing dynamically delivers convenient, on-demand access to shared pools of software resources, platform and hardware as a service through internet. The cloud computing model—made promising by sophisticated automation, provisioning and virtualization technologies. Users want the ability to access these services including infrastructure resources, how and when they choose. To accommodate this shift in the consumption model technology has to deal with the security, compatibility and trust issues associated with delivering that convenience to application business owners, developers and users. Absent of these issues, trust has attracted extensive attention in Cloud computing as a solution to enhance the security. This paper proposes a trusted computing technology through Standard Resource parameter Based Trust Model in Cloud Computing to select the appropriate cloud service providers. The direct trust of cloud entities is computed on basis of the interaction evidences in past and sustained on its present performances. Various SLA parameters between consumer and provider are considered in trust computation and compliance process. The simulations are performed using CloudSim framework and experimental results show that the proposed model is effective and extensible.Keywords: cloud, Iaas, Saas, Paas
Procedia PDF Downloads 3301 Hybrid Bee Ant Colony Algorithm for Effective Load Balancing and Job Scheduling in Cloud Computing
Authors: Thomas Yeboah
Abstract:
Cloud Computing is newly paradigm in computing that promises a delivery of computing as a service rather than a product, whereby shared resources, software, and information are provided to computers and other devices as a utility (like the electricity grid) over a network (typically the Internet). As Cloud Computing is a newly style of computing on the internet. It has many merits along with some crucial issues that need to be resolved in order to improve reliability of cloud environment. These issues are related with the load balancing, fault tolerance and different security issues in cloud environment.In this paper the main concern is to develop an effective load balancing algorithm that gives satisfactory performance to both, cloud users and providers. This proposed algorithm (hybrid Bee Ant Colony algorithm) is a combination of two dynamic algorithms: Ant Colony Optimization and Bees Life algorithm. Ant Colony algorithm is used in this hybrid Bee Ant Colony algorithm to solve load balancing issues whiles the Bees Life algorithm is used for optimization of job scheduling in cloud environment. The results of the proposed algorithm shows that the hybrid Bee Ant Colony algorithm outperforms the performances of both Ant Colony algorithm and Bees Life algorithm when evaluated the proposed algorithm performances in terms of Waiting time and Response time on a simulator called CloudSim.Keywords: ant colony optimization algorithm, bees life algorithm, scheduling algorithm, performance, cloud computing, load balancing
Procedia PDF Downloads 628