Search results for: online and adaptive learning
8582 Adaptive Beamforming with Steering Error and Mutual Coupling between Antenna Sensors
Authors: Ju-Hong Lee, Ching-Wei Liao
Abstract:
Owing to close antenna spacing between antenna sensors within a compact space, a part of data in one antenna sensor would outflow to other antenna sensors when the antenna sensors in an antenna array operate simultaneously. This phenomenon is called mutual coupling effect (MCE). It has been shown that the performance of antenna array systems can be degraded when the antenna sensors are in close proximity. Especially, in a systems equipped with massive antenna sensors, the degradation of beamforming performance due to the MCE is significantly inevitable. Moreover, it has been shown that even a small angle error between the true direction angle of the desired signal and the steering angle deteriorates the effectiveness of an array beamforming system. However, the true direction vector of the desired signal may not be exactly known in some applications, e.g., the application in land mobile-cellular wireless systems. Therefore, it is worth developing robust techniques to deal with the problem due to the MCE and steering angle error for array beamforming systems. In this paper, we present an efficient technique for performing adaptive beamforming with robust capabilities against the MCE and the steering angle error. Only the data vector received by an antenna array is required by the proposed technique. By using the received array data vector, a correlation matrix is constructed to replace the original correlation matrix associated with the received array data vector. Then, the mutual coupling matrix due to the MCE on the antenna array is estimated through a recursive algorithm. An appropriate estimate of the direction angle of the desired signal can also be obtained during the recursive process. Based on the estimated mutual coupling matrix, the estimated direction angle, and the reconstructed correlation matrix, the proposed technique can effectively cure the performance degradation due to steering angle error and MCE. The novelty of the proposed technique is that the implementation procedure is very simple and the resulting adaptive beamforming performance is satisfactory. Simulation results show that the proposed technique provides much better beamforming performance without requiring complicated complexity as compared with the existing robust techniques.Keywords: adaptive beamforming, mutual coupling effect, recursive algorithm, steering angle error
Procedia PDF Downloads 3208581 Using the M-Learning to Support Learning of the Concept of the Derivative
Authors: Elena F. Ruiz, Marina Vicario, Chadwick Carreto, Rubén Peredo
Abstract:
One of the main obstacles in Mexico’s engineering programs is math comprehension, especially in the Derivative concept. Due to this, we present a study case that relates Mobile Computing and Classroom Learning in the “Escuela Superior de Cómputo”, based on the Educational model of the Instituto Politécnico Nacional (competence based work and problem solutions) in which we propose apps and activities to teach the concept of the Derivative. M- Learning is emphasized as one of its lines, as the objective is the use of mobile devices running an app that uses its components such as sensors, screen, camera and processing power in classroom work. In this paper, we employed Augmented Reality (ARRoC), based on the good results this technology has had in the field of learning. This proposal was developed using a qualitative research methodology supported by quantitative research. The methodological instruments used on this proposal are: observation, questionnaires, interviews and evaluations. We obtained positive results with a 40% increase using M-Learning, from the 20% increase using traditional means.Keywords: augmented reality, classroom learning, educational research, mobile computing
Procedia PDF Downloads 3598580 A Sociocultural View of Ethnicity of Parents and Children's Language Learning
Authors: Thapanee Musiget
Abstract:
Ethnic minority children’s language learning is believed that it can be developed through school system. However, many cases prove that these kids are left to challenge with multicultural context at school and sometimes decreased the ability to acquire new learning. Consequently, it is significant for ethnicity parents to consider that prompting their children at home before their actual school age can eliminate negative outcome of children's language acquisition. This paper discusses the approach of instructional use of parents and children language learning in the context of minority language group in Thailand. By conducting this investigation, secondary source of data was gathered with the purpose to point out some primary methods for parents and children in ethnicity. The process of language learning is based on the sociocultural theory of Vygotsky, which highlights expressive communication among individuals as the best motivating force in human development and learning. The article also highlights the role of parents as they lead the instruction approach. In the discussion part, the role of ethnic minority parents as a language instructor is offered as mediator.Keywords: ethnic minority, language learning, multicultural context, sociocultural theory
Procedia PDF Downloads 3888579 A Deep Reinforcement Learning-Based Secure Framework against Adversarial Attacks in Power System
Authors: Arshia Aflaki, Hadis Karimipour, Anik Islam
Abstract:
Generative Adversarial Attacks (GAAs) threaten critical sectors, ranging from fingerprint recognition to industrial control systems. Existing Deep Learning (DL) algorithms are not robust enough against this kind of cyber-attack. As one of the most critical industries in the world, the power grid is not an exception. In this study, a Deep Reinforcement Learning-based (DRL) framework assisting the DL model to improve the robustness of the model against generative adversarial attacks is proposed. Real-world smart grid stability data, as an IIoT dataset, test our method and improves the classification accuracy of a deep learning model from around 57 percent to 96 percent.Keywords: generative adversarial attack, deep reinforcement learning, deep learning, IIoT, generative adversarial networks, power system
Procedia PDF Downloads 358578 Proposing Problem-Based Learning as an Effective Pedagogical Technique for Social Work Education
Authors: Christine K. Fulmer
Abstract:
Social work education is competency based in nature. There is an expectation that graduates of social work programs throughout the world are to be prepared to practice at a level of competence, which is beneficial to both the well-being of individuals and community. Experiential learning is one way to prepare students for competent practice. The use of Problem-Based Learning (PBL) is a form experiential education that has been successful in a number of disciplines to bridge the gap between the theoretical concepts in the classroom to the real world. PBL aligns with the constructivist theoretical approach to learning, which emphasizes the integration of new knowledge with the beliefs students already hold. In addition, the basic tenants of PBL correspond well with the practice behaviors associated with social work practice including multi-disciplinary collaboration and critical thinking. This paper makes an argument for utilizing PBL in social work education.Keywords: social work education, problem-based learning, pedagogy, experiential learning, constructivist theoretical approach
Procedia PDF Downloads 3128577 The Influence of Students’ Learning Factor and Parents’ Involvement in Their Learning and Suspension: The Application of Big Data Analysis of Internet of Things Technology
Authors: Chih Ming Kung
Abstract:
This study is an empirical study examining the enrollment rate and dropout rate of students from the perspectives of students’ learning, parents’ involvement and the learning process. Methods: Using the data collected from the entry website of Internet of Things (IoT), parents’ participation and the installation pattern of exit poll website, an investigation was conducted. Results: This study discovered that in the aspect of the degree of involvement, the attractiveness of courses, self-performance and departmental loyalty exerts significant influences on the four aspects: psychological benefits, physical benefits, social benefits and educational benefits of learning benefits. Parents’ participation also exerts a significant influence on the learning benefits. A suitable tool on the cloud was designed to collect the dynamic big data of students’ learning process. Conclusion: This research’s results can be valuable references for the government when making and promoting related policies, with more macro view and consideration. It is also expected to be contributory to schools for the practical study of promotion for enrollment.Keywords: students’ learning factor, parents’ involvement, involvement, technology
Procedia PDF Downloads 1448576 Personalized Learning: An Analysis Using Item Response Theory
Authors: A. Yacob, N. Hj. Ali, M. H. Yusoff, M. Y. MohdSaman, W. M. A. F. W. Hamzah
Abstract:
Personalized learning becomes increasingly popular which not is restricted by time, place or any other barriers. This study proposes an analysis of Personalized Learning using Item Response Theory which considers course material difficulty and learner ability. The study investigates twenty undergraduate students at TATI University College, who are taking programming subject. By using the IRT, it was found that, finding the most appropriate problem levels to each student include high and low level test items together is not a problem. Thus, the student abilities can be asses more accurately and fairly. Learners who experience more anxiety will affect a heavier cognitive load and receive lower test scores. Instructors are encouraged to provide a supportive learning environment to enhance learning effectiveness because Cognitive Load Theory concerns the limited capacity of the brain to absorb new information.Keywords: assessment, item response theory, cognitive load theory, learning, motivation, performance
Procedia PDF Downloads 3158575 Approach for an Integrative Technology Assessment Method Combining Product Design and Manufacturing Process
Authors: G. Schuh, S. Woelk, D. Schraknepper, A. Such
Abstract:
The systematic evaluation of manufacturing technologies with regard to the potential for product designing constitutes a major challenge. Until now, conventional evaluation methods primarily consider the costs of manufacturing technologies. Thus, the potential of manufacturing technologies for achieving additional product design features is not completely captured. To compensate this deficit, final evaluations of new technologies are mainly intuitive in practice. Therefore, an additional evaluation dimension is needed which takes the potential of manufacturing technologies for specific realizable product designs into account. In this paper, we present the approach of an evaluation method for selecting manufacturing technologies with regard to their potential for product designing. This research is done within the Fraunhofer innovation cluster »AdaM« (Adaptive Manufacturing) which targets the development of resource efficient and adaptive manufacturing technology processes for complex turbo machinery components.Keywords: manufacturing, product design, production, technology assessment, technology management
Procedia PDF Downloads 5328574 Transformation to M-Learning at the Nursing Institute in the Armed Force Hospital Alhada, in Saudi Arabia Based on Activity Theory
Authors: Rahimah Abdulrahman, A. Eardle, Wilfred Alan, Abdel Hamid Soliman
Abstract:
With the rapid development in technology, and advances in learning technologies, m-learning has begun to occupy a great part of our lives. The pace of the life getting together with the need for learning started mobile learning (m-learning) concept. In 2008, Saudi Arabia requested a national plan for the adoption of information technology (IT) across the country. Part of the recommendations of this plan concerns the implementation of mobile learning (m-learning) as well as their prospective applications to higher education within the Kingdom of Saudi Arabia. The overall aim of the research is to explore the main issues that impact the deployment of m-learning in nursing institutes in Saudi Arabia, at the Armed Force Hospitals (AFH), Alhada. This is in order to be able to develop a generic model to enable and assist the educational policy makers and implementers of m-learning, to comprehend and treat those issues effectively. Specifically, the research will explore the concept of m-learning; identify and analyse the main organisational; technological and cultural issue, that relate to the adoption of m-learning; develop a model of m-learning; investigate the perception of the students of the Nursing Institutes to the use of m-learning technologies for their nursing diploma programmes based on their experiences; conduct a validation of the m-learning model with the use of the nursing Institute of the AFH, Alhada in Saudi Arabia, and evaluate the research project as a learning experience and as a contribution to the body of knowledge. Activity Theory (AT) will be adopted for the study due to the fact that it provides a conceptual framework that engenders an understanding of the structure, development and the context of computer-supported activities. The study will be adopt a set of data collection methods which engage nursing students in a quantitative survey, while nurse teachers are engaged through in depth qualitative studies to get first-hand information about the organisational, technological and cultural issues that impact on the deployment of m-learning. The original contribution will be a model for developing m-learning material for classroom-based learning in the nursing institute that can have a general application.Keywords: activity theory (at), mobile learning (m-learning), nursing institute, Saudi Arabia (sa)
Procedia PDF Downloads 3518573 Game-Based Learning in a Higher Education Course: A Case Study with Minecraft Education Edition
Authors: Salvador Antelmo Casanova Valencia
Abstract:
This study documents the use of the Minecraft Education Edition application to explore immersive game-based learning environments. We analyze the contributions of fourth-year university students who are pursuing a degree in Administrative Computing at the Universidad Michoacana de San Nicolas de Hidalgo. In this study, descriptive data and statistical inference are detailed using a quasi-experimental design using the Wilcoxon test. The instruments will provide data validation. Game-based learning in immersive environments necessarily implies greater student participation and commitment, resulting in the study, motivation, and significant improvements, promoting cooperation and autonomous learning.Keywords: game-based learning, gamification, higher education, Minecraft
Procedia PDF Downloads 1618572 Second Language Skill through M-Learning
Authors: Subramaniam Chandran, A. Geetha
Abstract:
This paper addresses three issues: how to prepare the instructional design for imparting English language skill from inter-disciplinary self-learning material; how the disadvantaged students are benefited from such kind of language skill imparted through m-learning; and how do m-learners perform better than the other learners. This paper examines these issues through an experimental study conducted among the distance learners enrolled in a preparatory program for bachelor’s degree. This program is designed for the disadvantaged learners especially for the school drop-outs to qualify to pursue graduate program through distant education. It also explains how mobile learning helps them to enhance their capacity in learning despite their rural background and other disadvantages. In India, nearly half of the students enrolled in schools do not complete their study. The pursuance of higher education is very low when compared with developed countries. This study finds a significant increase in their learning capacity and mobile learning seems to be a viable alternative where the conventional system could not reach the disadvantaged learners. Improving the English language skill is one of the reasons for such kind of performance. Exercises framed from the relevant self-learning material for enhancing English language skill not only improves language skill but also widens the subject-knowledge. This paper explains these issues out of the study conducted among the disadvantaged learners.Keywords: English language skill, disadvantaged learners, distance education, m-learning
Procedia PDF Downloads 4218571 Gender Difference in the Use of Request Strategies by Urdu/Punjabi Native Speakers
Authors: Muzaffar Hussain
Abstract:
Requests strategies are considered as a part of the speech acts, which are frequently used in everyday communication. Each language provides speech acts to the speakers; therefore, the selection of appropriate form seems more culture-specific rather than language. The present paper investigates the gender-based difference in the use of request strategies by native speakers of Urdu/Punjabi male and female who are learning English as a second language. The data for the present study were collected from 68 graduate students, who are learning English as an L2 in Pakistan. They were given an online close-ended questionnaire, based on Discourse Completion Test (DCT). After analyzing the data, it was found that the L1 male Urdu/Punjabi speakers were inclined to use more direct request strategies while the female Urdu/Punjabi speakers used indirect request strategies. This paper also found that in some situations female participants used more direct strategies than male participants. The present study concludes that the use of request strategies is influenced by culture, social status, and power distribution in a society.Keywords: gender variation, request strategies, face-threatening, second language pragmatics, language competence
Procedia PDF Downloads 1888570 Emergentist Metaphorical Creativity: Towards a Model of Analysing Metaphorical Creativity in Interactive Talk
Authors: Afef Badri
Abstract:
Metaphorical creativity does not constitute a static property of discourse. It is an interactive dynamic process created online. There has been a lack of research concerning online produced metaphorical creativity. This paper intends to account for metaphorical creativity in online talk-in-interaction as a dynamic process that emerges as discourse unfolds. It brings together insights from the emergentist approach to the study of metaphor in verbal interactions and insights from conceptual blending approach as a model for analysing online metaphorical constructions to propose a model for studying metaphorical creativity in interactive talk. The model is based on three focal points. First, metaphorical creativity is a dynamic emergent and open-to-change process that evolves in real time as interlocutors constantly blend and re-blend previous metaphorical contributions. Second, it is not a product of isolated individual minds but a joint achievement that is co-constructed and co-elaborated by interlocutors. The third and most important point is that the emergent process of metaphorical creativity is tightly shaped by contextual variables surrounding talk-in-interaction. It is grounded in the framework of interpretation of interlocutors. It is constrained by preceding contributions in a way that creates textual cohesion of the verbal exchange and it is also a goal-oriented process predefined by the communicative intention of each participant in a way that reveals the ideological coherence/incoherence of the entire conversation.Keywords: communicative intention, conceptual blending, the emergentist approach, metaphorical creativity
Procedia PDF Downloads 2578569 Embodied Cognition and Its Implications in Education: An Overview of Recent Literature
Authors: Panagiotis Kosmas, Panayiotis Zaphiris
Abstract:
Embodied Cognition (EC) as a learning paradigm is based on the idea of an inseparable link between body, mind, and environment. In recent years, the advent of theoretical learning approaches around EC theory has resulted in a number of empirical studies exploring the implementation of the theory in education. This systematic literature overview identifies the mainstream of EC research and emphasizes on the implementation of the theory across learning environments. Based on a corpus of 43 manuscripts, published between 2013 and 2017, it sets out to describe the range of topics covered under the umbrella of EC and provides a holistic view of the field. The aim of the present review is to investigate the main issues in EC research related to the various learning contexts. Particularly, the study addresses the research methods and technologies that are utilized, and it also explores the integration of body into the learning context. An important finding from the overview is the potential of the theory in different educational environments and disciplines. However, there is a lack of an explicit pedagogical framework from an educational perspective for a successful implementation in various learning contexts.Keywords: embodied cognition, embodied learning, education, technology, schools
Procedia PDF Downloads 1438568 Evaluation Metrics for Machine Learning Techniques: A Comprehensive Review and Comparative Analysis of Performance Measurement Approaches
Authors: Seyed-Ali Sadegh-Zadeh, Kaveh Kavianpour, Hamed Atashbar, Elham Heidari, Saeed Shiry Ghidary, Amir M. Hajiyavand
Abstract:
Evaluation metrics play a critical role in assessing the performance of machine learning models. In this review paper, we provide a comprehensive overview of performance measurement approaches for machine learning models. For each category, we discuss the most widely used metrics, including their mathematical formulations and interpretation. Additionally, we provide a comparative analysis of performance measurement approaches for metric combinations. Our review paper aims to provide researchers and practitioners with a better understanding of performance measurement approaches and to aid in the selection of appropriate evaluation metrics for their specific applications.Keywords: evaluation metrics, performance measurement, supervised learning, unsupervised learning, reinforcement learning, model robustness and stability, comparative analysis
Procedia PDF Downloads 708567 Effects of Video Games and Online Chat on Mathematics Performance in High School: An Approach of Multivariate Data Analysis
Authors: Lina Wu, Wenyi Lu, Ye Li
Abstract:
Regarding heavy video game players for boys and super online chat lovers for girls as a symbolic phrase in the current adolescent culture, this project of data analysis verifies the displacement effect on deteriorating mathematics performance. To evaluate correlation or regression coefficients between a factor of playing video games or chatting online and mathematics performance compared with other factors, we use multivariate analysis technique and take gender difference into account. We find the most important reason for the negative sign of the displacement effect on mathematics performance due to students’ poor academic background. Statistical analysis methods in this project could be applied to study internet users’ academic performance from the high school education to the college education.Keywords: correlation coefficients, displacement effect, multivariate analysis technique, regression coefficients
Procedia PDF Downloads 3618566 Detect QOS Attacks Using Machine Learning Algorithm
Authors: Christodoulou Christos, Politis Anastasios
Abstract:
A large majority of users favoured to wireless LAN connection since it was so simple to use. A wireless network can be the target of numerous attacks. Class hijacking is a well-known attack that is fairly simple to execute and has significant repercussions on users. The statistical flow analysis based on machine learning (ML) techniques is a promising categorization methodology. In a given dataset, which in the context of this paper is a collection of components representing frames belonging to various flows, machine learning (ML) can offer a technique for identifying and characterizing structural patterns. It is possible to classify individual packets using these patterns. It is possible to identify fraudulent conduct, such as class hijacking, and take necessary action as a result. In this study, we explore a way to use machine learning approaches to thwart this attack.Keywords: wireless lan, quality of service, machine learning, class hijacking, EDCA remapping
Procedia PDF Downloads 578565 Life in the Time of Lockdown: An Analysis of the Lockdown Imposed during the First Wave of the Novel Corona Virus Pandemic and the Resultant Stress and Anxiety It Caused
Authors: Charu Kriti
Abstract:
The year 2020 will be remembered in history as the year when everything changed suddenly. As the world is engrossed in fighting a pandemic, individual life has taken a hit. The sudden imposition of lockdown, the perpetual fear of testing positive for the COVID virus, and rescheduling one’s entire life around this one global phenomenon have created unprecedented stress among all cadres. This paper aims to highlight the level of stress that students face during the shift of the classroom from the physical setup to the virtual one. The paper takes into account the day-to-day hassles that a student faces during online classes. The paper also attempts to analyse these from the other perspective of the students’ lives and the difficulties faced by them on all fronts. This is an empirical research paper that takes into account responses from a total of 4,241 students. The responses have been collected via the online survey, which is being assessed and inferred for the purposes of this paper. The final results show the extent of stress that online classes have induced upon the students.Keywords: anxiety, COVID, stress, anxiety disorder
Procedia PDF Downloads 808564 The Effects of Learning Engagement on Interpreting Performance among English Major Students
Authors: Jianhua Wang, Ying Zhou, Xi Zhang
Abstract:
To establish the influential mechanism of learning engagement on interpreter’s performance, the present study submitted a questionnaire to a sample of 927 English major students with 804 valid ones and used the structural equation model as the basis for empirical analysis and statistical inference on the sample data. In order to explore the mechanism for interpreting learning engagement on student interpreters’ performance, a path model of interpreting processes with three variables of ‘input-environment-output’ was constructed. The results showed that the effect of each ‘environment’ variable on interpreting ability was different from and greater than the ‘input’ variable, and learning engagement was the greatest influencing factor. At the same time, peer interaction on interpreting performance has significant influence. Results suggest that it is crucial to provide effective guidance for optimizing learning engagement and interpreting teaching research by both improving the environmental support and building the platform of peer interaction, beginning with learning engagement.Keywords: learning engagement, interpreting performance, interpreter training, English major students
Procedia PDF Downloads 2058563 The Role of Optimization and Machine Learning in e-Commerce Logistics in 2030
Authors: Vincenzo Capalbo, Gianpaolo Ghiani, Emanuele Manni
Abstract:
Global e-commerce sales have reached unprecedented levels in the past few years. As this trend is only predicted to go up as we continue into the ’20s, new challenges will be faced by companies when planning and controlling e-commerce logistics. In this paper, we survey the related literature on Optimization and Machine Learning as well as on combined methodologies. We also identify the distinctive features of next-generation planning algorithms - namely scalability, model-and-run features and learning capabilities - that will be fundamental to cope with the scale and complexity of logistics in the next decade.Keywords: e-commerce, hardware acceleration, logistics, machine learning, mixed integer programming, optimization
Procedia PDF Downloads 2468562 Comparative Learning Challenges Experienced by Students in Universities of Developing Nations in Sub-Saharan Africa
Authors: Chinaza Uleanya, Martin Duma, Bongani Gamede
Abstract:
The study investigated learning challenges experienced by students in universities situated in developing sub-Saharan African countries using selected universities in South Africa and Nigeria. Questionnaires were administered to 2,335 randomly selected students from selected universities in South Africa and Nigeria. The outcome of the study shows that six common learning challenges are visible in developing sub-Sahara African universities. The causes of these learning challenges cut across the failure in responsibilities of the various stakeholders in the field of education and the effects are monumental both to the students and society. This paper suggests recommendations to university administrators, education policy makers and implementers on the need to take education more seriously, to review and implement appropriate policies, and to ensure provision of quality education through the supply of adequate amenities and other motivating factors.Keywords: learning, challenges, learning challenges, access with success, participatory access
Procedia PDF Downloads 2968561 MATLAB Supported Learning and Students' Conceptual Understanding of Functions of Two Variables: Experiences from Wolkite University
Authors: Eyasu Gemech, Kassa Michael, Mulugeta Atnafu
Abstract:
A non-equivalent group's quasi-experiment research was conducted at Wolkite University to investigate MATLAB supported learning and students' conceptual understanding in learning Applied Mathematics II using four different comparative instructional approaches: MATLAB supported traditional lecture method, MATLAB supported collaborative method, only collaborative method, and only traditional lecture method. Four intact classes of mechanical engineering groups 1 and 2, garment engineering and textile engineering students were randomly selected out of eight departments. The first three departments were considered as treatment groups and the fourth one 'Textile engineering' was assigned as a comparison group. The departments had 30, 29, 35 and 32 students respectively. The results of the study show that there is a significant mean difference in students' conceptual understanding between groups of students learning through MATLAB supported collaborative method and the other learning approaches. Students who were learned through MATLAB technology-supported learning in combination with collaborative method were found to understand concepts of functions of two variables better than students learning through the other methods of learning. These, hence, are informative of the potential approaches universities would follow for a better students’ understanding of concepts.Keywords: MATLAB supported collaborative method, MATLAB supported learning, collaborative method, conceptual understanding, functions of two variables
Procedia PDF Downloads 2758560 Poor Cognitive Flexibility as Suggested Basis for Learning Difficulties among Children with Moderate-INTO-Severe Asthma: Evidence from WCSTPerformance
Authors: Haitham Taha
Abstract:
The cognitive flexibility of 27 asthmatic children with learning difficulties was tested by using the Wisconsin card sorting test (WCST) and compared to the performances of 30 non-asthmatic children who have persistence learning difficulties also. The results revealed that the asthmatic group had poor performance through all the WCST psychometric parameters and especially the preservative errors one. The results were discussed in light of the postulation that poor executive functions and specifically poor cognitive flexibility are in the basis of the learning difficulties of asthmatic children with learning difficulties. Neurophysiologic framework was suggested for explaining the etiology of poor executive functions and cognitive flexibility among children with moderate into severe asthma.Keywords: asthma, learning disabilities, executive functions, cognitive flexibility, WCST
Procedia PDF Downloads 5008559 An Adaptive Back-Propagation Network and Kalman Filter Based Multi-Sensor Fusion Method for Train Location System
Authors: Yu-ding Du, Qi-lian Bao, Nassim Bessaad, Lin Liu
Abstract:
The Global Navigation Satellite System (GNSS) is regarded as an effective approach for the purpose of replacing the large amount used track-side balises in modern train localization systems. This paper describes a method based on the data fusion of a GNSS receiver sensor and an odometer sensor that can significantly improve the positioning accuracy. A digital track map is needed as another sensor to project two-dimensional GNSS position to one-dimensional along-track distance due to the fact that the train’s position can only be constrained on the track. A model trained by BP neural network is used to estimate the trend positioning error which is related to the specific location and proximate processing of the digital track map. Considering that in some conditions the satellite signal failure will lead to the increase of GNSS positioning error, a detection step for GNSS signal is applied. An adaptive weighted fusion algorithm is presented to reduce the standard deviation of train speed measurement. Finally an Extended Kalman Filter (EKF) is used for the fusion of the projected 1-D GNSS positioning data and the 1-D train speed data to get the estimate position. Experimental results suggest that the proposed method performs well, which can reduce positioning error notably.Keywords: multi-sensor data fusion, train positioning, GNSS, odometer, digital track map, map matching, BP neural network, adaptive weighted fusion, Kalman filter
Procedia PDF Downloads 2508558 Diagnosis of the Lubrification System of a Gas Turbine Using the Adaptive Neuro-Fuzzy Inference System
Authors: H. Mahdjoub, B. Hamaidi, B. Zerouali, S. Rouabhia
Abstract:
The issue of fault detection and diagnosis (FDD) has gained widespread industrial interest in process condition monitoring applications. Accordingly, the use of neuro-fuzzy technic seems very promising. This paper treats a diagnosis modeling a strategic equipment of an industrial installation. We propose a diagnostic tool based on adaptive neuro-fuzzy inference system (ANFIS). The neuro-fuzzy network provides an abductive diagnosis. Moreover, it takes into account the uncertainties on the maintenance knowledge by giving a fuzzy characterization of each cause. This work was carried out with real data of a lubrication circuit from the gas turbine. The machine of interest is a gas turbine placed in a gas compressor station at South Industrial Centre (SIC Hassi Messaoud Ouargla, Algeria). We have defined the zones of good and bad functioning, and the results are presented to demonstrate the advantages of the proposed method.Keywords: fault detection and diagnosis, lubrication system, turbine, ANFIS, training, pattern recognition
Procedia PDF Downloads 4888557 A Digital Twin Approach to Support Real-time Situational Awareness and Intelligent Cyber-physical Control in Energy Smart Buildings
Authors: Haowen Xu, Xiaobing Liu, Jin Dong, Jianming Lian
Abstract:
Emerging smart buildings often employ cyberinfrastructure, cyber-physical systems, and Internet of Things (IoT) technologies to increase the automation and responsiveness of building operations for better energy efficiency and lower carbon emission. These operations include the control of Heating, Ventilation, and Air Conditioning (HVAC) and lighting systems, which are often considered a major source of energy consumption in both commercial and residential buildings. Developing energy-saving control models for optimizing HVAC operations usually requires the collection of high-quality instrumental data from iterations of in-situ building experiments, which can be time-consuming and labor-intensive. This abstract describes a digital twin approach to automate building energy experiments for optimizing HVAC operations through the design and development of an adaptive web-based platform. The platform is created to enable (a) automated data acquisition from a variety of IoT-connected HVAC instruments, (b) real-time situational awareness through domain-based visualizations, (c) adaption of HVAC optimization algorithms based on experimental data, (d) sharing of experimental data and model predictive controls through web services, and (e) cyber-physical control of individual instruments in the HVAC system using outputs from different optimization algorithms. Through the digital twin approach, we aim to replicate a real-world building and its HVAC systems in an online computing environment to automate the development of building-specific model predictive controls and collaborative experiments in buildings located in different climate zones in the United States. We present two case studies to demonstrate our platform’s capability for real-time situational awareness and cyber-physical control of the HVAC in the flexible research platforms within the Oak Ridge National Laboratory (ORNL) main campus. Our platform is developed using adaptive and flexible architecture design, rendering the platform generalizable and extendable to support HVAC optimization experiments in different types of buildings across the nation.Keywords: energy-saving buildings, digital twins, HVAC, cyber-physical system, BIM
Procedia PDF Downloads 1078556 A Neuroscience-Based Learning Technique: Framework and Application to STEM
Authors: Dante J. Dorantes-González, Aldrin Balsa-Yepes
Abstract:
Existing learning techniques such as problem-based learning, project-based learning, or case study learning are learning techniques that focus mainly on technical details, but give no specific guidelines on learner’s experience and emotional learning aspects such as arousal salience and valence, being emotional states important factors affecting engagement and retention. Some approaches involving emotion in educational settings, such as social and emotional learning, lack neuroscientific rigorousness and use of specific neurobiological mechanisms. On the other hand, neurobiology approaches lack educational applicability. And educational approaches mainly focus on cognitive aspects and disregard conditioning learning. First, authors start explaining the reasons why it is hard to learn thoughtfully, then they use the method of neurobiological mapping to track the main limbic system functions, such as the reward circuit, and its relations with perception, memories, motivations, sympathetic and parasympathetic reactions, and sensations, as well as the brain cortex. The authors conclude explaining the major finding: The mechanisms of nonconscious learning and the triggers that guarantee long-term memory potentiation. Afterward, the educational framework for practical application and the instructors’ guidelines are established. An implementation example in engineering education is given, namely, the study of tuned-mass dampers for earthquake oscillations attenuation in skyscrapers. This work represents an original learning technique based on nonconscious learning mechanisms to enhance long-term memories that complement existing cognitive learning methods.Keywords: emotion, emotion-enhanced memory, learning technique, STEM
Procedia PDF Downloads 908555 Enhancing Fall Detection Accuracy with a Transfer Learning-Aided Transformer Model Using Computer Vision
Authors: Sheldon McCall, Miao Yu, Liyun Gong, Shigang Yue, Stefanos Kollias
Abstract:
Falls are a significant health concern for older adults globally, and prompt identification is critical to providing necessary healthcare support. Our study proposes a new fall detection method using computer vision based on modern deep learning techniques. Our approach involves training a trans- former model on a large 2D pose dataset for general action recognition, followed by transfer learning. Specifically, we freeze the first few layers of the trained transformer model and train only the last two layers for fall detection. Our experimental results demonstrate that our proposed method outperforms both classical machine learning and deep learning approaches in fall/non-fall classification. Overall, our study suggests that our proposed methodology could be a valuable tool for identifying falls.Keywords: healthcare, fall detection, transformer, transfer learning
Procedia PDF Downloads 1418554 Using Problem-Based Learning on Teaching Early Intervention for College Students
Authors: Chen-Ya Juan
Abstract:
In recent years, the increasing number of children with special needs has brought a lot of attention by many scholars and experts in education, which enforced the preschool teachers face the harsh challenge in the classroom. To protect the right of equal education for all children, enhance the quality of children learning, and take care of the needs of children with special needs, the special education paraprofessional becomes one of the future employment trends for students of the department of the early childhood care and education. Problem-based learning is a problem-oriented instruction, which is different from traditional instruction. The instructor first designed an ambiguous problem direction, following the basic knowledge of early intervention, students had to find clues to solve the problem defined by themselves. In the class, the total instruction included 20 hours, two hours per week. The primary purpose of this paper is to investigate the relationship of student academic scores, self-awareness, learning motivation, learning attitudes, and early intervention knowledge. A total of 105 college students participated in this study and 97 questionnaires were effective. The effective response rate was 90%. The student participants included 95 females and two males. The average age of the participants was 19 years old. The questionnaires included 125 questions divided into four major dimensions: (1) Self-awareness, (2) learning motivation, (3) learning attitudes, and (4) early intervention knowledge. The results indicated (1) the scores of self-awareness were 58%; the scores of the learning motivations was 64.9%; the scores of the learning attitudes was 55.3%. (2) After the instruction, the early intervention knowledge has been increased to 64.2% from 38.4%. (3) Student’s academic performance has positive relationship with self-awareness (p < 0.05; R = 0.506), learning motivation (p < 0.05; R = 0.487), learning attitudes (p < 0.05; R = 0.527). The results implied that although students had gained early intervention knowledge by using PBL instruction, students had medium scores on self-awareness and learning attitudes, medium high in learning motivations.Keywords: college students, children with special needs, problem-based learning, learning motivation
Procedia PDF Downloads 1568553 Deleterious SNP’s Detection Using Machine Learning
Authors: Hamza Zidoum
Abstract:
This paper investigates the impact of human genetic variation on the function of human proteins using machine-learning algorithms. Single-Nucleotide Polymorphism represents the most common form of human genome variation. We focus on the single amino-acid polymorphism located in the coding region as they can affect the protein function leading to pathologic phenotypic change. We use several supervised Machine Learning methods to identify structural properties correlated with increased risk of the missense mutation being damaging. SVM associated with Principal Component Analysis give the best performance.Keywords: single-nucleotide polymorphism, machine learning, feature selection, SVM
Procedia PDF Downloads 374