Search results for: bending tests
3601 Investigating the Characteristics of Multi-Plastic Composites Prepared from a Mixture of Silk Fibers and Recycled Polycarbonate
Authors: Razieh Shamsi, Mehdi Faezipour, Ali Abdolkhani
Abstract:
In this research, the characteristics of composites prepared from waste silk fibers and recycled polycarbonate polymer (used compacted boards) at four levels of 0, 10, 20, and 30% (silk fibers) and using 2% N- 2-Aminoethyl-3-Aminopropyltrimethoxysilane was investigated as a coupling agent and melt process method. Silk fibers (carpet weaving waste) with dimensions of 8-18 mm were prepared, and recycled polymer with 9 mesh grading was ground. Production boards in 3 thicknesses, 3 mm (tensile test samples), 5 mm (bending test samples, water absorption, and thickness shrinkage), 7 mm (impact resistance test samples) ) with a specific weight of 1 gram per cubic centimeter, hot pressing time and temperature of 12 minutes and 190 degrees Celsius with a pressure of 130 bar, cold pressing time of 6 minutes with a pressure of 50 bar and using the coupling agent N- (2- Aminoethyl)-3-aminopropyltrimethoxysilane was prepared in a constant amount of 2% of the dry weight of the filler. The results showed that, in general, by adding silk fibers to the base polymer, compared to the control samples (pure recycled polycarbonate polymer) and also by increasing the amount of silk fibers, almost all the resistances increased. The amount of water absorption of the constructed composite increased with the increase in the amount of silk fibers, and the thickness absorption was equal to 0% even after 72 hours of immersion in water. The thermal resistance of the pure recycled polymer was higher than the prepared composites, and by adding silk fibers to the base polymer and also by increasing the amount of silk fibers from 10 to 30%, the thermal resistance of the composites decreased.Keywords: wood composite, recycled polycarbonate, silk fibers, polymer
Procedia PDF Downloads 903600 Spatiotemporal Variability in Rainfall Trends over Sinai Peninsula Using Nonparametric Methods and Discrete Wavelet Transforms
Authors: Mosaad Khadr
Abstract:
Knowledge of the temporal and spatial variability of rainfall trends has been of great concern for efficient water resource planning, management. In this study annual, seasonal and monthly rainfall trends over the Sinai Peninsula were analyzed by using absolute homogeneity tests, nonparametric Mann–Kendall (MK) test and Sen’s slope estimator methods. The homogeneity of rainfall time-series was examined using four absolute homogeneity tests namely, the Pettitt test, standard normal homogeneity test, Buishand range test, and von Neumann ratio test. Further, the sequential change in the trend of annual and seasonal rainfalls is conducted using sequential MK (SQMK) method. Then the trend analysis based on discrete wavelet transform technique (DWT) in conjunction with SQMK method is performed. The spatial patterns of the detected rainfall trends were investigated using a geostatistical and deterministic spatial interpolation technique. The results achieved from the Mann–Kendall test to the data series (using the 5% significance level) highlighted that rainfall was generally decreasing in January, February, March, November, December, wet season, and annual rainfall. A significant decreasing trend in the winter and annual rainfall with significant levels were inferred based on the Mann-Kendall rank statistics and linear trend. Further, the discrete wavelet transform (DWT) analysis reveal that in general, intra- and inter-annual events (up to 4 years) are more influential in affecting the observed trends. The nature of the trend captured by both methods is similar for all of the cases. On the basis of spatial trend analysis, significant rainfall decreases were also noted in the investigated stations. Overall, significant downward trends in winter and annual rainfall over the Sinai Peninsula was observed during the study period.Keywords: trend analysis, rainfall, Mann–Kendall test, discrete wavelet transform, Sinai Peninsula
Procedia PDF Downloads 1683599 Viscoelastic Behavior of Human Bone Tissue under Nanoindentation Tests
Authors: Anna Makuch, Grzegorz Kokot, Konstanty Skalski, Jakub Banczorowski
Abstract:
Cancellous bone is a porous composite of a hierarchical structure and anisotropic properties. The biological tissue is considered to be a viscoelastic material, but many studies based on a nanoindentation method have focused on their elasticity and microhardness. However, the response of many organic materials depends not only on the load magnitude, but also on its duration and time course. Depth Sensing Indentation (DSI) technique has been used for examination of creep in polymers, metals and composites. In the indentation tests on biological samples, the mechanical properties are most frequently determined for animal tissues (of an ox, a monkey, a pig, a rat, a mouse, a bovine). However, there are rare reports of studies of the bone viscoelastic properties on microstructural level. Various rheological models were used to describe the viscoelastic behaviours of bone, identified in the indentation process (e. g Burgers model, linear model, two-dashpot Kelvin model, Maxwell-Voigt model). The goal of the study was to determine the influence of creep effect on the mechanical properties of human cancellous bone in indentation tests. The aim of this research was also the assessment of the material properties of bone structures, having in mind the energy aspects of the curve (penetrator loading-depth) obtained in the loading/unloading cycle. There was considered how the different holding times affected the results within trabecular bone.As a result, indentation creep (CIT), hardness (HM, HIT, HV) and elasticity are obtained. Human trabecular bone samples (n=21; mean age 63±15yrs) from the femoral heads replaced during hip alloplasty were removed and drained from alcohol of 1h before the experiment. The indentation process was conducted using CSM Microhardness Tester equipped with Vickers indenter. Each sample was indented 35 times (7 times for 5 different hold times: t1=0.1s, t2=1s, t3=10s, t4=100s and t5=1000s). The indenter was advanced at a rate of 10mN/s to 500mN. There was used Oliver-Pharr method in calculation process. The increase of hold time is associated with the decrease of hardness parameters (HIT(t1)=418±34 MPa, HIT(t2)=390±50 MPa, HIT(t3)= 313±54 MPa, HIT(t4)=305±54 MPa, HIT(t5)=276±90 MPa) and elasticity (EIT(t1)=7.7±1.2 GPa, EIT(t2)=8.0±1.5 GPa, EIT(t3)=7.0±0.9 GPa, EIT(t4)=7.2±0.9 GPa, EIT(t5)=6.2±1.8 GPa) as well as with the increase of the elastic (Welastic(t1)=4.11∙10-7±4.2∙10-8Nm, Welastic(t2)= 4.12∙10-7±6.4∙10-8 Nm, Welastic(t3)=4.71∙10-7±6.0∙10-9 Nm, Welastic(t4)= 4.33∙10-7±5.5∙10-9Nm, Welastic(t5)=5.11∙10-7±7.4∙10-8Nm) and inelastic (Winelastic(t1)=1.05∙10-6±1.2∙10-7 Nm, Winelastic(t2) =1.07∙10-6±7.6∙10-8 Nm, Winelastic(t3)=1.26∙10-6±1.9∙10-7Nm, Winelastic(t4)=1.56∙10-6± 1.9∙10-7 Nm, Winelastic(t5)=1.67∙10-6±2.6∙10-7)) reaction of materials. The indentation creep increased logarithmically (R2=0.901) with increasing hold time: CIT(t1) = 0.08±0.01%, CIT(t2) = 0.7±0.1%, CIT(t3) = 3.7±0.3%, CIT(t4) = 12.2±1.5%, CIT(t5) = 13.5±3.8%. The pronounced impact of creep effect on the mechanical properties of human cancellous bone was observed in experimental studies. While the description elastic-inelastic, and thus the Oliver-Pharr method for data analysis, may apply in few limited cases, most biological tissues do not exhibit elastic-inelastic indentation responses. Viscoelastic properties of tissues may play a significant role in remodelling. The aspect is still under an analysis and numerical simulations. Acknowledgements: The presented results are part of the research project founded by National Science Centre (NCN), Poland, no.2014/15/B/ST7/03244.Keywords: bone, creep, indentation, mechanical properties
Procedia PDF Downloads 1713598 The Impact of Smart Educational Aids in Learning Listening Among Pupils with Attention and Listening Problems
Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Adham Al Yaari, Ayah Al Yaari, Ayman Al Yaari, Montaha Al Yaari, Sajedah Al Yaari, Fatehi Eissa
Abstract:
The recent rise of smart educational aids and the move away from traditional listening aids are leading to a fundamental shift in the way in which individuals with attention and listening problems (ALP) manipulate listening inputs and/or act appropriately to the spoken information presented to them. A total sample of twenty-six ALP pupils (m=20 and f=6) between 7-12 years old was selected from different strata based on gender, region and school. In the sample size, thirteen (10 males and 3 females) received the treatment in terms of smart classes provided with smart educational aids in a listening course that lasted for four months, while others did not (they studied the same course by the same instructor but in ordinary class). A pretest was administered to assess participants’ levels, and a posttest was given to evaluate their attention and listening comprehension performance, namely in phonetic and phonological tests with sociolinguistic themes that have been designed for this purpose. Test results were analyzed both psychoneurolinguistically and statistically. Results reveal a remarkable change in pupils’ behavioral listening where scores witnessed a significant difference in the performance of the experimental ALP group in the pretest compared to the posttest (Pupils performed better at the pretest-posttest on phonetics than at the two tests on phonology). It is concluded that smart educational aids designed for listening skills help not only increase the listening command of pupils with ALP to understand what they listen to but also develop their interactive listening capability and, at the same rate, are responsible for increasing concentrated and in-depth listening capacity. Plus, ALP pupils become able to grasp the audio content of text recordings, including educational audio recordings, news, oral stories and tales, views, spiritual/religious text and general knowledge. However, the pupils have not experienced individual smart audio-visual aids that connect listening to other language receptive and productive skills, which could be the future area of research.Keywords: smart educational aids, listening attention, pupils, problems
Procedia PDF Downloads 503597 Application of Ground Penetrating Radar and Light Falling Weight Deflectometer in Ballast Quality Assessment
Authors: S. Cafiso, B. Capace, A. Di Graziano, C. D’Agostino
Abstract:
Systematic monitoring of the trackbed is necessary to assure safety and quality of service in the railway system. Moreover, to produce effective management of the maintenance treatments, the assessment of bearing capacity of the railway trackbed must include ballast, sub-ballast and subgrade layers at different depths. Consequently, there is an increasing interest in obtaining a consistent measure of ballast bearing capacity with no destructive tests (NDTs) able to work in the physical and time restrictions of railway tracks in operation. Moreover, in the case of the local railway with reduced gauge, the use of the traditional high-speed track monitoring systems is not feasible. In that framework, this paper presents results from in site investigation carried out on ballast and sleepers with Ground Penetrating Radar (GPR) and Light Falling Weight Deflectometer (LWD). These equipment are currently used in road pavement maintenance where they have shown their reliability and effectiveness. Application of such Non-Destructive Tests in railway maintenance is promising but in the early stage of the investigation. More specifically, LWD was used to estimate the stiffness of ballast and sleeper support, as well. LWD, despite the limited load (6 kN in the trial test) applied directly on the sleeper, was able to detect defects in the bearing capacity at the Sleeper/Ballast interface. A dual frequency GPR was applied to detect the presence of layers’ discontinuities at different depths due to fouling phenomena that are the main causes of changing in the layer dielectric proprieties within the ballast thickness. The frequency of 2000Mhz provided high-resolution data to approximately 0.4m depth, while frequency of 600Mhz showed greater depth penetration up to 1.5 m. In the paper literature review and trial in site experience are used to identify Strengths, Weaknesses, Opportunities, and Threats (SWOT analysis) of the application of GPR and LWD for the assessment of bearing capacity of railway track-bed.Keywords: bearing capacity, GPR, LWD, no destructive test, railway track
Procedia PDF Downloads 1263596 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second
Authors: P. V. Pramila , V. Mahesh
Abstract:
Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients esulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF 25, PEF,FEF 25-75, FEF50, and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF 25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects). It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.Keywords: FEV, multivariate adaptive regression splines pulmonary function test, random forest
Procedia PDF Downloads 3083595 In vivo Determination of Anticoagulant Property of the Tentacle Extract of Aurelia aurita (Moon Jellyfish) Using Sprague-Dawley Rats
Authors: Bea Carmel H. Casiding, Charmaine A. Guy, Funny Jovis P. Malasan, Katrina Chelsea B. Manlutac, Danielle Ann N. Novilla, Marianne R. Oliveros, Magnolia C. Sibulo
Abstract:
Moon jellyfish, Aurelia aurita, has become a popular research organism for diverse studies. Recent studies have verified the prevention of blood clotting properties of the moon jellyfish tentacle extract through in vitro methods. The purpose of this study was to validate the blood clotting ability of A. aurita tentacle extract using in vivo method of experimentation. The tentacles of A. aurita jellyfish were excised and filtered then centrifuged at 3000xg for 10 minutes. The crude nematocyst extract was suspended in 1:6 ratios with phosphate buffer solution and sonicated for three periods of 20 seconds each at 50 Hz. Protein concentration of the extract was determined using Bradford Assay. Bovine serum albumin was the standard solution used with the following concentrations: 35.0, 70.0, 105.0, 140.0, 175.0, 210.0, 245.0, and 280.0 µg/mL. The absorbance was read at 595 nm. Toxicity testing from OECD guidelines was adapted. The extract suspended in phosphate-buffered saline solution was arbitrarily set into three doses (0.1mg/kg, 0.3mg/kg, 0.5mg/kg) and were administered daily for five days to the experimental groups of five male Sprague-Dawley rats (one dose per group). Before and after the administration period, bleeding time and clotting time tests were performed. The One-way Analysis of Variance (ANOVA) was used to analyze the difference of before and after bleeding time and clotting time from the three treatment groups, time, positive and negative control groups. The average protein concentration of the sonicated crude tentacle extract was 206.5 µg/mL. The highest dose administered (0.5mg/kg) produced significant increase in the time for both bleeding and clotting tests. However, the preceding lower dose (0.3mg/kg) only was significantly effective for clotting time test. The protein contained in the tentacle extract with a concentration of 206.5 mcg/mL and dose of 0.3 mg/kg and 0.5 mg/kg of A. aurita elicited anticoagulating activity.Keywords: anticoagulant, bleeding time test, clotting time test, moon jellyfish
Procedia PDF Downloads 3963594 Bioremediation Influence on Shear Strength of Contaminated Soils
Authors: Tawar Mahmoodzadeh
Abstract:
Today soil contamination is an unavoidable issue; Irrespective of environmental impact, which happens during the soil contaminating and remediating process, the influence of this phenomenon on soil has not been searched thoroughly. In this study, unconfined compression and compaction tests were done on samples, contaminated and treated soil after 50 days of bio-treatment. The results show that rising in the amount of oil, cause decreased optimum water content and maximum dry density and increased strength. However, almost 65% of this contamination terminated by using a Bioremer as a bioremediation agent.Keywords: oil contamination soil, shear strength, compaction, bioremediation
Procedia PDF Downloads 1523593 Construction and Validation of a Hybrid Lumbar Spine Model for the Fast Evaluation of Intradiscal Pressure and Mobility
Authors: Dicko Ali Hamadi, Tong-Yette Nicolas, Gilles Benjamin, Faure Francois, Palombi Olivier
Abstract:
A novel hybrid model of the lumbar spine, allowing fast static and dynamic simulations of the disc pressure and the spine mobility, is introduced in this work. Our contribution is to combine rigid bodies, deformable finite elements, articular constraints, and springs into a unique model of the spine. Each vertebra is represented by a rigid body controlling a surface mesh to model contacts on the facet joints and the spinous process. The discs are modeled using a heterogeneous tetrahedral finite element model. The facet joints are represented as elastic joints with six degrees of freedom, while the ligaments are modeled using non-linear one-dimensional elastic elements. The challenge we tackle is to make these different models efficiently interact while respecting the principles of Anatomy and Mechanics. The mobility, the intradiscal pressure, the facet joint force and the instantaneous center of rotation of the lumbar spine are validated against the experimental and theoretical results of the literature on flexion, extension, lateral bending as well as axial rotation. Our hybrid model greatly simplifies the modeling task and dramatically accelerates the simulation of pressure within the discs, as well as the evaluation of the range of motion and the instantaneous centers of rotation, without penalizing precision. These results suggest that for some types of biomechanical simulations, simplified models allow far easier modeling and faster simulations compared to usual full-FEM approaches without any loss of accuracy.Keywords: hybrid, modeling, fast simulation, lumbar spine
Procedia PDF Downloads 3053592 High Aspect Ratio Sio2 Capillary Based On Silicon Etching and Thermal Oxidation Process for Optical Modulator
Authors: Nguyen Van Toan, Suguru Sangu, Tetsuro Saito, Naoki Inomata, Takahito Ono
Abstract:
This paper presents the design and fabrication of an optical window for an optical modulator toward image sensing applications. An optical window consists of micrometer-order SiO2 capillaries (porous solid) that can modulate transmission light intensity by moving the liquid in and out of porous solid. A high optical transmittance of the optical window can be achieved due to refractive index matching when the liquid is penetrated into the porous solid. Otherwise, its light transmittance is lower because of light reflection and scattering by air holes and capillary walls. Silicon capillaries fabricated by deep reactive ion etching (DRIE) process are completely oxidized to form the SiO2 capillaries. Therefore, high aspect ratio SiO2 capillaries can be achieved based on silicon capillaries formed by DRIE technique. Large compressive stress of the oxide causes bending of the capillary structure, which is reduced by optimizing the design of device structure. The large stress of the optical window can be released via thin supporting beams. A 7.2 mm x 9.6 mm optical window area toward a fully integrated with the image sensor format is successfully fabricated and its optical transmittance is evaluated with and without inserting liquids (ethanol and matching oil). The achieved modulation range is approximately 20% to 35% with and without liquid penetration in visible region (wavelength range from 450 nm to 650 nm).Keywords: thermal oxidation process, SiO2 capillaries, optical window, light transmittance, image sensor, liquid penetration
Procedia PDF Downloads 4893591 Combined Effect of Moving and Open Boundary Conditions in the Simulation of Inland Inundation Due to Far Field Tsunami
Authors: M. Ashaque Meah, Md. Fazlul Karim, M. Shah Noor, Nazmun Nahar Papri, M. Khalid Hossen, M. Ismoen
Abstract:
Tsunami and inundation modelling due to far field tsunami propagation in a limited area is a very challenging numerical task because it involves many aspects such as the formation of various types of waves and the irregularities of coastal boundaries. To compute the effect of far field tsunami and extent of inland inundation due to far field tsunami along the coastal belts of west coast of Malaysia and Southern Thailand, a formulated boundary condition and a moving boundary condition are simultaneously used. In this study, a boundary fitted curvilinear grid system is used in order to incorporate the coastal and island boundaries accurately as the boundaries of the model domain are curvilinear in nature and the bending is high. The tsunami response of the event 26 December 2004 along the west open boundary of the model domain is computed to simulate the effect of far field tsunami. Based on the data of the tsunami source at the west open boundary of the model domain, a boundary condition is formulated and applied to simulate the tsunami response along the coastal and island boundaries. During the simulation process, a moving boundary condition is initiated instead of fixed vertical seaside wall. The extent of inland inundation and tsunami propagation pattern are computed. Some comparisons are carried out to test the validation of the simultaneous use of the two boundary conditions. All simulations show excellent agreement with the data of observation.Keywords: open boundary condition, moving boundary condition, boundary-fitted curvilinear grids, far-field tsunami, shallow water equations, tsunami source, Indonesian tsunami of 2004
Procedia PDF Downloads 4453590 Evaluation of Current Methods in Modelling and Analysis of Track with Jointed Rails
Authors: Hossein Askarinejad, Manicka Dhanasekar
Abstract:
In railway tracks, two adjacent rails are either welded or connected using bolted jointbars. In recent years the number of bolted rail joints is reduced by introduction of longer rail sections and by welding the rails at location of some joints. However, significant number of bolted rail joints remains in railways around the world as they are required to allow for rail thermal expansion or to provide electrical insulation in some sections of track. Regardless of the quality and integrity of the jointbar and bolt connections, the bending stiffness of jointbars is much lower than the rail generating large deflections under the train wheels. In addition, the gap or surface discontinuity on the rail running surface leads to generation of high wheel-rail impact force at the joint gap. These fundamental weaknesses have caused high rate of failure in track components at location of rail joints resulting in significant economic and safety issues in railways. The mechanical behavior of railway track at location of joints has not been fully understood due to various structural and material complexities. Although there have been some improvements in the methods for analysis of track at jointed rails in recent years, there are still uncertainties concerning the accuracy and reliability of the current methods. In this paper the current methods in analysis of track with a rail joint are critically evaluated and the new advances and recent research outcomes in this area are discussed. This research is part of a large granted project on rail joints which was defined by Cooperative Research Centre (CRC) for Rail Innovation with supports from Australian Rail Track Corporation (ARTC) and Queensland Rail (QR).Keywords: jointed rails, railway mechanics, track dynamics, wheel-rail interaction
Procedia PDF Downloads 3483589 Effects of School Facilities’ Mechanical and Plumbing Characteristics and Conditions on Student Attendance, Academic Performance and Health
Authors: Erica Cochran Hameen, Bobuchi Ken-Opurum, Shalini Priyadarshini, Berangere Lartigue, Sadhana Anath-Pisipati
Abstract:
School districts throughout the United States are constantly seeking measures to improve test scores, reduce school absenteeism and improve indoor environmental quality. It is imperative to identify key building investments which will provide the largest benefits to schools in terms of improving the aforementioned factors. This study uses Analysis of Variance (ANOVA) tests to statistically evaluate the impact of a school building’s mechanical and plumbing characteristics on a child’s educational performance. The educational performance is measured via three indicators, i.e. test scores, suspensions, and absenteeism. The study investigated 125 New York City school facilities to determine the potential correlations between 50 mechanical and plumbing variables and the performance indicators. Key findings from the tests revealed that elementary schools with pneumatic systems in “good” condition have 48.8% lower percentages of students scoring at the minimum English Language Arts (ELA) competency level compared with those with no pneumatic system. Additionally, elementary schools with “unit heaters/cabinet heaters” in “good to fair” conditions have 1.1% higher attendance rates compared to schools with no “unit heaters/cabinet heaters” or those in inferior condition. Furthermore, elementary schools with air conditioning have 0.6% higher attendance rates compared to schools with no air conditioning, and those with interior floor drains in “good” condition have 1.8% higher attendance rates compared to schools with interior drains in inferior condition.Keywords: academic attendance and performance, mechanical and plumbing systems, schools, student health
Procedia PDF Downloads 1173588 Modeling of Conjugate Heat Transfer including Radiation in a Kerosene/Air Certification Burner
Authors: Lancelot Boulet, Pierre Benard, Ghislain Lartigue, Vincent Moureau, Nicolas Chauvet, Sheddia Didorally
Abstract:
International aeronautic standards demand a fire certification for engines that demonstrate their resistance. This demonstration relies on tests performed with prototype engines in the late stages of the development. Hardest tests require to place a kerosene standardized flame in front of the engine casing during a given time with imposed temperature and heat flux. The purpose of this work is to provide a better characterization of a kerosene/air certification burner in order to minimize the risks of test failure. A first Large-Eddy Simulation (LES) study of the certification burner permitted to model and simulate this burner, including both adiabatic and Conjugate Heat Transfer (CHT) computations. Carried out on unstructured grids with 40 million tetrahedral cells, using the finite-volume YALES2 code, spray combustion, forced convection on walls and conduction in the solid parts of the burner were coupled to achieve a detailed description of heat transfer. It highlighted the fact that conduction inside the solid has a real impact on the flame topology and the combustion regime. However, in the absence of radiative heat transfer, unrealistic temperature of the equipment was obtained. The aim of the present study is to include the radiative heat transfer in order to reach the same temperature given by experimental measurements. First, various test-cases are conducted to validate the coupling between the different heat solvers. Then, adiabatic case, CHT case, as well as CHT including radiative transfer are studied and compared. The LES model is finally applied to investigate the heat transfer in a flame impaction configuration. The aim is to progress on fire test modeling so as to reach a good confidence level as far as success of the certification test is concerned.Keywords: conjugate heat transfer, fire resistance test, large-eddy simulation, radiative transfer, turbulent combustion
Procedia PDF Downloads 2203587 Estimation of Physico-Mechanical Properties of Tuffs (Turkey) from Indirect Methods
Authors: Mustafa GOK1, Sair Kahraman2, Mustafa FENER3
Abstract:
In rock engineering applications, determining uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), and basic index properties such as density, porosity, and water absorption is crucial for the design of both underground and surface structures. However, obtaining reliable samples for direct testing, especially from rocks that weather quickly and have low strength, is often challenging. In such cases, indirect methods provide a practical alternative to estimate the physical and mechanical properties of these rocks. In this study, tuff samples collected from the Cappadocia region (Nevşehir) in Turkey were subjected to indirect testing methods. Over 100 tests were conducted, using needle penetrometer index (NPI), point load strength index (PLI), and disc shear index (BPI) to estimate the uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), density, and water absorption index of the tuffs. The relationships between the results of these indirect tests and the target physical properties were evaluated using simple and multiple regression analyses. The findings of this research reveal strong correlations between the indirect methods and the mechanical properties of the tuffs. Both uniaxial compressive strength and Brazilian tensile strength could be accurately predicted using NPI, PLI, and BPI values. The regression models developed in this study allow for rapid, cost-effective assessments of tuff strength in cases where direct testing is impractical. These results are particularly valuable for geological engineering applications, where time and resource constraints exist. This study highlights the significance of using indirect methods as reliable predictors of the mechanical behavior of weak rocks like tuffs. Further research is recommended to explore the application of these methods to other rock types with similar characteristics. Further research is required to compare the results with those of established direct test methods.Keywords: brazilian tensile strength, disc shear strength, indirect methods, tuffs, uniaxial compressive strength
Procedia PDF Downloads 133586 Evaluation of Correct Usage, Comfort and Fit of Personal Protective Equipment in Construction Work
Authors: Anna-Lisa Osvalder, Jonas Borell
Abstract:
There are several reasons behind the use, non-use, or inadequate use of personal protective equipment (PPE) in the construction industry. Comfort and accurate size support proper use, while discomfort, misfit, and difficulties to understand how the PPEs should be handled inhibit correct usage. The need for several protective equipments simultaneously might also create problems. The purpose of this study was to analyse the correct usage, comfort, and fit of different types of PPEs used for construction work. Correct usage was analysed as guessability, i.e., human perceptions of how to don, adjust, use, and doff the equipment, and if used as intended. The PPEs tested individually or in combinations were a helmet, ear protectors, goggles, respiratory masks, gloves, protective cloths, and safety harnesses. First, an analytical evaluation was performed with ECW (enhanced cognitive walkthrough) and PUEA (predictive use error analysis) to search for usability problems and use errors during handling and use. Then usability tests were conducted to evaluate guessability, comfort, and fit with 10 test subjects of different heights and body constitutions. The tests included observations during donning, five different outdoor work tasks, and doffing. The think-aloud method, short interviews, and subjective estimations were performed. The analytical evaluation showed that some usability problems and use errors arise during donning and doffing, but with minor severity, mostly causing discomfort. A few use errors and usability problems arose for the safety harness, especially for novices, where some could lead to a high risk of severe incidents. The usability tests showed that discomfort arose for all test subjects when using a combination of PPEs, increasing over time. For instance, goggles, together with the face mask, caused pressure, chafing at the nose, and heat rash on the face. This combination also limited sight of vision. The helmet, in combination with the goggles and ear protectors, did not fit well and caused uncomfortable pressure at the temples. No major problems were found with the individual fit of the PPEs. The ear protectors, goggles, and face masks could be adjusted for different head sizes. The guessability for how to don and wear the combination of PPE was moderate, but it took some time to adjust them for a good fit. The guessability was poor for the safety harness; few clues in the design showed how it should be donned, adjusted, or worn on the skeletal bones. Discomfort occurred when the straps were tightened too much. All straps could not be adjusted for somebody's constitutions leading to non-optimal safety. To conclude, if several types of PPEs are used together, discomfort leading to pain is likely to occur over time, which can lead to misuse, non-use, or reduced performance. If people who are not regular users should wear a safety harness correctly, the design needs to be improved for easier interpretation, correct position of the straps, and increased possibilities for individual adjustments. The results from this study can be a base for re-design ideas for PPE, especially when they should be used in combinations.Keywords: construction work, PPE, personal protective equipment, misuse, guessability, usability
Procedia PDF Downloads 853585 The Impact of Smart Educational Aids in Learning Listening Among Pupils with Attention and Listening Problems
Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Aayah Al Yaari, Ayman Al Yaari, Montaha Al Yaari, Sajedah Al Yaari, Fatehi Eissa
Abstract:
The recent rise of smart educational aids and the move away from traditional listening aids are leading to a fundamental shift in the way in which individuals with attention and listening problems (ALP) manipulate listening inputs and/or act appropriately to the spoken information presented to them. A total sample of twenty-six ALP pupils (m=20 and f=6) between 7-12 years old was selected from different strata based on gender, region and school. In the sample size, thirteen (10 males and 3 females) received the treatment in terms of smart classes provided with smart educational aids in a listening course that lasted for four month-semester while others did not (they studied the same course by the same instructor but in ordinary class). A pretest was administered to assess participants’ levels, and a posttest was given to evaluate their attention and listening comprehension performance, namely in phonetic and phonological tests with sociolinguistic themes that have been designed for this purpose. Test results were analyzed both psychoneurolinguistically and statistically. Results reveal a remarkable change in pupils’ behavioral listening where scores witnessed a significant difference in the performance of the experimental ALP group in the pretest compared to the posttest (Pupils performed better at the pretest-posttest on phonetics than at the two tests on phonology). It is concluded that smart educational aids designed for listening skills help not only increase the listening command of pupils with ALP to understand what they listen to but also develop their interactive listening capability and, at the same rate, are responsible for increasing concentrated and in-depth listening capacity. Plus, ALP pupils become able to grasp the audio content of text recordings, including educational audio recordings, news, oral stories and tales, views, spiritual/religious text and general knowledge. However, the pupils have not experienced individual smart audio-visual aids that connect listening to other language receptive and productive skills, which could be the future area of research.Keywords: language skills, implementing, listening skill, attention, smart aids
Procedia PDF Downloads 413584 Distance and Coverage: An Assessment of Location-Allocation Models for Fire Stations in Kuwait City, Kuwait
Authors: Saad M. Algharib
Abstract:
The major concern of planners when placing fire stations is finding their optimal locations such that the fire companies can reach fire locations within reasonable response time or distance. Planners are also concerned with the numbers of fire stations that are needed to cover all service areas and the fires, as demands, with standard response time or distance. One of the tools for such analysis is location-allocation models. Location-allocation models enable planners to determine the optimal locations of facilities in an area in order to serve regional demands in the most efficient way. The purpose of this study is to examine the geographic distribution of the existing fire stations in Kuwait City. This study utilized location-allocation models within the Geographic Information System (GIS) environment and a number of statistical functions to assess the current locations of fire stations in Kuwait City. Further, this study investigated how well all service areas are covered and how many and where additional fire stations are needed. Four different location-allocation models were compared to find which models cover more demands than the others, given the same number of fire stations. This study tests many ways to combine variables instead of using one variable at a time when applying these models in order to create a new measurement that influences the optimal locations for locating fire stations. This study also tests how location-allocation models are sensitive to different levels of spatial dependency. The results indicate that there are some districts in Kuwait City that are not covered by the existing fire stations. These uncovered districts are clustered together. This study also identifies where to locate the new fire stations. This study provides users of these models a new variable that can assist them to select the best locations for fire stations. The results include information about how the location-allocation models behave in response to different levels of spatial dependency of demands. The results show that these models perform better with clustered demands. From the additional analysis carried out in this study, it can be concluded that these models applied differently at different spatial patterns.Keywords: geographic information science, GIS, location-allocation models, geography
Procedia PDF Downloads 1763583 Investigation of Performance of Organic Acids on Carbonate Rocks (Experimental Study in Ahwaz Oilfield)
Authors: Azad Jarrahian, Ehsan Heidaryan
Abstract:
Matrix acidizing treatments can yield impressive production increase if properly applied. In this study, carbonate samples taken from Ahwaz Oilfield have undergone static solubility, sludge, emulsion, and core flooding tests. In each test interaction of acid and rock is reported and at the end it has been shown that how initial permeability and type of acid affects the overall treatment efficiency.Keywords: carbonate acidizing, organic acids, spending rate, acid penetration, incomplete spending.
Procedia PDF Downloads 4343582 Effect of Dynamic Loading by Cyclic Triaxial Tests on Sand Stabilized with Cement
Authors: Priyanka Devi, Mohammad Muzzaffar Khan, G. Kalyan Kumar
Abstract:
Liquefaction of saturated soils due to dynamic loading is an important and interesting area in the field of geotechnical earthquake engineering. When the soil liquefies, the structures built on it develops uneven settlements thereby producing cracks in the structure and weakening the foundation. The 1964 Alaskan Good Friday earthquake, the 1989 San Francisco earthquake and 2011 Tōhoku earthquake are some of the examples of liquefaction occurred due to an earthquake. To mitigate the effect of liquefaction, several methods such use of stone columns, increasing the vertical stress, compaction and removal of liquefiable soil are practiced. Grouting is one of those methods used to increase the strength of the foundation and develop resistance to liquefaction of soil without affecting the superstructure. In the present study, an attempt has been made to investigate the undrained cyclic behavior of locally available soil, stabilized by cement to mitigate the seismically induced soil liquefaction. The specimens of 75mm diameter and 150mm height were reconstituted in the laboratory using water sedimentation technique. A series of strain-controlled cyclic triaxial tests were performed on saturated soil samples followed by consolidation. The effects of amplitude, confining pressure and relative density on the dynamic behavior of sand was studied for soil samples with varying cement content. The results obtained from the present study on loose specimens and medium dense specimens indicate that (i) the higher the relative density, the more will be the liquefaction resistance, (ii) with increase of effective confining pressure, a decrease in developing of excess pore water pressure during cyclic loading was observed and (iii) sand specimens treated with cement showed reduced excess pore pressures and increased liquefaction resistance suggesting it as one of the mitigation methods.Keywords: cyclic triaxial test, liquefaction, soil-cement stabilization, pore pressure ratio
Procedia PDF Downloads 2943581 Improving the Dimensional Stability of Bamboo Woven Strand Board
Authors: Gulelat Gatew
Abstract:
Bamboo Woven Strand Board (WSB) products are manufactured from Ethiopia highland bamboo (Yushania alpina) as a multiple layer mat structure for enhanced mechanical performance. Hence, it shows similar mechanical properties as tropical hardwood products. WSB, therefore, constitutes a sustainable alternative to tropical hardwood products. The resin and wax ratio had a great influence on the determinants properties of the product quality such as internal bonding, water absorption, thickness swelling, bending and stiffness properties. Among these properties, because of the hygroscopic nature of the bamboo, thickness swelling and water absorption are important performances of WSB for using in construction and outdoor facilities. When WSB is exposed to water or moist environment, they tend to swell and absorb water in all directions. The degree of swelling and water absorption depends on the type of resin used, resin formulation, resin ratio, wax type and ratio. The objective of this research is investigating effects of phenol formaldehyde and wax on thickness swelling and water absorption behavior on bamboo WSB for construction and outdoor facilities. The experiments were conducted to measure the effects of wax and phenol-formaldehyde resin content on WSB thickness swelling and water absorption which leads to investigate its effect on dimension stability and mechanical properties. Both experiments were performed with 2–hour and 24-hour water immersion test and a significant set of data regarding the influence of such method parameters is also presented. The addition of up to 2% wax with 10% of phenol formaldehyde significantly reduced thickness swelling and water absorption of WSB which resulted in making it more hydrophobic and less susceptible to the influences of moisture in high humidity conditions compared to the panels without wax.Keywords: woven strand board (WSB), water absorption, thickness swelling, phenol formaldehyde resin
Procedia PDF Downloads 2103580 Influence of Internal Topologies on Components Produced by Selective Laser Melting: Numerical Analysis
Authors: C. Malça, P. Gonçalves, N. Alves, A. Mateus
Abstract:
Regardless of the manufacturing process used, subtractive or additive, material, purpose and application, produced components are conventionally solid mass with more or less complex shape depending on the production technology selected. Aspects such as reducing the weight of components, associated with the low volume of material required and the almost non-existent material waste, speed and flexibility of production and, primarily, a high mechanical strength combined with high structural performance, are competitive advantages in any industrial sector, from automotive, molds, aviation, aerospace, construction, pharmaceuticals, medicine and more recently in human tissue engineering. Such features, properties and functionalities are attained in metal components produced using the additive technique of Rapid Prototyping from metal powders commonly known as Selective Laser Melting (SLM), with optimized internal topologies and varying densities. In order to produce components with high strength and high structural and functional performance, regardless of the type of application, three different internal topologies were developed and analyzed using numerical computational tools. The developed topologies were numerically submitted to mechanical compression and four point bending testing. Finite Element Analysis results demonstrate how different internal topologies can contribute to improve mechanical properties, even with a high degree of porosity relatively to fully dense components. Results are very promising not only from the point of view of mechanical resistance, but especially through the achievement of considerable variation in density without loss of structural and functional high performance.Keywords: additive manufacturing, internal topologies, porosity, rapid prototyping, selective laser melting
Procedia PDF Downloads 3293579 A Coupled Stiffened Skin-Rib Fully Gradient Based Optimization Approach for a Wing Box Made of Blended Composite Materials
Authors: F. Farzan Nasab, H. J. M. Geijselaers, I. Baran, A. De Boer
Abstract:
A method is introduced for the coupled skin-rib optimization of a wing box where mass minimization is the objective and local buckling is the constraint. The structure is made of composite materials where continuity of plies in multiple adjacent panels (blending) has to be satisfied. Blending guarantees the manufacturability of the structure; however, it is a highly challenging constraint to treat and has been under debate in recent research in the same area. To fulfill design guidelines with respect to symmetry, balance, contiguity, disorientation and percentage rule of the layup, a reference for the stacking sequences (stacking sequence table or SST) is generated first. Then, an innovative fully gradient-based optimization approach in relation to a specific SST is introduced to obtain the optimum thickness distribution all over the structure while blending is fulfilled. The proposed optimization approach aims to turn the discrete optimization problem associated with the integer number of plies into a continuous one. As a result of a wing box deflection, a rib is subjected to load values which vary nonlinearly with the amount of deflection. The bending stiffness of a skin affects the wing box deflection and thus affects the load applied to a rib. This indicates the necessity of a coupled skin-rib optimization approach for a more realistic optimized design. The proposed method is examined with the optimization of the layup of a composite stiffened skin and rib of a wing torsion box subjected to in-plane normal and shear loads. Results show that the method can successfully prescribe a valid design with a significantly cheap computation cost.Keywords: blending, buckling optimization, composite panels, wing torsion box
Procedia PDF Downloads 4083578 Evaluation of Duncan-Chang Deformation Parameters of Granular Fill Materials Using Non-Invasive Seismic Wave Methods
Authors: Ehsan Pegah, Huabei Liu
Abstract:
Characterizing the deformation properties of fill materials in a wide stress range always has been an important issue in geotechnical engineering. The hyperbolic Duncan-Chang model is a very popular model of stress-strain relationship that captures the nonlinear deformation of granular geomaterials in a very tractable manner. It consists of a particular set of the model parameters, which are generally measured from an extensive series of laboratory triaxial tests. This practice is both time-consuming and costly, especially in large projects. In addition, undesired effects caused by soil disturbance during the sampling procedure also may yield a large degree of uncertainty in the results. Accordingly, non-invasive geophysical seismic approaches may be utilized as the appropriate alternative surveys for measuring the model parameters based on the seismic wave velocities. To this end, the conventional seismic refraction profiles were carried out in the test sites with the granular fill materials to collect the seismic waves information. The acquired shot gathers are processed, from which the P- and S-wave velocities can be derived. The P-wave velocities are extracted from the Seismic Refraction Tomography (SRT) technique while S-wave velocities are obtained by the Multichannel Analysis of Surface Waves (MASW) method. The velocity values were then utilized with the equations resulting from the rigorous theories of elasticity and soil mechanics to evaluate the Duncan-Chang model parameters. The derived parameters were finally compared with those from laboratory tests to validate the reliability of the results. The findings of this study may confidently serve as the useful references for determination of nonlinear deformation parameters of granular fill geomaterials. Those are environmentally friendly and quite economic, which can yield accurate results under the actual in-situ conditions using the surface seismic methods.Keywords: Duncan-Chang deformation parameters, granular fill materials, seismic waves velocity, multichannel analysis of surface waves, seismic refraction tomography
Procedia PDF Downloads 1813577 Microstructure Dependent Fatigue Crack Growth in Aluminum Alloy
Authors: M. S. Nandana, K. Udaya Bhat, C. M. Manjunatha
Abstract:
In this study aluminum alloy 7010 was subjected to three different ageing treatments i.e., peak ageing (T6), over-ageing (T7451) and retrogression and re ageing (RRA) to study the influence of precipitate microstructure on the fatigue crack growth rate behavior. The microstructural modification was studied by using transmission electron microscope (TEM) to examine the change in the size and morphology of precipitates in the matrix and on the grain boundaries. The standard compact tension (CT) specimens were fabricated and tested under constant amplitude fatigue crack growth tests to evaluate the influence of heat treatment on the fatigue crack growth rate properties. The tests were performed in a computer-controlled servo-hydraulic test machine applying a load ratio, R = 0.1 at a loading frequency of 10 Hz as per ASTM E647. The fatigue crack growth was measured by adopting compliance technique using a CMOD gauge attached to the CT specimen. The average size of the matrix precipitates were found to be of 16-20 nm in T7451, 5-6 nm in RRA and 2-3 nm in T6 conditions respectively. The grain boundary precipitate which was continuous in T6, was disintegrated in RRA and T7451 condition. The PFZ width was lower in RRA compared to T7451 condition. The crack growth rate was higher in T7451 and lowest in RRA treated alloy. The RRA treated alloy also exhibits an increase in threshold stress intensity factor range (∆Kₜₕ). The ∆Kₜₕ measured was 11.1, 10.3 and 5.7 MPam¹/² in RRA, T6 and T7451 alloys respectively. The fatigue crack growth rate in RRA treated alloy was nearly 2-3 times lower than that in T6 and was one order lower than that observed in T7451 condition. The surface roughness of RRA treated alloy was more pronounced when compared to the other conditions. The reduction in fatigue crack growth rate in RRA alloy was majorly due to the increase in roughness and partially due to increase in spacing between the matrix precipitates. The reduction in crack growth rate and increase in threshold stress intensity range is expected to benefit the damage tolerant capability of aircraft structural components under service loads.Keywords: damage tolerance, fatigue, heat treatment, PFZ, RRA
Procedia PDF Downloads 1523576 Plasma Spraying of 316 Stainless Steel on Aluminum and Investigation of Coat/Substrate Interface
Authors: P. Abachi, T. W. Coyle, P. S. Musavi Gharavi
Abstract:
By applying coating onto a structural component, the corrosion and/or wear resistance requirements of the surface can be fulfilled. Since the layer adhesion of the coating influences the mechanical integrity of the coat/substrate interface during the service time, it should be examined accurately. At the present work, the tensile bonding strength of the 316 stainless steel plasma sprayed coating on aluminum substrate was determined by using tensile adhesion test, TAT, specimen. The interfacial fracture toughness was specified using four-point bend specimen containing a saw notch and modified chevron-notched short-bar (SB) specimen. The coating microstructure and fractured specimen surface were examined by using scanning electron- and optical-microscopy. The investigation of coated surface after tensile adhesion test indicates that the failure mechanism is mostly cohesive and rarely adhesive type. The calculated value of critical strain energy release rate proposes relatively good interface status. It seems that four-point bending test offers a potentially more sensitive means for evaluation of mechanical integrity of coating/substrate interfaces than is possible with the tensile test. The fracture toughness value reported for the modified chevron-notched short-bar specimen testing cannot be taken as absolute value because its calculation is based on the minimum stress intensity coefficient value which has been suggested for the fracture toughness determination of homogeneous parts in the ASTM E1304-97 standard.Keywords: bonding strength, four-point bend test, interfacial fracture toughness, modified chevron-notched short-bar specimen, plasma sprayed coating, tensile adhesion test
Procedia PDF Downloads 2593575 Photo-Fenton Degradation of Organic Compounds by Iron(II)-Embedded Composites
Authors: Marius Sebastian Secula, Andreea Vajda, Benoit Cagnon, Ioan Mamaliga
Abstract:
One of the most important classes of pollutants is represented by dyes. The synthetic character and complex molecular structure make them more stable and difficult to be biodegraded in water. The treatment of wastewaters containing dyes in order to separate/degrade dyes is of major importance. Various techniques have been employed to remove and/or degrade dyes in water. Advanced oxidation processes (AOPs) are known as among the most efficient ones towards dye degradation. The aim of this work is to investigate the efficiency of a cheap Iron-impregnated activated carbon Fenton-like catalyst in order to degrade organic compounds in aqueous solutions. In the presented study an anionic dye, Indigo Carmine, is considered as a model pollutant. Various AOPs are evaluated for the degradation of Indigo Carmine to establish the effect of the prepared catalyst. It was found that the Iron(II)-embedded activated carbon composite enhances significantly the degradation process of Indigo Carmine. Using the wet impregnation procedure, 5 g of L27 AC material were contacted with Fe(II) solutions of FeSO4 precursor at a theoretical iron content in the resulted composite of 1 %. The L27 AC was impregnated for 3h at 45°C, then filtered, washed several times with water and ethanol and dried at 55 °C for 24 h. Thermogravimetric analysis, Fourier transform infrared, X-ray diffraction, and transmission electron microscopy were employed to investigate the structural, textural, and micromorphology of the catalyst. Total iron content in the obtained composites and iron leakage were determined by spectrophotometric method using phenantroline. Photo-catalytic tests were performed using an UV - Consulting Peschl Laboratory Reactor System. UV light irradiation tests were carried out to determine the performance of the prepared Iron-impregnated composite towards the degradation of Indigo Carmine in aqueous solution using different conditions (17 W UV lamps, with and without in-situ generation of O3; different concentrations of H2O2, different initial concentrations of Indigo Carmine, different values of pH, different doses of NH4-OH enhancer). The photocatalytic tests were performed after the adsorption equilibrium has been established. The obtained results emphasize an enhancement of Indigo Carmine degradation in case of the heterogeneous photo-Fenton process conducted with an O3 generating UV lamp in the presence of hydrogen peroxide. The investigated process obeys the pseudo-first order kinetics. The photo-Fenton degradation of IC was tested at different values of initial concentration. The obtained results emphasize an enhancement of Indigo Carmine degradation in case of the heterogeneous photo-Fenton process conducted with an O3 generating UV lamp in the presence of hydrogen peroxide. Acknowledgments: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405.Keywords: photodegradation, heterogeneous Fenton, anionic dye, carbonaceous composite, screening factorial design
Procedia PDF Downloads 2563574 Role of Matric Suction in Mechanics behind Swelling Characteristics of Expansive Soils
Authors: Saloni Pandya, Nikhil Sharma, Ajanta Sachan
Abstract:
Expansive soils in the unsaturated state are part of vadose zone and encountered in several arid and semi-arid parts of the world. Influence of high temperature, low precipitation and alternate cycles of wetting and drying are responsible for the chemical weathering of rocks, which results in the formation of expansive soils. Shrinkage-swelling (expansive) soils cover a substantial portion of area in India. Damages caused by expansive soils to various geotechnical structures are alarming. Matric suction develops in unsaturated soil due to capillarity and surface tension phenomena. Matric suction influences the geometric arrangement of soil skeleton, which induces the volume change behaviour of expansive soil. In the present study, an attempt has been made to evaluate the role of matric suction in the mechanism behind swelling characteristics of expansive soil. Four different soils have been collected from different parts of India for the current research. Soil sample S1, S2, S3 and S4 were collected from Nagpur, Bharuch, Bharuch-Dahej highway and Ahmedabad respectively. DFSI (Differential Free Swell Index) of these soils samples; S1, S2, S3, and S4; were determined to be 134%, 104%, 70% and 30% respectively. X-ray diffraction analysis of samples exhibited that percentage of Montmorillonite mineral present in the soils reduced with the decrease in DFSI. A series of constant volume swell pressure tests and in-contact filter paper tests were performed to evaluate swelling pressure and matric suction of all four soils at 30% saturation and 1.46 g/cc dry density. Results indicated that soils possessing higher DFSI exhibited higher matric suction as compared to lower DFSI expansive soils. Significant influence of matric suction on swelling pressure of expansive soils was observed with varying DFSI values. Higher matric suction of soil might govern the water uptake in the interlayer spaces of Montmorillonite mineral present in expansive soil leading to crystalline swelling.Keywords: differential free swell index, expansive soils, matric suction, swelling pressure
Procedia PDF Downloads 1623573 The Pathology of Bovine Rotavirus Infection in Calves That Confirmed by Enzyme Linked Immunosorbant Assay, Reverse Transcription Polymerase Chain Reaction and Real-Time RT-PCR
Authors: Shama Ranjan Barua, Tofazzal M. Rakib, Mohammad Alamgir Hossain, Tania Ferdushy, Sharmin Chowdhury
Abstract:
Rotavirus is one of the main etiologies of neonatal diarrhea in bovine calves that causes significant economic loss in Bangladesh. The present study was carried out to investigate the pathology of neonatal enteritis in calves due to bovine rotavirus infection in south-eastern part of Bangladesh. Rotavirus was identified by using ELISA, RT-PCR (Reverse Transcription Polymerase Chain Reaction), real-time RT-PCR. We examined 12 dead calves with history of diarrhea during necropsy. Among 12 dead calves, in gross examination, 6 were found with pathological changes in intestine, 5 calves had congestion of small intestine and rest one had no distinct pathological changes. Intestinal contents and/or faecal samples of all dead calves were collected and examined to confirm the presence of bovine rotavirus A using Enzyme linked immunosorbant assay (ELISA), RT-PCR and real-time RT-PCR. Out 12 samples, 5 (42%) samples revealed presence of bovine rotavirus A in three diagnostic tests. The histopathological changes were found almost exclusively limited in the small intestine. The lesions of rotaviral enteritis ranged from slight to moderate shortening (atrophy) of villi in the jejunum and ileum with necrotic crypts. The villi were blunt and covered by immature epithelial cells. Infected cells, stained with Haematoxylin and Eosin staining method, showed characteristic syncytia and eosinophilc intracytoplasmic inclusion body. The presence of intracytoplasmic inclusion bodies in enterocytes is the indication of viral etiology. The presence of rotavirus in the affected tissues and/or lesions was confirmed by three different immunological and molecular tests. The findings of histopathological changes will be helpful in future diagnosis of rotaviral infection in dead calves.Keywords: calves, diarrhea, pathology, rotavirus
Procedia PDF Downloads 2503572 Load Comparison between Different Positions during Elite Male Basketball Games: A Sport Metabolomics Approach
Authors: Kayvan Khoramipour, Abbas Ali Gaeini, Elham Shirzad, Øyvind Sandbakk
Abstract:
Basketball has different positions with individual movement profiles, which may influence metabolic demands. Accordingly, the present study aimed to compare the movement and metabolic load between different positions during elite male basketball games. Five main players of 14 teams (n = 70), who participated in the 2017-18 Iranian national basketball leagues, were selected as participants. The players were defined as backcourt (Posts 1-3) and frontcourt (Posts 4-5). Video based time motion analysis (VBTMA) was performed based on players’ individual running and shuffling speed using Dartfish software. Movements were classified into high and low intensity running with and without having the ball, as well as high and low-intensity shuffling and static movements. Mean frequency, duration, and distance were calculated for each class, except for static movements where only frequency was calculated. Saliva samples were collected from each player before and after 40-minute basketball games and analyzed using metabolomics. Principal component analysis (PCA) and Partial least square discriminant analysis (PLSDA) (for metabolomics data) and independent T-tests (for VBTMA) were used as statistical tests. Movement frequency, duration, and distance were higher in backcourt players (all p ≤ 0.05), while static movement frequency did not differ. Saliva samples showed that the levels of Taurine, Succinic acid, Citric acid, Pyruvate, Glycerol, Acetoacetic acid, Acetone, and Hypoxanthine were all higher in backcourt players, whereas Lactate, Alanine, 3-Metyl Histidine, and Methionine were higher in frontcourt players Based on metabolomics, we demonstrate that backcourt and frontcourt players have different metabolic profiles during games, where backcourt players move clearly more during games and therefore rely more on aerobic energy, whereas frontcourt players rely more on anaerobic energy systems in line with less dynamic but more static movement patterns.Keywords: basketball, metabolomics, saliva, sport loadomics
Procedia PDF Downloads 115