Search results for: spatial batch normalization with dropout
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3236

Search results for: spatial batch normalization with dropout

1946 Investigation of the Cognition Factors of Fire Response Performances Based on Survey

Authors: Jingjing Yan, Gengen He, Anahid Basiri

Abstract:

The design of an indoor navigation system for fire evacuation support requires not only physical feasibility but also a relatively thorough consideration of the human factors. This study has taken a survey to investigate the fire response performances (FRP) of the indoor occupants in age of 20s, virtually in an environment for their routine life, focusing on the aspects of indoor familiarity (spatial cognition), psychological stress and decision makings. For indoor familiarity, it is interested in three factors, i.e., the familiarity to exits and risky places as well as the satisfaction degree of the current indoor sign installation. According to the results, males have a higher average familiarity with the indoor exits while both genders have a relatively low level of risky place awareness. These two factors are positively correlated with the satisfaction degree of the current installation of the indoor signs, and this correlation is more evident for the exit familiarity. The integration of the height factor with the other two indoor familiarity factors can improve the degree of indoor sign satisfaction. For psychological stress, this study concentrates on the situated cognition of moving difficulty, nervousness, and speed reduction when using a bending posture during the fire evacuation to avoid smoke inhalation. The results have shown that both genders have a similar mid-level of hardness sensation. The females have a higher average level of nervousness, while males have a higher average level of speed reduction sensation. This study has assumed that the growing indoor spatial cognition can help ease the psychological hardness and nervousness. However, it only seems to be true after reaching a certain level. When integrating the effects from indoor familiarity and the other two psychological factors, the correlation to the sensation of speed change can be strengthened, based on a stronger positive correlation with the integrated factors. This study has also investigated the participants’ attitude to the navigation support during evacuation, and the majority of the participants have shown positive attitudes. For following the guidance under some extreme cases, i.e., changing to a longer path and to an alternative exit, the majority of the participants has shown the confidence of keeping trusting the guidance service. These decisions are affected by the combined influences from indoor familiarity, psychological stress, and attitude of using navigation service. For the decision time of the selected extreme cases, it costs more time in average for deciding to use a longer route than to use an alternative exit, and this situation is more evident for the female participants. This requires further considerations when designing a personalized smartphone-based navigation app. This study has also investigated the calming factors for people being trapped during evacuation. The top consideration is the distance to the nearest firefighters, and the following considerations are the current fire conditions in the surrounding environment and the locations of all firefighters. The ranking of the latter two considerations is very gender-dependent according to the results.

Keywords: fire response performances, indoor spatial cognition, situated cognition, survey analysis

Procedia PDF Downloads 143
1945 Comparative Evaluation of Kinetic Model of Chromium and Lead Uptake from Aqueous Solution by Activated Balanitesaegyptiaca Seeds

Authors: Mohammed Umar Manko

Abstract:

A series of batch experiments were conducted in order to investigate the feasibility of Balanitesaegyptiaca seeds based activated carbon as compared with industrial activated carbon for the removal of chromium and lead ions from aqueous solution by the adsorption process within 30 to 150 minutes contact time. The activated samples were prepared using zinc chloride and tetraoxophophate(VI) acid. The results obtained showed that the activated carbon of Balanitesaegyptiaca seeds studied had relatively high adsorption capacities for these heavy metal ions compared with industrial Activated Carbon. The percentage removal of Cr (VI) and lead (II) ions by the three activated carbon samples were 64%, 70% and 71%; 60%, 66% and 60% respectively. Adsorption equilibrium was established in 90 minutes for the heavy metal ions. The equilibrium data fitted the pseudo second order out of the pseudo first, pseudo second, Elovich ,Natarajan and Khalaf models tested. The investigation also showed that the adsorbents can effectively remove metal ions from similar wastewater and aqueous media.

Keywords: activated carbon, pseudo second order, chromium, lead, Elovich model

Procedia PDF Downloads 323
1944 Mass-Transfer Processes of Textile Dyes Adsorption onto Food Waste Adsorbent

Authors: Amel Asselah, Nadia Chabli, Imane Haddad

Abstract:

The adsorption of methylene blue and congo red dyes in an aqueous solution, on a food waste adsorbent: potato peel, and on a commercial adsorbent: activated carbon powder, was investigated using batch experiments. The objective of this study is the valorization of potato peel by its application in the elimination of these dyes. A comparison of the adsorption efficiency with a commercial adsorbent was carried out. Characterization of the potato peel adsorbent was performed by scanning electron microscopy coupled to energy-dispersive X-ray spectroscopy, Fourier transforms infrared spectroscopy, X-ray diffraction, and X-ray fluorescence. Various parameters were analyzed, in particular: the adsorbent mass, the initial dye concentration, the contact time, the pH, and the temperature. The results reveal that it is about 98% for methylene blue-potato peel, 84% for congo red-potato peel, 84% for methylene blue-activated carbon, and 66% for congo red-activated carbon. The kinetic data were modeled by different equations and revealed that the adsorption of textile dyes on adsorbents follows the model pseudo-second-order, and the particular extra diffusion governs the adsorption mechanism. It has been found that the adsorption process could be described by the Langmuir isotherm.

Keywords: bioadsorbent, waste valorization, adsorptio, textile dyes

Procedia PDF Downloads 93
1943 An Assessment of Health Hazards in Urban Communities: A Study of Spatial-Temporal Variations of Dengue Epidemic in Colombo, Sri Lanka

Authors: U. Thisara G. Perera, C. M. Kanchana N. K. Chandrasekara

Abstract:

Dengue is an epidemic which is spread by Aedes Egyptai and Aedes Albopictus mosquitoes. The cases of dengue show a dramatic growth rate of the epidemic in urban and semi urban areas spatially in tropical and sub-tropical regions of the world. Incidence of dengue has become a prominent reason for hospitalization and deaths in Asian countries, including Sri Lanka. During the last decade the dengue epidemic began to spread from urban to semi-urban and then to rural settings of the country. The highest number of dengue infected patients was recorded in Sri Lanka in the year 2016 and the highest number of patients was identified in Colombo district. Together with the commercial, industrial, and other supporting services, the district suffers from rapid urbanization and high population density. Thus, drainage and waste disposal patterns of the people in this area exert an additional pressure to the environment. The district is situated in the wet zone and thus low lying lands constitute the largest portion of the district. This situation additionally facilitates mosquito breeding sites. Therefore, the purpose of the present study was to assess the spatial and temporal distribution patterns of dengue epidemic in Kolonnawa MOH area (Medical Officer of Health) in the district of Colombo. The study was carried out using 615 recorded dengue cases in Kollonnawa MOH area during the south east monsoon season from May to September 2016. The Moran’s I and Kernel density estimation were used as analytical methods. The analysis of data was accomplished through the integrated use of ArcGIS 10.1 software packages along with Microsoft Excel analytical tool. Field observation was also carried out for verification purposes during the study period. Results of the Moran’s I index indicates that the spatial distribution of dengue cases showed a cluster distribution pattern across the area. Kernel density estimation emphasis that dengue cases are high where the population has gathered, especially in areas comprising housing schemes. Results of the Kernel Density estimation further discloses that hot spots of dengue epidemic are located in the western half of the Kolonnawa MOH area, which is close to the Colombo municipal boundary and there is a significant relationship with high population density and unplanned urban land use practices. Results of the field observation confirm that the drainage systems in these areas function poorly and careless waste disposal methods of the people further encourage mosquito breeding sites. This situation has evolved harmfully from a public health issue to a social problem, which ultimately impacts on the economy and social lives of the country.

Keywords: Dengue epidemic, health hazards, Kernel density, Moran’s I, Sri Lanka

Procedia PDF Downloads 302
1942 Pb and NI Removal from Aqueous Environment by Green Synthesized Iron Nanoparticles Using Fruit Cucumis Melo and Leaves of Ficus Virens

Authors: Amandeep Kaur, Sangeeta Sharma

Abstract:

Keeping in view the serious entanglement of heavy metals ( Pb+2 and Ni+2) ions in an aqueous environment, a rapid search for efficient adsorbents for the adsorption of heavy metals has become highly desirable. In this quest, green synthesized Fe np’s have gathered attention because of their excellent adsorption capability of heavy metals from aqueous solution. This research report aims at the fabrication of Fe np’s using the fruit Cucumis melo and leaves of Ficus virens via a biogenic synthesis route. Further, synthesized CM-Fe-np’s and FV-Fe-np’s have been tested as potential bio-adsorbents for the removal of Pb+2 and Ni+2 by carrying out adsorption batch experiments. The influence of myriad parameters like initial concentration of Pb/Ni (5,10,15,20,25 mg/L), contact time (10 to 200 min.), adsorbent dosage (0.5, 0.10, 0.15 mg/L), shaking speed (120 to 350 rpm) and pH value (6,7,8,9) has been investigated. The maximum removal with CM-Fe-np’s and FV-Fe-np’s has been achieved at pH 7, metal conc. 5 mg/L, dosage 0.9 g/L, shaking speed 200 rpm and reaction contact time 200 min during the adsorption experiment. The results obtained are found to be in accordance with Freundlich and Langmuir's adsorption models; consequently, they could be highly applicable to the wastewater treatment plant.

Keywords: adsorption, biogenic synthesis, nanoparticles, nickel, lead

Procedia PDF Downloads 89
1941 Assessing Future Offshore Wind Farms in the Gulf of Roses: Insights from Weather Research and Forecasting Model Version 4.2

Authors: Kurias George, Ildefonso Cuesta Romeo, Clara Salueña Pérez, Jordi Sole Olle

Abstract:

With the growing prevalence of wind energy there is a need, for modeling techniques to evaluate the impact of wind farms on meteorology and oceanography. This study presents an approach that utilizes the WRF (Weather Research and Forecasting )with that include a Wind Farm Parametrization model to simulate the dynamics around Parc Tramuntana project, a offshore wind farm to be located near the Gulf of Roses off the coast of Barcelona, Catalonia. The model incorporates parameterizations for wind turbines enabling a representation of the wind field and how it interacts with the infrastructure of the wind farm. Current results demonstrate that the model effectively captures variations in temeperature, pressure and in both wind speed and direction over time along with their resulting effects on power output from the wind farm. These findings are crucial for optimizing turbine placement and operation thus improving efficiency and sustainability of the wind farm. In addition to focusing on atmospheric interactions, this study delves into the wake effects within the turbines in the farm. A range of meteorological parameters were also considered to offer a comprehensive understanding of the farm's microclimate. The model was tested under different horizontal resolutions and farm layouts to scrutinize the wind farm's effects more closely. These experimental configurations allow for a nuanced understanding of how turbine wakes interact with each other and with the broader atmospheric and oceanic conditions. This modified approach serves as a potent tool for stakeholders in renewable energy, environmental protection, and marine spatial planning. environmental protection and marine spatial planning. It provides a range of information regarding the environmental and socio economic impacts of offshore wind energy projects.

Keywords: weather research and forecasting, wind turbine wake effects, environmental impact, wind farm parametrization, sustainability analysis

Procedia PDF Downloads 73
1940 IoT Continuous Monitoring Biochemical Oxygen Demand Wastewater Effluent Quality: Machine Learning Algorithms

Authors: Sergio Celaschi, Henrique Canavarro de Alencar, Claaudecir Biazoli

Abstract:

Effluent quality is of the highest priority for compliance with the permit limits of environmental protection agencies and ensures the protection of their local water system. Of the pollutants monitored, the biochemical oxygen demand (BOD) posed one of the greatest challenges. This work presents a solution for wastewater treatment plants - WWTP’s ability to react to different situations and meet treatment goals. Delayed BOD5 results from the lab take 7 to 8 analysis days, hindered the WWTP’s ability to react to different situations and meet treatment goals. Reducing BOD turnaround time from days to hours is our quest. Such a solution is based on a system of two BOD bioreactors associated with Digital Twin (DT) and Machine Learning (ML) methodologies via an Internet of Things (IoT) platform to monitor and control a WWTP to support decision making. DT is a virtual and dynamic replica of a production process. DT requires the ability to collect and store real-time sensor data related to the operating environment. Furthermore, it integrates and organizes the data on a digital platform and applies analytical models allowing a deeper understanding of the real process to catch sooner anomalies. In our system of continuous time monitoring of the BOD suppressed by the effluent treatment process, the DT algorithm for analyzing the data uses ML on a chemical kinetic parameterized model. The continuous BOD monitoring system, capable of providing results in a fraction of the time required by BOD5 analysis, is composed of two thermally isolated batch bioreactors. Each bioreactor contains input/output access to wastewater sample (influent and effluent), hydraulic conduction tubes, pumps, and valves for batch sample and dilution water, air supply for dissolved oxygen (DO) saturation, cooler/heater for sample thermal stability, optical ODO sensor based on fluorescence quenching, pH, ORP, temperature, and atmospheric pressure sensors, local PLC/CPU for TCP/IP data transmission interface. The dynamic BOD system monitoring range covers 2 mg/L < BOD < 2,000 mg/L. In addition to the BOD monitoring system, there are many other operational WWTP sensors. The CPU data is transmitted/received to/from the digital platform, which in turn performs analyses at periodic intervals, aiming to feed the learning process. BOD bulletins and their credibility intervals are made available in 12-hour intervals to web users. The chemical kinetics ML algorithm is composed of a coupled system of four first-order ordinary differential equations for the molar masses of DO, organic material present in the sample, biomass, and products (CO₂ and H₂O) of the reaction. This system is solved numerically linked to its initial conditions: DO (saturated) and initial products of the kinetic oxidation process; CO₂ = H₂0 = 0. The initial values for organic matter and biomass are estimated by the method of minimization of the mean square deviations. A real case of continuous monitoring of BOD wastewater effluent quality is being conducted by deploying an IoT application on a large wastewater purification system located in S. Paulo, Brazil.

Keywords: effluent treatment, biochemical oxygen demand, continuous monitoring, IoT, machine learning

Procedia PDF Downloads 74
1939 Monitoring Prospective Sites for Water Harvesting Structures Using Remote Sensing and Geographic Information Systems-Based Modeling in Egypt

Authors: Shereif. H. Mahmoud

Abstract:

Egypt has limited water resources, and it will be under water stress by the year 2030. Therefore, Egypt should consider natural and non-conventional water resources to overcome such a problem. Rain harvesting is one solution. This Paper presents a geographic information system (GIS) methodology - based on decision support system (DSS) that uses remote sensing data, filed survey, and GIS to identify potential RWH areas. The input into the DSS includes a map of rainfall surplus, slope, potential runoff coefficient (PRC), land cover/use, soil texture. In addition, the outputs are map showing potential sites for RWH. Identifying suitable RWH sites implemented in the ArcGIS model environment using the model builder of ArcGIS 10.1. Based on Analytical hierarchy process (AHP) analysis taking into account five layers, the spatial extents of RWH suitability areas identified using Multi-Criteria Evaluation (MCE). The suitability model generated a suitability map for RWH with four suitability classes, i.e. Excellent, Moderate, Poor, and unsuitable. The spatial distribution of the suitability map showed that the excellent suitable areas for RWH concentrated in the northern part of Egypt. According to their averages, 3.24% of the total area have excellent and good suitability for RWH, while 45.04 % and 51.48 % of the total area are moderate and unsuitable suitability, respectively. The majority of the areas with excellent suitability have slopes between 2 and 8% and with an intensively cultivated area. The major soil type in the excellent suitable area is loam and the rainfall range from 100 up to 200 mm. Validation of the used technique depends on comparing existing RWH structures locations with the generated suitability map using proximity analysis tool of ArcGIS 10.1. The result shows that most of exiting RWH structures categorized as successful.

Keywords: rainwater harvesting (RWH), geographic information system (GIS), analytical hierarchy process (AHP), multi-criteria evaluation (MCE), decision support system (DSS)

Procedia PDF Downloads 361
1938 A Systamatic Review on Experimental, FEM Analysis and Simulation of Metal Spinning Process

Authors: Amol M. Jadhav, Sharad S. Chudhari, S. S. Khedkar

Abstract:

This review presents a through survey of research paper work on the experimental analysis, FEM Analysis & simulation of the metal spinning process. In this literature survey all the papers being taken from Elsevier publication and most of the from journal of material processing technology. In a last two decade or so, metal spinning process gradually used as chip less formation for the production of engineering component in a small to medium batch quantities. The review aims to provide include into the experimentation, FEM analysis of various components, simulation of metal spinning process and act as guide for research working on metal spinning processes. The review of existing work has several gaps in current knowledge of metal spinning processes. The evaluation of experiment is thickness strain, the spinning force, the twisting angle, the surface roughness of the conventional & shear metal spinning process; the evaluation of FEM of metal spinning to path definition with sufficient fine mesh to capture behavior of work piece; The evaluation of feed rate of roller, direction of roller,& type of roller stimulated. The metal spinning process has the more flexible to produce a wider range of product shape & to form more challenge material.

Keywords: metal spinning, FEM analysis, simulation of metal spinning, mechanical engineering

Procedia PDF Downloads 387
1937 Strategic Development of Urban Environmental Management Base on Good Governance - Case study of (Waste Management of Tehran)

Authors: A. Farhad Sadri, B. Ali Farhadi, C. Nasim Shalamzari

Abstract:

Waste management is a principle of urban and environmental governance. Waste management in Tehran metropolitan requires good strategies for better governance. Using of good urban governance principles together with eight main indexes can be an appropriate base for this aim. One of the reasonable tools in this field is usage of SWOT methods which provides possibility of comparing the opportunities, threats, weaknesses, and strengths by using IFE and EFE matrixes. The results of the above matrixes, respectively 2.533 and 2.403, show that management system of Tehran metropolitan wastes has performed weak regarding to internal factors and has not have good performance regarding using the opportunities and dealing with threats. In this research, prioritizing and describing the real value of each 24 strategies in waste management in Tehran metropolitan have been surveyed considering good governance derived from Quantitative Strategic Planning Management (QSPM) by using Kolomogrof-Smirnoff by 1.549 and significance level of 0.073 in order to define normalization of final values and all of the strategies utilities and Variance Analysis of ANOVA has been calculated for all SWOT strategies. Duncan’s test results regarding four WT, ST, WO, and SO strategies show no significant difference. In addition to mean comparison by Duncan method in this research, LSD (Lowest Significant Difference test) has been used by probability of 5% and finally, 7 strategies and final model of Tehran metropolitan waste management strategy have been defined. Increasing the confidence of people with transparency of budget, developing and improving the legal structure (rule-oriented and law governance, more responsibility about requirements of private sectors, increasing recycling rates and real effective participation of people and NGOs to improve waste management (contribution) and etc, are main available strategies which have been achieved based on good urban governance management principles.

Keywords: waste, strategy, environmental management, urban good governance, SWOT

Procedia PDF Downloads 323
1936 GIS-Based Identification of Overloaded Distribution Transformers and Calculation of Technical Electric Power Losses

Authors: Awais Ahmed, Javed Iqbal

Abstract:

Pakistan has been for many years facing extreme challenges in energy deficit due to the shortage of power generation compared to increasing demand. A part of this energy deficit is also contributed by the power lost in transmission and distribution network. Unfortunately, distribution companies are not equipped with modern technologies and methods to identify and eliminate these losses. According to estimate, total energy lost in early 2000 was between 20 to 26 percent. To address this issue the present research study was designed with the objectives of developing a standalone GIS application for distribution companies having the capability of loss calculation as well as identification of overloaded transformers. For this purpose, Hilal Road feeder in Faisalabad Electric Supply Company (FESCO) was selected as study area. An extensive GPS survey was conducted to identify each consumer, linking it to the secondary pole of the transformer, geo-referencing equipment and documenting conductor sizes. To identify overloaded transformer, accumulative kWH reading of consumer on transformer was compared with threshold kWH. Technical losses of 11kV and 220V lines were calculated using the data from substation and resistance of the network calculated from the geo-database. To automate the process a standalone GIS application was developed using ArcObjects with engineering analysis capabilities. The application uses GIS database developed for 11kV and 220V lines to display and query spatial data and present results in the form of graphs. The result shows that about 14% of the technical loss on both high tension (HT) and low tension (LT) network while about 4 out of 15 general duty transformers were found overloaded. The study shows that GIS can be a very effective tool for distribution companies in management and planning of their distribution network.

Keywords: geographical information system, GIS, power distribution, distribution transformers, technical losses, GPS, SDSS, spatial decision support system

Procedia PDF Downloads 376
1935 Using 3D Satellite Imagery to Generate a High Precision Canopy Height Model

Authors: M. Varin, A. M. Dubois, R. Gadbois-Langevin, B. Chalghaf

Abstract:

Good knowledge of the physical environment is essential for an integrated forest planning. This information enables better forecasting of operating costs, determination of cutting volumes, and preservation of ecologically sensitive areas. The use of satellite images in stereoscopic pairs gives the capacity to generate high precision 3D models, which are scale-adapted for harvesting operations. These models could represent an alternative to 3D LiDAR data, thanks to their advantageous cost of acquisition. The objective of the study was to assess the quality of stereo-derived canopy height models (CHM) in comparison to a traditional LiDAR CHM and ground tree-height samples. Two study sites harboring two different forest stand types (broadleaf and conifer) were analyzed using stereo pairs and tri-stereo images from the WorldView-3 satellite to calculate CHM. Acquisition of multispectral images from an Unmanned Aerial Vehicle (UAV) was also realized on a smaller part of the broadleaf study site. Different algorithms using two softwares (PCI Geomatica and Correlator3D) with various spatial resolutions and band selections were tested to select the 3D modeling technique, which offered the best performance when compared with LiDAR. In the conifer study site, the CHM produced with Corelator3D using only the 50-cm resolution panchromatic band was the one with the smallest Root-mean-square deviation (RMSE: 1.31 m). In the broadleaf study site, the tri-stereo model provided slightly better performance, with an RMSE of 1.2 m. The tri-stereo model was also compared to the UAV, which resulted in an RMSE of 1.3 m. At individual tree level, when ground samples were compared to satellite, lidar, and UAV CHM, RMSE were 2.8, 2.0, and 2.0 m, respectively. Advanced analysis was done for all of these cases, and it has been noted that RMSE is reduced when the canopy cover is higher when shadow and slopes are lower and when clouds are distant from the analyzed site.

Keywords: very high spatial resolution, satellite imagery, WorlView-3, canopy height models, CHM, LiDAR, unmanned aerial vehicle, UAV

Procedia PDF Downloads 129
1934 Detecting Indigenous Languages: A System for Maya Text Profiling and Machine Learning Classification Techniques

Authors: Alejandro Molina-Villegas, Silvia Fernández-Sabido, Eduardo Mendoza-Vargas, Fátima Miranda-Pestaña

Abstract:

The automatic detection of indigenous languages ​​in digital texts is essential to promote their inclusion in digital media. Underrepresented languages, such as Maya, are often excluded from language detection tools like Google’s language-detection library, LANGDETECT. This study addresses these limitations by developing a hybrid language detection solution that accurately distinguishes Maya (YUA) from Spanish (ES). Two strategies are employed: the first focuses on creating a profile for the Maya language within the LANGDETECT library, while the second involves training a Naive Bayes classification model with two categories, YUA and ES. The process includes comprehensive data preprocessing steps, such as cleaning, normalization, tokenization, and n-gram counting, applied to text samples collected from various sources, including articles from La Jornada Maya, a major newspaper in Mexico and the only media outlet that includes a Maya section. After the training phase, a portion of the data is used to create the YUA profile within LANGDETECT, which achieves an accuracy rate above 95% in identifying the Maya language during testing. Additionally, the Naive Bayes classifier, trained and tested on the same database, achieves an accuracy close to 98% in distinguishing between Maya and Spanish, with further validation through F1 score, recall, and logarithmic scoring, without signs of overfitting. This strategy, which combines the LANGDETECT profile with a Naive Bayes model, highlights an adaptable framework that can be extended to other underrepresented languages in future research. This fills a gap in Natural Language Processing and supports the preservation and revitalization of these languages.

Keywords: indigenous languages, language detection, Maya language, Naive Bayes classifier, natural language processing, low-resource languages

Procedia PDF Downloads 18
1933 Evaluating Greenhouse Gas Emissions in Corn Cropping System: A Life Cycle Perspective

Authors: Zunaira Asif

Abstract:

The agricultural sector in Canada is a significant contributor to greenhouse gas (GHG) emissions, accounting for approximately 10% of the national total. Mitigating these emissions and promoting sustainable agricultural practices requires a comprehensive understanding of the life cycle of agricultural products. This research employs a matrix inverse method to develop a GIS-based life cycle assessment (LCA) model for a corn cropping system. The model integrates spatial data, such as soil properties, climate conditions, and land use/land cover maps, to capture spatial variations in GHG emissions and identify areas for targeted interventions with maximum impact. Field-level data, including crop rotation, tillage practices, fertilizer application rates, pesticide usage, irrigation practices, crop yields, and machinery operations (e.g., fuel consumption, maintenance, and operational hours), are incorporated to provide a detailed analysis. The model evaluates both direct and indirect GHG emissions, including those associated with fertilizer production, machinery usage, and soil carbon dynamics, delivering a comprehensive assessment of the environmental impacts of corn production. Preliminary findings highlight Nitrous oxide (N2O) as a major contributor to GHG emissions, largely due to nitrogen-based fertilizers and energy consumption from agricultural operations. Soil type also significantly influences GHG emission fluxes. Mitigation strategies, such as optimizing fertilizer application, adopting low-emission technologies, and implementing 4R nutrient stewardship principles, have shown promise in reducing emissions. By promoting these practices, this research offers actionable insights for farmers, policymakers, and industry stakeholders to support sustainable corn production.

Keywords: greenhouse gases, life cycle tool, agriculture, GIS

Procedia PDF Downloads 5
1932 Application of Hyperspectral Remote Sensing in Sambhar Salt Lake, A Ramsar Site of Rajasthan, India

Authors: Rajashree Naik, Laxmi Kant Sharma

Abstract:

Sambhar lake is the largest inland Salt Lake of India, declared as a Ramsar site on 23 March 1990. Due to high salinity and alkalinity condition its biodiversity richness is contributed by haloalkaliphilic flora and fauna along with the diverse land cover including waterbody, wetland, salt crust, saline soil, vegetation, scrub land and barren land which welcome large number of flamingos and other migratory birds for winter harboring. But with the gradual increase in the irrational salt extraction activities, the ecological diversity is at stake. There is an urgent need to assess the ecosystem. Advanced technology like remote sensing and GIS has enabled to look into the past, compare with the present for the future planning and management of the natural resources in a judicious way. This paper is a research work intended to present a vegetation in typical inland lake environment of Sambhar wetland using satellite data of NASA’s EO-1 Hyperion sensor launched in November 2000. With the spectral range of 0.4 to 2.5 micrometer at approximately 10nm spectral resolution with 242 bands 30m spatial resolution and 705km orbit was used to produce a vegetation map for a portion of the wetland. The vegetation map was tested for classification accuracy with a pre-existing detailed GIS wetland vegetation database. Though the accuracy varied greatly for different classes the algal communities were successfully identified which are the major sources of food for flamingo. The results from this study have practical implications for uses of spaceborne hyperspectral image data that are now becoming available. Practical limitations of using these satellite data for wetland vegetation mapping include inadequate spatial resolution, complexity of image processing procedures, and lack of stereo viewing.

Keywords: Algal community, NASA’s EO-1 Hyperion, salt-tolerant species, wetland vegetation mapping

Procedia PDF Downloads 135
1931 Treatment of Pharmaceutical Industrial Effluent by Catalytic Ozonation in a Semi-Batch Reactor: Kinetics, Mass Transfer and Improved Biodegradability Studies

Authors: Sameena Malik, Ghosh Prakash, Sandeep Mudliar, Vishal Waindeskar, Atul Vaidya

Abstract:

In this study, the biodegradability enhancement along with COD color and toxicity removal of pharmaceutical effluent by O₃, O₃/Fe²⁺, O₃/nZVI processes has been evaluated. The nZVI particles were synthesized and characterized by XRD and SEM analysis. Kinetic model was reasonably developed to select the ozone doses to be applied based on the ozonation kinetic and mass transfer coefficient values. Nano catalytic ozonation process (O₃/nZVI) effectively enhanced the biodegradability (BI=BOD₅/COD) of pharmaceutical effluent up to 0.63 from 0.18 of control with a COD, color and toxicity removal of 62.3%, 93%, and 75% respectively compared to O₃, O₃/Fe²⁺ pretreatment processes. From the GC-MS analysis, 8 foremost organic compounds were predominantly detected in the pharmaceutical effluent. The disappearance of the corresponding GC-MS spectral peaks during catalyzed ozonation process indicated the degradation of the effluent. The changes in the FTIR spectra confirms the transformation/destruction of the organic compounds present in the effluent to new compounds. Subsequent aerobic biodegradation of pretreated effluent resulted in biodegradation rate enhancement by 5.31, 2.97, and 1.22 times for O₃, O₃/Fe²⁺ and O₃/nZVI processes respectively.

Keywords: iron nanoparticles, pharmaceutical effluent, ozonation, kinetics, mass transfer

Procedia PDF Downloads 271
1930 Efficient Pre-Concentration of As (III) Using Guanidine-Modified Magnetic Mesoporous Silica in the Food Sample

Authors: Majede Modheji, Hamid Emadi, Hossein Vojoudi

Abstract:

An efficient magnetic mesoporous structure was designed and prepared for the facile pre-concentration of As(III) ions. To prepare the sorbent, a core-shell magnetic silica nanoparticle was covered by MCM-41 like structure, and then the surface was modified by guanidine via an amine linker. The prepared adsorbent was investigated as an effective and sensitive material for the adsorption of arsenic ions from the aqueous solution applying a normal batch method. The imperative variables of the adsorption were studied to increase efficiency. The dynamic and static processes were tested that matched a pseudo-second order of kinetic model and the Langmuir isotherm model, respectively. The sorbent reusability was investigated, and it was confirmed that the designed product could be applied at best for six cycles successively without any significant efficiency loss. The synthesized product was tested to determine and pre-concentrate trace amounts of arsenic ions in rice and natural waters as a real sample. A desorption process applying 5 mL of hydrochloric acid (0.5 mol L⁻¹) as an eluent exhibited about 98% recovery of the As(III) ions adsorbed on the GA-MSMP sorbent.

Keywords: arsenic, adsorption, mesoporous, surface modification, MCM-41

Procedia PDF Downloads 150
1929 Impact of Charging PHEV at Different Penetration Levels on Power System Network

Authors: M. R. Ahmad, I. Musirin, M. M. Othman, N. A. Rahmat

Abstract:

Plug-in Hybrid-Electric Vehicle (PHEV) has gained immense popularity in recent years. PHEV offers numerous advantages compared to the conventional internal-combustion engine (ICE) vehicle. Millions of PHEVs are estimated to be on the road in the USA by 2020. Uncoordinated PHEV charging is believed to cause severe impacts to the power grid; i.e. feeders, lines and transformers overload and voltage drop. Nevertheless, improper PHEV data model used in such studies may cause the findings of their works is in appropriated. Although smart charging is more attractive to researchers in recent years, its implementation is not yet attainable on the street due to its requirement for physical infrastructure readiness and technology advancement. As the first step, it is finest to study the impact of charging PHEV based on real vehicle travel data from National Household Travel Survey (NHTS) and at present charging rate. Due to the lack of charging station on the street at the moment, charging PHEV at home is the best option and has been considered in this work. This paper proposed a technique that comprehensively presents the impact of charging PHEV on power system networks considering huge numbers of PHEV samples with its traveling data pattern. Vehicles Charging Load Profile (VCLP) is developed and implemented in IEEE 30-bus test system that represents a portion of American Electric Power System (Midwestern US). Normalization technique is used to correspond to real time loads at all buses. Results from the study indicated that charging PHEV using opportunity charging will have significant impacts on power system networks, especially whereas bigger battery capacity (kWh) is used as well as for higher penetration level.

Keywords: plug-in hybrid electric vehicle, transportation electrification, impact of charging PHEV, electricity demand profile, load profile

Procedia PDF Downloads 288
1928 Brain-Computer Interfaces That Use Electroencephalography

Authors: Arda Ozkurt, Ozlem Bozkurt

Abstract:

Brain-computer interfaces (BCIs) are devices that output commands by interpreting the data collected from the brain. Electroencephalography (EEG) is a non-invasive method to measure the brain's electrical activity. Since it was invented by Hans Berger in 1929, it has led to many neurological discoveries and has become one of the essential components of non-invasive measuring methods. Despite the fact that it has a low spatial resolution -meaning it is able to detect when a group of neurons fires at the same time-, it is a non-invasive method, making it easy to use without possessing any risks. In EEG, electrodes are placed on the scalp, and the voltage difference between a minimum of two electrodes is recorded, which is then used to accomplish the intended task. The recordings of EEGs include, but are not limited to, the currents along dendrites from synapses to the soma, the action potentials along the axons connecting neurons, and the currents through the synaptic clefts connecting axons with dendrites. However, there are some sources of noise that may affect the reliability of the EEG signals as it is a non-invasive method. For instance, the noise from the EEG equipment, the leads, and the signals coming from the subject -such as the activity of the heart or muscle movements- affect the signals detected by the electrodes of the EEG. However, new techniques have been developed to differentiate between those signals and the intended ones. Furthermore, an EEG device is not enough to analyze the data from the brain to be used by the BCI implication. Because the EEG signal is very complex, to analyze it, artificial intelligence algorithms are required. These algorithms convert complex data into meaningful and useful information for neuroscientists to use the data to design BCI devices. Even though for neurological diseases which require highly precise data, invasive BCIs are needed; non-invasive BCIs - such as EEGs - are used in many cases to help disabled people's lives or even to ease people's lives by helping them with basic tasks. For example, EEG is used to detect before a seizure occurs in epilepsy patients, which can then prevent the seizure with the help of a BCI device. Overall, EEG is a commonly used non-invasive BCI technique that has helped develop BCIs and will continue to be used to detect data to ease people's lives as more BCI techniques will be developed in the future.

Keywords: BCI, EEG, non-invasive, spatial resolution

Procedia PDF Downloads 73
1927 Developing a DNN Model for the Production of Biogas From a Hybrid BO-TPE System in an Anaerobic Wastewater Treatment Plant

Authors: Hadjer Sadoune, Liza Lamini, Scherazade Krim, Amel Djouadi, Rachida Rihani

Abstract:

Deep neural networks are highly regarded for their accuracy in predicting intricate fermentation processes. Their ability to learn from a large amount of datasets through artificial intelligence makes them particularly effective models. The primary obstacle in improving the performance of these models is to carefully choose the suitable hyperparameters, including the neural network architecture (number of hidden layers and hidden units), activation function, optimizer, learning rate, and other relevant factors. This study predicts biogas production from real wastewater treatment plant data using a sophisticated approach: hybrid Bayesian optimization with a tree-structured Parzen estimator (BO-TPE) for an optimised deep neural network (DNN) model. The plant utilizes an Upflow Anaerobic Sludge Blanket (UASB) digester that treats industrial wastewater from soft drinks and breweries. The digester has a working volume of 1574 m3 and a total volume of 1914 m3. Its internal diameter and height were 19 and 7.14 m, respectively. The data preprocessing was conducted with meticulous attention to preserving data quality while avoiding data reduction. Three normalization techniques were applied to the pre-processed data (MinMaxScaler, RobustScaler and StandardScaler) and compared with the Non-Normalized data. The RobustScaler approach has strong predictive ability for estimating the volume of biogas produced. The highest predicted biogas volume was 2236.105 Nm³/d, with coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) values of 0.712, 164.610, and 223.429, respectively.

Keywords: anaerobic digestion, biogas production, deep neural network, hybrid bo-tpe, hyperparameters tuning

Procedia PDF Downloads 39
1926 Pattern of Anisometropia, Management and Outcome of Anisometropic Amblyopia

Authors: Husain Rajib, T. H. Sheikh, D. G. Jewel

Abstract:

Background: Amblyopia is a frequent cause of monocular blindness in children. It can be unilateral or bilateral reduction of best corrected visual acuity associated with decrement in visual processing, accomodation, motility, spatial perception or spatial projection. Anisometropia is an important risk factor for amblyopia that develops when unequal refractive error causes the image to be blurred in the critical developmental period and central inhibition of the visual signal originating from the affected eye associated with significant visual problems including anisokonia, strabismus, and reduced stereopsis. Methods: It is a prospective hospital based study of newly diagnosed of amblyopia seen at the pediatric clinic of Chittagong Eye Infirmary & Training Complex. There were 50 anisometropic amblyopia subjects were examined & questionnaire was piloted. Included were all patients diagnosed with refractive amblyopia between 3 to 13 years, without previous amblyopia treatment, and whose parents were interested to participate in the study. Patients diagnosed with strabismic amblyopia were excluded. Patients were first corrected with the best correction for a month. When the VA in the amblyopic eye did not improve over month, then occlusion treatment was started. Occlusion was done daily for 6-8 hours (full time) together with vision therapy. The occlusion was carried out for 3 months. Results: In this study about 8% subjects had anisometropia from myopia, 18% from hyperopia, 74% from astigmatism. The initial mean visual acuity was 0.74 ± 0.39 Log MAR and after intervention of amblyopia therapy with active vision therapy mean visual acuity was 0.34 ± 0.26 Log MAR. About 94% of subjects were improving at least two lines. The depth of amblyopia associated with type of anisometropic refractive error and magnitude of Anisometropia (p<0.005). By doing this study 10% mild amblyopia, 64% moderate and 26% severe amblyopia were found. Binocular function also decreases with magnitude of Anisometropia. Conclusion: Anisometropic amblyopia is a most important factor in pediatric age group because it can lead to visual impairment. Occlusion therapy with at least one instructed hour of active visual activity practiced out of school hours was effective in anisometropic amblyopes who were diagnosed at the age of 8 years and older, and the patients complied well with the treatment.

Keywords: refractive error, anisometropia, amblyopia, strabismic amblyopia

Procedia PDF Downloads 276
1925 Alternate Methods to Visualize 2016 U.S. Presidential Election Result

Authors: Hong Beom Hur

Abstract:

Politics in America is polarized. The best illustration of this is the 2016 presidential election result map. States with megacities like California, New York, Illinois, Virginia, and others are marked blue to signify the color of the Democratic party. States located in inland and south like Texas, Florida, Tennesse, Kansas and others are marked red to signify the color of the Republican party. Such a stark difference between two colors, red and blue, combined with geolocations of each state with their borderline remarks one central message; America is divided into two colors between urban Democrats and rural Republicans. This paper seeks to defy the visualization by pointing out its limitations and search for alternative ways to visualize the 2016 election result. One such limitation is that geolocations of each state and state borderlines limit the visualization of population density. As a result, the election result map does not convey the fact that Clinton won the popular vote and only accentuates the voting patterns of urban and rural states. The paper seeks whether an alternative narrative can be observed by factoring in the population number into the size of each state and manipulating the state borderline according to the normalization. Yet another alternative narrative may be reached by factoring the size of each state by the number of the electoral college of each state by voting and visualize the number. Other alternatives will be discussed but are not implemented in visualization. Such methods include dividing the land of America into about 120 million cubes each representing a voter or by the number of whole population 300 million cubes. By exploring these alternative methods to visualize the politics of the 2016 election map, the public may be able to question whether it is possible to be free from the narrative of the divide-conquer when interpreting the election map and to look at both parties as a story of the United States of America.

Keywords: 2016 U.S. presidential election, data visualization, population scale, geo-political

Procedia PDF Downloads 122
1924 Bronchospasm Analysis Following the Implementation of a Program of Maximum Aerobic Exercise in Active Men

Authors: Sajjad Shojaeidoust, Mohsen Ghanbarzadeh, Abdolhamid Habibi

Abstract:

Exercise-induced bronchospasm (EIB) is a transitory condition of airflow obstruction that is associated with physical activities. It is noted that high ventilation can lead to an increase in the heat and reduce in the moisture in airways resistance of trachea. Also causes of pathophysiological mechanism are EIB. Accordingly, studying some parameters of pulmonary function (FVC, FEV1) among active people seems quintessential. The aim of this study was to analyze bronchospasm following the implementation of a program of maximum aerobic exercise in active men at Chamran University of Ahwaz. Method: In this quasi-experimental study, the population consisted of all students at Chamran University. Among from 55 participants, of which, 15 were randomly selected as the experimental group. In this study, the size of the maximum oxygen consumption was initially measured, and then, based on the maximum oxygen consumed, the active individuals were identified. After five minutes’ warm-up, Strand treadmill exercise test was taken (one session) and pulmonary parameters were measured at both pre- and post-tests (spirometer). After data normalization using KS and non-normality of the data, the Wilcoxon test was used to analyze the data. The significance level for all statistical surveys was considered p≤0/05. Results: The results showed that the ventilation factors and bronchospasm (FVC, FEV1) in the pre-test and post-test resulted in no significant difference among the active people (p≥0/05). Discussion and conclusion: Based on the results observed in this study, it appears that pulmonary indices in active individuals increased after aerobic test. The increase in this indicator in active people is due to increased volume and elasticity of the lungs as well. In other words, pulmonary index is affected by rib muscles. It is considered that progress over respiratory muscle strength and endurance has raised FEV1 in the active cases.

Keywords: aerobic active maximum, bronchospasm, pulmonary function, spirometer

Procedia PDF Downloads 290
1923 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs

Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye

Abstract:

This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.

Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label

Procedia PDF Downloads 130
1922 Spatiotemporal Variability of Snow Cover and Snow Water Equivalent over Eurasia

Authors: Yinsheng Zhang

Abstract:

Changes in the extent and amount of snow cover in Eurasia are of great interest because of their vital impacts on the global climate system and regional water resource management. This study investigated the spatial and temporal variability of the snow cover extent (SCE) and snow water equivalent (SWE) of continental Eurasia using the Northern Hemisphere Equal-Area Scalable Earth Grid (EASE-Grid) Weekly SCE data for 1972–2006 and the Global Monthly EASE-Grid SWE data for 1979–2004. The results indicated that, in general, the spatial extent of snow cover significantly decreased during spring and summer, but varied little during autumn and winter over Eurasia in the study period. The date at which snow cover began to disappear in spring has significantly advanced, whereas the timing of snow cover onset in autumn did not vary significantly during 1972–2006. The snow cover persistence period declined significantly in the western Tibetan Plateau as well as the partial area of Central Asia and northwestern Russia but varied little in other parts of Eurasia. ‘Snow-free breaks’ (SFBs) with intermittent snow cover in the cold season were mainly observed in the Tibetan Plateau and Central Asia, causing a low sensitivity of snow cover persistence period to the timings of snow cover onset and disappearance over the areas with shallow snow. The averaged SFBs were 1–14 weeks in the Tibetan Plateau during 1972–2006 and the maximum intermittence could reach 25 weeks in some extreme years. At a seasonal scale, the SWE usually peaked in February or March but fell gradually since April across Eurasia. Both annual mean and annual maximum SWE decreased significantly during 1979–2004 in most parts of Eurasia except for eastern Siberia as well as northwestern and northeastern China.

Keywords: Eurasia, snow cover extent, snow cover persistence period, snow-free breaks, onset and disappearance timings, snow water equivalent

Procedia PDF Downloads 147
1921 Quantitative Comparisons of Different Approaches for Rotor Identification

Authors: Elizabeth M. Annoni, Elena G. Tolkacheva

Abstract:

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia that is a known prognostic marker for stroke, heart failure and death. Reentrant mechanisms of rotor formation, which are stable electrical sources of cardiac excitation, are believed to cause AF. No existing commercial mapping systems have been demonstrated to consistently and accurately predict rotor locations outside of the pulmonary veins in patients with persistent AF. There is a clear need for robust spatio-temporal techniques that can consistently identify rotors using unique characteristics of the electrical recordings at the pivot point that can be applied to clinical intracardiac mapping. Recently, we have developed four new signal analysis approaches – Shannon entropy (SE), Kurtosis (Kt), multi-scale frequency (MSF), and multi-scale entropy (MSE) – to identify the pivot points of rotors. These proposed techniques utilize different cardiac signal characteristics (other than local activation) to uncover the intrinsic complexity of the electrical activity in the rotors, which are not taken into account in current mapping methods. We validated these techniques using high-resolution optical mapping experiments in which direct visualization and identification of rotors in ex-vivo Langendorff-perfused hearts were possible. Episodes of ventricular tachycardia (VT) were induced using burst pacing, and two examples of rotors were used showing 3-sec episodes of a single stationary rotor and figure-8 reentry with one rotor being stationary and one meandering. Movies were captured at a rate of 600 frames per second for 3 sec. with 64x64 pixel resolution. These optical mapping movies were used to evaluate the performance and robustness of SE, Kt, MSF and MSE techniques with respect to the following clinical limitations: different time of recordings, different spatial resolution, and the presence of meandering rotors. To quantitatively compare the results, SE, Kt, MSF and MSE techniques were compared to the “true” rotor(s) identified using the phase map. Accuracy was calculated for each approach as the duration of the time series and spatial resolution were reduced. The time series duration was decreased from its original length of 3 sec, down to 2, 1, and 0.5 sec. The spatial resolution of the original VT episodes was decreased from 64x64 pixels to 32x32, 16x16, and 8x8 pixels by uniformly removing pixels from the optical mapping video.. Our results demonstrate that Kt, MSF and MSE were able to accurately identify the pivot point of the rotor under all three clinical limitations. The MSE approach demonstrated the best overall performance, but Kt was the best in identifying the pivot point of the meandering rotor. Artifacts mildly affect the performance of Kt, MSF and MSE techniques, but had a strong negative impact of the performance of SE. The results of our study motivate further validation of SE, Kt, MSF and MSE techniques using intra-atrial electrograms from paroxysmal and persistent AF patients to see if these approaches can identify pivot points in a clinical setting. More accurate rotor localization could significantly increase the efficacy of catheter ablation to treat AF, resulting in a higher success rate for single procedures.

Keywords: Atrial Fibrillation, Optical Mapping, Signal Processing, Rotors

Procedia PDF Downloads 324
1920 Digitalization: The Uneven Geography of Information and Communication Technology (ICTS) CTSoss Four Major States in India

Authors: Sanchari Mukhopadhyay

Abstract:

Today, almost the entire realm of human activities are becoming increasingly dependent on the power of information, where through ICTs it is now possible to cater distances and avail various services at a few clicks. In principle, ICTs are thus expected to blur location-specific differences and affiliations of development and bring in an inclusive society at the wake of globalization. However, eventually researchers and policy analysts realized that ICTs are also generating inequality in spite of the hope for an integrated world and widespread social well-being. Regarding this unevenness, location plays a major role as often ICT development is seen to be concentrated into pockets, leaving behind large tracks as underprivileged. Thus, understanding the spatial pattern of ICT development and distribution is significant in relation to exploring the extent to which ICTs are fulfilling the promises or reassuring the existing divisions. In addition, it is also profoundly crucial to investigate how regions are connecting and competing both locally and globally. The focus of the research paper is to evaluate the spatial structure of ICT led development in India. Thereby, it attempts to understand the state level (four selected states) pattern of ICT penetration, the pattern of diffusion across districts with respect to large urban centres and the rural-urban disparity of technology adoption. It also tries to assess the changes in access dynamisms of ICTs as one move away from a large metropolitan city towards the periphery. In brief, the analysis investigates into the tendency towards the uneven growth of development through the identification of the core areas of ICT advancement within the country and its diffusion from the core to the periphery. In order to assess the level of ICT development and rural-urban disparity across the districts of selected states, two indices named ICT Development Index and Rural-Urban Digital Divide Index have been constructed. The study mostly encompasses the latest Census (2011) of the country and TRAI (Telecom Regulatory Authority of India) in some cases.

Keywords: ICT development, diffusion, core-periphery, digital divide

Procedia PDF Downloads 336
1919 The School Governing Council as the Impetus for Collaborative Education Governance: A Case Study of Two Benguet Municipalities in the Highlands of Northern Philippines

Authors: Maria Consuelo Doble

Abstract:

For decades, basic public education in the Philippines has been beleaguered by a governance scenario of multi-layered decision-making and the lack of collaboration between sectors in addressing issues on poor access to schools, high dropout rates, low survival rates, and poor student performance. These chronic problems persisted despite multiple efforts making it appear that the education system is incapable of reforming itself. In the mountainous rural towns of La Trinidad and Tuba, in the province of Benguet in Northern Philippines, collaborative education governance was catalyzed by the intervention of Synergeia Foundation, a coalition made up of individuals, institutions and organizations that aim to improve the quality of education in the Philippines. Its major thrust is to empower the major stakeholders at the community level to make education work by building the capacities of School Governing Councils (SGCs). Although mandated by the Department of Education in 2006, the SGCs in Philippine public elementary schools remained dysfunctional. After one year of capacity-building by Synergeia Foundation, some SGCs are already exhibiting active community-based multi-sectoral collaboration, while there are many that are not. With the myriad of factors hindering collaboration, Synergeia Foundation is now confronted with the pressing question: What are the factors that promote collaborative governance in the SGCs so that they can address the education-related issues that they are facing? Using Emerson’s (2011) framework on collaborative governance, this study analyzes the application of collaborative governance by highly-functioning SGCs in the public elementary schools of Tuba and La Trinidad. Findings of this action research indicate how the dynamics of collaboration composed of three interactive and iterative components – principled engagement, shared motivation and capacity for joint action – have resulted in meaningful short-term impact such as stakeholder engagement and decreased a number of dropouts. The change in the behavior of stakeholders is indicative of adaptation to a more collaborative approach in governing education in Benguet highland settings such as Tuba and La Trinidad.

Keywords: basic public education, Benguet highlands, collaborative governance, School Governing Council

Procedia PDF Downloads 292
1918 Health Risk Assessment of Heavy Metals in Clarias gariepinus (Burchell, 1822) from Fish Mongers within Akure Metropolis, Ondo State, Nigeria

Authors: O. O. Olawusi-Peters, K. I. Adejugbagbe

Abstract:

The concentration of heavy metal (Cd, Pb, Fe, Zn, Cu) in Clarias gariepinus collected from fish markets; Fanibi (Station I) and Fiwasaye (Station II) in Akure metropolis, Ondo state, Nigeria were investigated to ascertain the safety for the consumers. 60 samples were collected from the two markets in three batches (I, II, III) for a period of six months and analyzed for heavy metals in the gills and muscles of the fish. Also, the Health Risk Index (HRI) was used to determine the health risk of these metals to the consumer. The results showed that the investigated metal concentration was higher in station I than station II, except Pb having higher concentration in station II than station I. In both stations, the highest concentration of Fe was recorded in the gills (12.60 ± 1.51; 6.94 ± 1.38) and muscles (3.72 ± 0.09; 3.86 ± 0.33) of samples in batch I. Also, the HRI revealed that consumption of Clarias gariepinus from these study areas did not pose any health risk (HRI < 1). In addition, concentrations of the heavy metals were all below the permissible limits recommended by FAO/WHO.

Keywords: health risk index, heavy metals, clarias gariepinus, akure metropolis, fish monger

Procedia PDF Downloads 148
1917 Strong Ground Motion Characteristics Revealed by Accelerograms in Ms8.0 Wenchuan Earthquake

Authors: Jie Su, Zhenghua Zhou, Yushi Wang, Yongyi Li

Abstract:

The ground motion characteristics, which are given by the analysis of acceleration records, underlie the formulation and revision of the seismic design code of structural engineering. China Digital Strong Motion Network had recorded a lot of accelerograms of main shock from 478 permanent seismic stations, during the Ms8.0 Wenchuan earthquake on 12th May, 2008. These accelerograms provided a large number of essential data for the analysis of ground motion characteristics of the event. The spatial distribution characteristics, rupture directivity effect, hanging-wall and footwall effect had been studied based on these acceleration records. The results showed that the contours of horizontal peak ground acceleration and peak velocity were approximately parallel to the seismogenic fault which demonstrated that the distribution of the ground motion intensity was obviously controlled by the spatial extension direction of the seismogenic fault. Compared with the peak ground acceleration (PGA) recorded on the sites away from which the front of the fault rupture propagates, the PGA recorded on the sites toward which the front of the fault rupture propagates had larger amplitude and shorter duration, which indicated a significant rupture directivity effect. With the similar fault distance, the PGA of the hanging-wall is apparently greater than that of the foot-wall, while the peak velocity fails to observe this rule. Taking account of the seismic intensity distribution of Wenchuan Ms8.0 earthquake, the shape of strong ground motion contours was significantly affected by the directional effect in the regions with Chinese seismic intensity level VI ~ VIII. However, in the regions whose Chinese seismic intensity level are equal or greater than VIII, the mutual positional relationship between the strong ground motion contours and the surface outcrop trace of the fault was evidently influenced by the hanging-wall and foot-wall effect.

Keywords: hanging-wall and foot-wall effect, peak ground acceleration, rupture directivity effect, strong ground motion

Procedia PDF Downloads 351