Search results for: olive oil extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2131

Search results for: olive oil extraction

841 Real-Time Classification of Hemodynamic Response by Functional Near-Infrared Spectroscopy Using an Adaptive Estimation of General Linear Model Coefficients

Authors: Sahar Jahani, Meryem Ayse Yucel, David Boas, Seyed Kamaledin Setarehdan

Abstract:

Near-infrared spectroscopy allows monitoring of oxy- and deoxy-hemoglobin concentration changes associated with hemodynamic response function (HRF). HRF is usually affected by natural physiological hemodynamic (systemic interferences) which occur in all body tissues including brain tissue. This makes HRF extraction a very challenging task. In this study, we used Kalman filter based on a general linear model (GLM) of brain activity to define the proportion of systemic interference in the brain hemodynamic. The performance of the proposed algorithm is evaluated in terms of the peak to peak error (Ep), mean square error (MSE), and Pearson’s correlation coefficient (R2) criteria between the estimated and the simulated hemodynamic responses. This technique also has the ability of real time estimation of single trial functional activations as it was applied to classify finger tapping versus resting state. The average real-time classification accuracy of 74% over 11 subjects demonstrates the feasibility of developing an effective functional near infrared spectroscopy for brain computer interface purposes (fNIRS-BCI).

Keywords: hemodynamic response function, functional near-infrared spectroscopy, adaptive filter, Kalman filter

Procedia PDF Downloads 169
840 Stray Light Reduction Methodology by a Sinusoidal Light Modulation and Three-Parameter Sine Curve Fitting Algorithm for a Reflectance Spectrometer

Authors: Hung Chih Hsieh, Cheng Hao Chang, Yun Hsiang Chang, Yu Lin Chang

Abstract:

In the applications of the spectrometer, the stray light that comes from the environment affects the measurement results a lot. Hence, environment and instrument quality control for the stray reduction is critical for the spectral reflectance measurement. In this paper, a simple and practical method has been developed to correct a spectrometer's response for measurement errors arising from the environment's and instrument's stray light. A sinusoidal modulated light intensity signal was incident on a tested sample, and then the reflected light was collected by the spectrometer. Since a sinusoidal signal modulated the incident light, the reflected light also had a modulated frequency which was the same as the incident signal. Using the three-parameter sine curve fitting algorithm, we can extract the primary reflectance signal from the total measured signal, which contained the primary reflectance signal and the stray light from the environment. The spectra similarity between the extracted spectra by this proposed method with extreme environment stray light is 99.98% similar to the spectra without the environment's stray light. This result shows that we can measure the reflectance spectra without the affection of the environment's stray light.

Keywords: spectrometer, stray light, three-parameter sine curve fitting, spectra extraction

Procedia PDF Downloads 251
839 Chemical and Sensory Properties of Chardonnay Wines Produced in Different Oak Barrels

Authors: Valentina Obradović, Josip Mesić, Maja Ergović Ravančić, Kamila Mijowska, Brankica Svitlica

Abstract:

French oak and American oak barrels are most famous all over the world, but barrels of different origin can also be used for obtaining high quality wines. The aim of this research was to compare the influence of different Slavonian (Croatian) and French oak barrels on the quality of Chardonnay wine. Grapes were grown in Croatian wine growing region of Kutjevo in 2015. Chardonnay wines were tested for basic oenological parameters (alcohol, extract, reducing sugar, SO2, acidity), total polyphenols content (Folin-Ciocalteu method), antioxidant activity (ABTS and DPPH method) and color density. Sensory evaluation was performed by students of viticulture/oenology. Samples produced by classical fermentation and ageing in French oak barrels, had better results for polyphenols and sensory evaluation (especially low toasting level) than samples in Slavonian barrels. All tested samples were scored as a “quality” or “premium quality” wines. Sur lie method of fermentation and ageing in Slavonian oak barrel had very good extraction of polyphenols and high antioxidant activity with the usage of authentic yeasts, while commercial yeast strain resulted in worse chemical and sensory parameters.

Keywords: chardonnay, French oak, Slavonian oak, sur lie

Procedia PDF Downloads 242
838 BIM Data and Digital Twin Framework: Preserving the Past and Predicting the Future

Authors: Mazharuddin Syed Ahmed

Abstract:

This research presents a framework used to develop The Ara Polytechnic College of Architecture Studies building “Kahukura” which is Green Building certified. This framework integrates the development of a smart building digital twin by utilizing Building Information Modelling (BIM) and its BIM maturity levels, including Levels of Development (LOD), eight dimensions of BIM, Heritage-BIM (H-BIM) and Facility Management BIM (FM BIM). The research also outlines a structured approach to building performance analysis and integration with the circular economy, encapsulated within a five-level digital twin framework. Starting with Level 1, the Descriptive Twin provides a live, editable visual replica of the built asset, allowing for specific data inclusion and extraction. Advancing to Level 2, the Informative Twin integrates operational and sensory data, enhancing data verification and system integration. At Level 3, the Predictive Twin utilizes operational data to generate insights and proactive management suggestions. Progressing to Level 4, the Comprehensive Twin simulates future scenarios, enabling robust “what-if” analyses. Finally, Level 5, the Autonomous Twin, represents the pinnacle of digital twin evolution, capable of learning and autonomously acting on behalf of users.

Keywords: building information modelling, circular economy integration, digital twin, predictive analytics

Procedia PDF Downloads 44
837 Characterization of Porosity and Flow in Solid Oxide Fuel Cell with 3D Focused Ion Beam Serial Slicing

Authors: Daniel Phifer, Anna Prokhodtseva

Abstract:

DualBeam (FIB-SEM) has long been the technology of choice to sub-sample and characterize materials at site-specific locations which are difficult or impossible to extract by conventional embedding/polishing methods. Whereas Ga based FIB provides excellent resolution and enables precise material removal, the current is usually limited and only allows the extraction of small material biopsies typically ranging from 5-70um wide. Xe Plasma FIB, by contrast, has around 38x more current and can remove more material at the same time to extract significant sized chunks (100-1000um) of materials for further analysis. This increased volume has enabled time-prohibitive investigations like large grain 3D serial sectioning and EBSD and micro-machining for micro-mechanical testing. Investigation of the pore spaces with 3D modeling can determine the relative characteristics of the materials to help design or select properties for best function. Pore spaces can be described with a tortuosity number which is calculated by modules in the 3D analysis software. Xe Plasma FIB technology provides a workflow with sufficient volume to characterize porosity when both large-volume 3D materials characterization and nanometer resolution is required to understand the system.

Keywords: dual-beam, FIB-SEM, porosity, SOFC, solid oxide fuel cell

Procedia PDF Downloads 208
836 d-Block Metal Nanoparticles Confined in Triphenylphosphine Oxide Functionalized Core-Crosslinked Micelles for the Application in Biphasic Hydrogenation

Authors: C. Joseph Abou-Fayssal, K. Philippot, R. Poli, E. Manoury, A. Riisager

Abstract:

The use of soluble polymer-supported metal nanoparticles (MNPs) has received significant attention for the ease of catalyst recovery and recycling. Of particular interest are MNPs that are supported on polymers that are either soluble or form stable colloidal dispersion in water, as this allows to combine of the advantages of the aqueous biphasic protocol with the catalytical performances of MNPs. The objective is to achieve good confinement of the catalyst in the nanoreactor cores and, thus, a better catalyst recovery in order to overcome the previously witnessed MNP extraction. Inspired by previous results, we are interested in the design of polymeric nanoreactors functionalized with ligands able to solidly anchor metallic nanoparticles in order to control the activity and selectivity of the developed nanocatalysts. The nanoreactors are core-crosslinked micelles (CCM) synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Varying the nature of the core-linked functionalities allows us to get differently stabilized metal nanoparticles and thus compare their performance in the catalyzed aqueous biphasic hydrogenation of model substrates. Particular attention is given to catalyst recyclability.

Keywords: biphasic catalysis, metal nanoparticles, polymeric nanoreactors, catalyst recovery, RAFT polymerization

Procedia PDF Downloads 103
835 The Mechanism of Design and Analysis Modeling of Performance of Variable Speed Wind Turbine and Dynamical Control of Wind Turbine Power

Authors: Mohammadreza Heydariazad

Abstract:

Productivity growth of wind energy as a clean source needed to achieve improved strategy in production and transmission and management of wind resources in order to increase quality of power and reduce costs. New technologies based on power converters that cause changing turbine speed to suit the wind speed blowing turbine improve extraction efficiency power from wind. This article introduces variable speed wind turbines and optimization of power, and presented methods to use superconducting inductor in the composition of power converter and is proposed the dc measurement for the wind farm and especially is considered techniques available to them. In fact, this article reviews mechanisms and function, changes of wind speed turbine according to speed control strategies of various types of wind turbines and examines power possible transmission and ac from producing location to suitable location for a strong connection integrating wind farm generators, without additional cost or equipment. It also covers main objectives of the dynamic control of wind turbines, and the methods of exploitation and the ways of using it that includes the unique process of these components. Effective algorithm is presented for power control in order to extract maximum active power and maintains power factor at the desired value.

Keywords: wind energy, generator, superconducting inductor, wind turbine power

Procedia PDF Downloads 328
834 The Effect of Four Local Plant Extract on the Control of Rice Weevil, Sitophilus oryzae L.

Authors: Banaz Sdiq Abdulla

Abstract:

Four local species (Allium sativum, Capsicum annum, Anethum graveolens, and Ocimum basilicum) were evaluated in the laboratory of Biolog Department, College of Education, for their ability to protect stored rice from the infection by weevil Sitophilus oryzae. Aqueous extracts of the plant species were applied as direct admixture of three concentrations levels of 1%, 2.5%, and 5% (W/V) to assess for mortality, adult emergence, and repellency and weight losses. The results showed that Al. sativum extracts was the most effective as it gave the highest mortality (90%)at 5% concentration followed by Capsicum annum (80%) on the 4th day post treatment, the result showed that the plant extract of different concentrations exhibited different level of reduction in adult emergence and different repellency of adults of Sitophilus oryzae. Allium sativum recorded the lowest mean number of adult emergence (8) followed by Capsicum annum (10) at 5% concentration, while Capsicum annum was found to be revealed complete repellent agent (100%) repellency on the 6th hours against Sitophilus oryzae followed by Allium sativum and Anethum graveolens (81.8%). There was a significant (P>0.05) reduction in the weight lossed by the weevils with less damaged recorded on grain treated with Allium sativum and Capsicum annum (1.6%) and (2.3%) respectively.

Keywords: plant extraction, rice, protectant, pest

Procedia PDF Downloads 431
833 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact

Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed

Abstract:

Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).

Keywords: Bayesian network, classification, expert knowledge, structure learning, surface water analysis

Procedia PDF Downloads 128
832 High-Accuracy Satellite Image Analysis and Rapid DSM Extraction for Urban Environment Evaluations (Tripoli-Libya)

Authors: Abdunaser Abduelmula, Maria Luisa M. Bastos, José A. Gonçalves

Abstract:

The modeling of the earth's surface and evaluation of urban environment, with 3D models, is an important research topic. New stereo capabilities of high-resolution optical satellites images, such as the tri-stereo mode of Pleiades, combined with new image matching algorithms, are now available and can be applied in urban area analysis. In addition, photogrammetry software packages gained new, more efficient matching algorithms, such as SGM, as well as improved filters to deal with shadow areas, can achieve denser and more precise results. This paper describes a comparison between 3D data extracted from tri-stereo and dual stereo satellite images, combined with pixel based matching and Wallis filter. The aim was to improve the accuracy of 3D models especially in urban areas, in order to assess if satellite images are appropriate for a rapid evaluation of urban environments. The results showed that 3D models achieved by Pleiades tri-stereo outperformed, both in terms of accuracy and detail, the result obtained from a Geo-eye pair. The assessment was made with reference digital surface models derived from high-resolution aerial photography. This could mean that tri-stereo images can be successfully used for the proposed urban change analyses.

Keywords: 3D models, environment, matching, pleiades

Procedia PDF Downloads 331
831 Effective Solvents for Proteins Recovery from Microalgae

Authors: Win Nee Phong, Tau Chuan Ling, Pau Loke Show

Abstract:

From an industrial perspective, the exploitation of microalgae for protein source is of great economical and commercial interest due to numerous attractive characteristics. Nonetheless, the release of protein from microalgae is limited by the multiple layers of the rigid thick cell wall that generally contain a large proportion of cellulose. Thus an efficient cell disruption process is required to rupture the cell wall. The conventional downstream processing methods which typically involve several unit operational steps such as disruption, isolation, extraction, concentration and purification are energy-intensive and costly. To reduce the overall cost and establish a feasible technology for the success of the large-scale production, microalgal industry today demands a more cost-effective and eco-friendly technique in downstream processing. One of the main challenges to extract the proteins from microalgae is the presence of rigid cell wall. This study aims to provide some guidance on the selection of the efficient solvent to facilitate the proteins released during the cell disruption process. The effects of solvent types such as methanol, ethanol, 1-propanol and water in rupturing the microalgae cell wall were studied. It is interesting to know that water is the most effective solvent to recover proteins from microalgae and the cost is cheapest among all other solvents.

Keywords: green, microalgae, protein, solvents

Procedia PDF Downloads 258
830 Creativity in Industrial Design as an Instrument for the Achievement of the Proper and Necessary Balance between Intuition and Reason, Design and Science

Authors: Juan Carlos Quiñones

Abstract:

Time has passed since the industrial design has put murder on a mass-production basis. The industrial design applies methods from different disciplines with a strategic approach, to place humans at the centers of the design process and to deliver solutions that are meaningful and desirable for users and for the market. This analysis summarizes some of the discussions that occurred in the 6th International Forum of Design as a Process, June 2016, Valencia. The aims of this conference were finding new linkages between systems and design interactions in order to define the social consequences. Through knowledge management we are able to transform the intangible aspect by using design as a transforming function capable of converting intangible knowledge into tangible solutions (i.e. products and services demanded by society). Industrial designers use knowledge consciously as a starting point for the ideation of the product. The handling of the intangible becomes more and more relevant over time as different methods emerge for knowledge extraction and subsequent organization. The different methodologies applied to the industrial design discipline and the evolution of the same discipline methods underpin the cultural and scientific background knowledge as a starting point of thought as a response to the needs; the whole thing coming through the instrument of creativity for the achievement of the proper and necessary balance between intuition and reason, design and science.

Keywords: creative process, creativity, industrial design, intangible

Procedia PDF Downloads 287
829 Effect of Organic Fertilizers on the Improvement of Soil Microbiological Functioning under Saline Conditions of Arid Regions: Impact on Carbon and Nitrogen Mineralization

Authors: Oustani Mabrouka, Halilat Md Tahar, Hannachi Slimane

Abstract:

This study was conducted on representative and contrasting soils of arid regions. It focuses on the compared influence of two organic fertilizers: poultry manure (PM) and bovine manure (BM) on improving the microbial functioning of non-saline (SS) and saline (SSS) soils, in particularly, the process of mineralization of nitrogen and carbon. The microbiological activity was estimated by respirometric test (CO2–C emissions) and the extraction of two forms of mineral nitrogen (NH4+-N and NO3--N). Thus, after 56 days of incubation under controlled conditions (28 degrees and 80 per cent of the field capacity), the two types of manures showed that the mineralization activity varies according to type of soil and the organic substrate itself. However, the highest cumulative quantities of CO2–C, NH4+–N and NO3-–N obtained at the end of incubation were recorded in non-saline (SS) soil treated with poultry manure with 1173.4, 4.26 and 8.40 mg/100 g of dry soil, respectively. The reductions in rates of release of CO2–C and of nitrification under saline conditions were 21 and 36, 78 %, respectively. The influence of organic substratum on the microbial density shows a stimulating effect on all microbial groups studied. The whole results show the usefulness of two types of manures for the improvement of the microbiological functioning of arid soils.

Keywords: Salinity, Organic matter, Microorganisms, Mineralization, Nitrogen, Carbon, Arid regions

Procedia PDF Downloads 282
828 Statistical Discrimination of Blue Ballpoint Pen Inks by Diamond Attenuated Total Reflectance (ATR) FTIR

Authors: Mohamed Izzharif Abdul Halim, Niamh Nic Daeid

Abstract:

Determining the source of pen inks used on a variety of documents is impartial for forensic document examiners. The examination of inks is often performed to differentiate between inks in order to evaluate the authenticity of a document. A ballpoint pen ink consists of synthetic dyes in (acidic and/or basic), pigments (organic and/or inorganic) and a range of additives. Inks of similar color may consist of different composition and are frequently the subjects of forensic examinations. This study emphasizes on blue ballpoint pen inks available in the market because it is reported that approximately 80% of questioned documents analysis involving ballpoint pen ink. Analytical techniques such as thin layer chromatography, high-performance liquid chromatography, UV-vis spectroscopy, luminescence spectroscopy and infrared spectroscopy have been used in the analysis of ink samples. In this study, application of Diamond Attenuated Total Reflectance (ATR) FTIR is straightforward but preferable in forensic science as it offers no sample preparation and minimal analysis time. The data obtained from these techniques were further analyzed using multivariate chemometric methods which enable extraction of more information based on the similarities and differences among samples in a dataset. It was indicated that some pens from the same manufactures can be similar in composition, however, discrete types can be significantly different.

Keywords: ATR FTIR, ballpoint, multivariate chemometric, PCA

Procedia PDF Downloads 459
827 Towards Human-Interpretable, Automated Learning of Feedback Control for the Mixing Layer

Authors: Hao Li, Guy Y. Cornejo Maceda, Yiqing Li, Jianguo Tan, Marek Morzynski, Bernd R. Noack

Abstract:

We propose an automated analysis of the flow control behaviour from an ensemble of control laws and associated time-resolved flow snapshots. The input may be the rich database of machine learning control (MLC) optimizing a feedback law for a cost function in the plant. The proposed methodology provides (1) insights into the control landscape, which maps control laws to performance, including extrema and ridge-lines, (2) a catalogue of representative flow states and their contribution to cost function for investigated control laws and (3) visualization of the dynamics. Key enablers are classification and feature extraction methods of machine learning. The analysis is successfully applied to the stabilization of a mixing layer with sensor-based feedback driving an upstream actuator. The fluctuation energy is reduced by 26%. The control replaces unforced Kelvin-Helmholtz vortices with subsequent vortex pairing by higher-frequency Kelvin-Helmholtz structures of lower energy. These efforts target a human interpretable, fully automated analysis of MLC identifying qualitatively different actuation regimes, distilling corresponding coherent structures, and developing a digital twin of the plant.

Keywords: machine learning control, mixing layer, feedback control, model-free control

Procedia PDF Downloads 225
826 Network Word Discovery Framework Based on Sentence Semantic Vector Similarity

Authors: Ganfeng Yu, Yuefeng Ma, Shanliang Yang

Abstract:

The word discovery is a key problem in text information retrieval technology. Methods in new word discovery tend to be closely related to words because they generally obtain new word results by analyzing words. With the popularity of social networks, individual netizens and online self-media have generated various network texts for the convenience of online life, including network words that are far from standard Chinese expression. How detect network words is one of the important goals in the field of text information retrieval today. In this paper, we integrate the word embedding model and clustering methods to propose a network word discovery framework based on sentence semantic similarity (S³-NWD) to detect network words effectively from the corpus. This framework constructs sentence semantic vectors through a distributed representation model, uses the similarity of sentence semantic vectors to determine the semantic relationship between sentences, and finally realizes network word discovery by the meaning of semantic replacement between sentences. The experiment verifies that the framework not only completes the rapid discovery of network words but also realizes the standard word meaning of the discovery of network words, which reflects the effectiveness of our work.

Keywords: text information retrieval, natural language processing, new word discovery, information extraction

Procedia PDF Downloads 100
825 An Ontology-Based Framework to Support Asset Integrity Modeling: Case Study of Offshore Riser Integrity

Authors: Mohammad Sheikhalishahi, Vahid Ebrahimipour, Amir Hossein Radman-Kian

Abstract:

This paper proposes an Ontology framework for knowledge modeling and representation of the equipment integrity process in a typical oil and gas production plant. Our aim is to construct a knowledge modeling that facilitates translation, interpretation, and conversion of human-readable integrity interpretation into computer-readable representation. The framework provides a function structure related to fault propagation using ISO 14224 and ISO 15926 OWL-Lite/ Resource Description Framework (RDF) to obtain a generic system-level model of asset integrity that can be utilized in the integrity engineering process during the equipment life cycle. It employs standard terminology developed by ISO 15926 and ISO 14224 to map textual descriptions of equipment failure and then convert it to a causality-driven logic by semantic interpretation and computer-based representation using Lite/RDF. The framework applied for an offshore gas riser. The result shows that the approach can cross-link the failure-related integrity words and domain-specific logic to obtain a representation structure of equipment integrity with causality inference based on semantic extraction of inspection report context.

Keywords: asset integrity modeling, interoperability, OWL, RDF/XML

Procedia PDF Downloads 189
824 A Validated UPLC-MS/MS Assay Using Negative Ionization Mode for High-Throughput Determination of Pomalidomide in Rat Plasma

Authors: Muzaffar Iqbal, Essam Ezzeldin, Khalid A. Al-Rashood

Abstract:

Pomalidomide is a second generation oral immunomodulatory agent, being used for the treatment of multiple myeloma in patients with disease refractory to lenalidomide and bortezomib. In this study, a sensitive UPLC-MS/MS assay was developed and validated for high-throughput determination of pomalidomide in rat plasma using celecoxib as an internal standard (IS). Liquid liquid extraction using dichloromethane as extracting agent was employed to extract pomalidomide and IS from 200 µL of plasma. Chromatographic separation was carried on Acquity BEHTM C18 column (50 × 2.1 mm, 1.7 µm) using an isocratic mobile phase of acetonitrile:10 mM ammonium acetate (80:20, v/v), at a flow rate of 0.250 mL/min. Both pomalidomide and IS were eluted at 0.66 ± 0.03 and 0.80 ± 0.03 min, respectively with a total run time of 1.5 min only. Detection was performed on a triple quadrupole tandem mass spectrometer using electrospray ionization in negative mode. The precursor to product ion transitions of m/z 272.01 → 160.89 for pomalidomide and m/z 380.08 → 316.01 for IS were used to quantify them respectively, using multiple reaction monitoring mode. The developed method was validated according to regulatory guideline for bioanalytical method validation. The linearity in plasma sample was achieved in the concentration range of 0.47–400 ng/mL (r2 ≥ 0.997). The intra and inter-day precision values were ≤ 11.1% (RSD, %) whereas accuracy values ranged from - 6.8 – 8.5% (RE, %). In addition, other validation results were within the acceptance criteria and the method was successfully applied in a pharmacokinetic study of pomalidomide in rats.

Keywords: pomalidomide, pharmacokinetics, LC-MS/MS, celecoxib

Procedia PDF Downloads 391
823 Total-Reflection X-Ray Spectroscopy as a Tool for Element Screening in Food Samples

Authors: Hagen Stosnach

Abstract:

The analytical demands on modern instruments for element analysis in food samples include the analysis of major, trace and ultra-trace essential elements as well as potentially toxic trace elements. In this study total reflection, X-ray fluorescence analysis (TXRF) is presented as an analytical technique, which meets the requirements, defined by the Association of Official Agricultural Chemists (AOAC) regarding the limit of quantification, repeatability, reproducibility and recovery for most of the target elements. The advantages of TXRF are the small sample mass required, the broad linear range from µg/kg up to wt.-% values, no consumption of gases or cooling water, and the flexible and easy sample preparation. Liquid samples like alcoholic or non-alcoholic beverages can be analyzed without any preparation. For solid food samples, the most common sample pre-treatment methods are mineralization, direct deposition of the sample onto the reflector without/with minimal treatment, mainly as solid suspensions or after extraction. The main disadvantages are due to the possible peaks overlapping, which may lower the accuracy of quantitative analysis and the limit in the element identification. This analytical technique will be presented by several application examples, covering a broad range of liquid and solid food types.

Keywords: essential elements, toxic metals, XRF, spectroscopy

Procedia PDF Downloads 133
822 Antioxidant Activity of Aristolochia longa L. Extracts

Authors: Merouani Nawel, Belhattab Rachid

Abstract:

Aristolochia longa L. (Aristolochiacea) is a native plant of Algeria used in traditional medicine. This study was devoted to the determination of polyphenols, flavonoids, and condensed tannins contents of Aristolochia longa L. after their extraction by using various solvents with different polarities (methanol, acetone and distilled water). These extracts were prepared from stem, leaves, fruits and rhizome. The antioxidant activity was determined using three in vitro assays methods: scavenging effect on DPPH, the reducing power assay and ẞ-carotene bleaching inhibition (CBI). The results obtained indicate that the acetone extracts from the aerial parts presented the highest contents of polyphenols. The results of The antioxidant activity showed that all extracts of Aristolochia longa L., prepared using different solvent, have diverse antioxidant capacities. However, the aerial parts methanol extract exhibited the highest antioxidant capacity of DPPH and reducing power (Respectively 55,04ug/ml±1,29 and 0,2 mg/ml±0,019 ). Nevertheless, the aerial parts acetone extract showed the highest antioxidant capacity in the test of ẞ-carotene bleaching inhibition with 57%. These preliminary results could be used to justify the traditional use of this plant and their bioactive substances could be exploited for therapeutic purposes such as antioxidant and antimicrobial.

Keywords: aristolochia longa l., polyphenols, flavonoids, condensed tannins, antioxidant activity

Procedia PDF Downloads 252
821 Morphology Operation and Discrete Wavelet Transform for Blood Vessels Segmentation in Retina Fundus

Authors: Rita Magdalena, N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Sofia Saidah, Bima Sakti

Abstract:

Vessel segmentation of retinal fundus is important for biomedical sciences in diagnosing ailments related to the eye. Segmentation can simplify medical experts in diagnosing retinal fundus image state. Therefore, in this study, we designed a software using MATLAB which enables the segmentation of the retinal blood vessels on retinal fundus images. There are two main steps in the process of segmentation. The first step is image preprocessing that aims to improve the quality of the image to be optimum segmented. The second step is the image segmentation in order to perform the extraction process to retrieve the retina’s blood vessel from the eye fundus image. The image segmentation methods that will be analyzed in this study are Morphology Operation, Discrete Wavelet Transform and combination of both. The amount of data that used in this project is 40 for the retinal image and 40 for manually segmentation image. After doing some testing scenarios, the average accuracy for Morphology Operation method is 88.46 % while for Discrete Wavelet Transform is 89.28 %. By combining the two methods mentioned in later, the average accuracy was increased to 89.53 %. The result of this study is an image processing system that can segment the blood vessels in retinal fundus with high accuracy and low computation time.

Keywords: discrete wavelet transform, fundus retina, morphology operation, segmentation, vessel

Procedia PDF Downloads 197
820 A Tuning Method for Microwave Filter via Complex Neural Network and Improved Space Mapping

Authors: Shengbiao Wu, Weihua Cao, Min Wu, Can Liu

Abstract:

This paper presents an intelligent tuning method of microwave filter based on complex neural network and improved space mapping. The tuning process consists of two stages: the initial tuning and the fine tuning. At the beginning of the tuning, the return loss of the filter is transferred to the passband via the error of phase. During the fine tuning, the phase shift caused by the transmission line and the higher order mode is removed by the curve fitting. Then, an Cauchy method based on the admittance parameter (Y-parameter) is used to extract the coupling matrix. The influence of the resonant cavity loss is eliminated during the parameter extraction process. By using processed data pairs (the amount of screw variation and the variation of the coupling matrix), a tuning model is established by the complex neural network. In view of the improved space mapping algorithm, the mapping relationship between the actual model and the ideal model is established, and the amplitude and direction of the tuning is constantly updated. Finally, the tuning experiment of the eight order coaxial cavity filter shows that the proposed method has a good effect in tuning time and tuning precision.

Keywords: microwave filter, scattering parameter, coupling matrix, intelligent tuning

Procedia PDF Downloads 315
819 Pharmacogenetic Analysis of Inter-Ethnic Variability in the Uptake Transporter SLCO1B1 Gene in Colombian, Mozambican, and Portuguese Populations

Authors: Mulata Haile Nega, Derebew Fikadu Berhe, Vera Ribeiro Marques

Abstract:

There is no epidemiologic data on this gene polymorphism in several countries. Therefore, this study aimed to assess the genotype and allele frequencies of the gene variant in three countries. This study involved healthy individuals from Colombia, Mozambique, and Portugal. Genomic DNA was isolated from blood samples using the Qiamp DNA Extraction Kit (Qiagen). The isolated DNA was genotyped using Polymerase Chain Reaction (PCR) - Restriction Fragment Length Polymorphism. Microstat and GraphPad quick cal software were used for the Chi-square test and evaluation of Hardy-Weinberg equilibrium, respectively. A total of 181 individuals’ blood sample was analyzed. Overall, TT (74.0%) genotype was the highest, and CC (7.8%) was the lowest. Country wise genotypic frequencies were Colombia 47(70.2%) TT, 12(17.9%) TC and 8(11.9%) CC; Mozambique 47(88.7%) TT, 5(9.4%) TC, and 1(1.9%) CC; and Portugal 40(65.6%) TT, 16(26.2%) TC, and 5(8.2%) CC. The reference (T) allele was highest among Mozambicans (93.4%) compared to Colombians (79.1%) and Portuguese (78.7%). Mozambicans showed statistically significant genotypic and allelic frequency differences compared to Colombians (p<0.01) and Portuguese (p <0.01). Overall and country-wise, the CC genotype was less frequent and relatively high for Colombians and Portuguese populations. This finding may imply statins risk-benefit variability associated with CC genotype among these populations that needs further understanding.

Keywords: c.521T>C, polymorphism, SLCO1B1, SNP, statins

Procedia PDF Downloads 135
818 MhAGCN: Multi-Head Attention Graph Convolutional Network for Web Services Classification

Authors: Bing Li, Zhi Li, Yilong Yang

Abstract:

Web classification can promote the quality of service discovery and management in the service repository. It is widely used to locate developers desired services. Although traditional classification methods based on supervised learning models can achieve classification tasks, developers need to manually mark web services, and the quality of these tags may not be enough to establish an accurate classifier for service classification. With the doubling of the number of web services, the manual tagging method has become unrealistic. In recent years, the attention mechanism has made remarkable progress in the field of deep learning, and its huge potential has been fully demonstrated in various fields. This paper designs a multi-head attention graph convolutional network (MHAGCN) service classification method, which can assign different weights to the neighborhood nodes without complicated matrix operations or relying on understanding the entire graph structure. The framework combines the advantages of the attention mechanism and graph convolutional neural network. It can classify web services through automatic feature extraction. The comprehensive experimental results on a real dataset not only show the superior performance of the proposed model over the existing models but also demonstrate its potentially good interpretability for graph analysis.

Keywords: attention mechanism, graph convolutional network, interpretability, service classification, service discovery

Procedia PDF Downloads 137
817 Detection of Mycobacteria spp by PCR in Raw Milk Samples Collected from Iran

Authors: Shokoufeh Roudashti, Shahin Bahari, Fakhri Haghi, Habib Zeighami, Ghazal Naderi, Paniz Shirmast

Abstract:

Background: Mycobacterium tuberculosis complex (MTBC) causes tuberculosis (TB) in humans and animals. Mycobacterium MTBC is one of the most important species of zoonotic pathogens that can be transmitted from cattle to humans. The disease can transmit to human by direct contact with the infected animals, drinking unpasteurized milk and consumption of uncooked meat. The presence of these opportunistic, pathogenic bacteria in bovine milk has emerged as a public-health concern, especially among individuals who consume raw milk. Tuberculosis MTBC is the predominant infectious cause of morbidity and morality worldwide, It is estimated that one third of the world population (approx. 1.8 billion persons) is infected with M. tuberculosis and each year there are 8 million new cases worldwide. The aim of this study, to detect Mycobacterium MTBC in raw milk samples using polymerase chain reaction (PCR). Materials and Methods: In the present study, 60 raw milk samples were collected from rural areas in Zanjan, Iran. After extraction of DNAs and using special primers for Is6110 gene as a marker, PCR was applied to detect the presence or non-presence of the related gene. Results: According to the findings of this study, 8 (13.5 %) out of 60 milk samples were positive for Mycobacterium spp (P < 0.1). Conclusions: The Outbreak of genus Mycobacteria spp in milk samples were determined to be relatively high in Zanjan, Iran.

Keywords: Mycobacteria spp, raw milk, PCR, Zanjan

Procedia PDF Downloads 300
816 Information Disclosure And Financial Sentiment Index Using a Machine Learning Approach

Authors: Alev Atak

Abstract:

In this paper, we aim to create a financial sentiment index by investigating the company’s voluntary information disclosures. We retrieve structured content from BIST 100 companies’ financial reports for the period 1998-2018 and extract relevant financial information for sentiment analysis through Natural Language Processing. We measure strategy-related disclosures and their cross-sectional variation and classify report content into generic sections using synonym lists divided into four main categories according to their liquidity risk profile, risk positions, intra-annual information, and exposure to risk. We use Word Error Rate and Cosin Similarity for comparing and measuring text similarity and derivation in sets of texts. In addition to performing text extraction, we will provide a range of text analysis options, such as the readability metrics, word counts using pre-determined lists (e.g., forward-looking, uncertainty, tone, etc.), and comparison with reference corpus (word, parts of speech and semantic level). Therefore, we create an adequate analytical tool and a financial dictionary to depict the importance of granular financial disclosure for investors to identify correctly the risk-taking behavior and hence make the aggregated effects traceable.

Keywords: financial sentiment, machine learning, information disclosure, risk

Procedia PDF Downloads 94
815 Robust Medical Image Watermarking based on Contourlet and Extraction Using ICA

Authors: S. Saju, G. Thirugnanam

Abstract:

In this paper, a medical image watermarking algorithm based on contourlet is proposed. Medical image watermarking is a special subcategory of image watermarking in the sense that images have special requirements. Watermarked medical images should not differ perceptually from their original counterparts because clinical reading of images must not be affected. Watermarking techniques based on wavelet transform are reported in many literatures but robustness and security using contourlet are better when compared to wavelet transform. The main challenge in exploring geometry in images comes from the discrete nature of the data. In this paper, original image is decomposed to two level using contourlet and the watermark is embedded in the resultant sub-bands. Sub-band selection is based on the value of Peak Signal to Noise Ratio (PSNR) that is calculated between watermarked and original image. To extract the watermark, Kernel ICA is used and it has a novel characteristic is that it does not require the transformation process to extract the watermark. Simulation results show that proposed scheme is robust against attacks such as Salt and Pepper noise, Median filtering and rotation. The performance measures like PSNR and Similarity measure are evaluated and compared with Discrete Wavelet Transform (DWT) to prove the robustness of the scheme. Simulations are carried out using Matlab Software.

Keywords: digital watermarking, independent component analysis, wavelet transform, contourlet

Procedia PDF Downloads 529
814 Comparative Life Cycle Assessment of Roofing System for Abu Dhabi

Authors: Iyasu Eibedingil

Abstract:

The construction industry is one of the major factors responsible for causing a negative impact on the environment. It has the largest share in the use of natural resources including land use, material extraction, and greenhouse gases emissions. For this reason, it is imperative to reduce its environmental impact through the construction of sustainable buildings with less impact. These days, it is possible to measure the environmental impact by using different tools such as the life cycle assessment (LCA) approach. Given this premise, this study explored the environmental impact of two types of roofing systems through comparative life cycle assessment approach. The tiles were analyzed to select the most environmentally friendly roofing system for the villa at Khalifa City A, Abu Dhabi, United Arab Emirates. These products are available in various forms; however, in this study concrete roof tiles and clay roof tiles were considered. The results showed that concrete roof tiles have lower environmental impact. In all scenarios considered, manufacturing the roof tiles locally, using recovered fuels for firing clay tiles, and using renewable energy (electricity from PV plant) showed that the concrete roof tiles were found to be excellent in terms of its embodied carbon, embodied the energy and various other environmental performance indicators.

Keywords: clay roof tile, concrete roof tile, life cycle assessment, sensitivity analysis

Procedia PDF Downloads 392
813 Cytotoxic Effect of Crude Extract of Sea Pen Virgularia gustaviana on HeLa and MDA-MB-231 Cancer Cell Lines

Authors: Sharareh Sharifi, Pargol Ghavam Mostafavi, Ali Mashinchian Moradi, Mohammad Hadi Givianrad, Hassan Niknejad

Abstract:

Marine organisms such as soft coral, sponge, ascidians, and tunicate containing rich source of natural compound have been studied in last decades because of their special chemical compounds with anticancer properties. The aim of this study was to investigate anti-cancer property of ethyl acetate extracted from marine sea pen Virgularia gustaviana found from Persian Gulf coastal (Bandar Abbas). The extraction processes were carried out with ethyl acetate for five days. Thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) were used for qualitative identification of crude extract. The viability of HeLa and MDA-Mb-231 cancer cells was investigated using MTT assay at the concentration of 25, 50, and a 100 µl/ml of ethyl acetate is extracted. The crude extract of Virgularia gustaviana demonstrated ten fractions with different Retention factor (Rf) by TLC and Retention time (Rt) evaluated by HPLC. The crude extract dose-dependently decreased cancer cell viability compared to control group. According to the results, the ethyl acetate extracted from Virgularia gustaviana inhibits the growth of cancer cells, an effect which needs to be further investigated in the future studies.

Keywords: anti-cancer, Hela cancer cell, MDA-Md-231 cancer cell, Virgularia gustavina

Procedia PDF Downloads 432
812 Robust Recognition of Locomotion Patterns via Data-Driven Machine Learning in the Cloud Environment

Authors: Shinoy Vengaramkode Bhaskaran, Kaushik Sathupadi, Sandesh Achar

Abstract:

Human locomotion recognition is important in a variety of sectors, such as robotics, security, healthcare, fitness tracking and cloud computing. With the increasing pervasiveness of peripheral devices, particularly Inertial Measurement Units (IMUs) sensors, researchers have attempted to exploit these advancements in order to precisely and efficiently identify and categorize human activities. This research paper introduces a state-of-the-art methodology for the recognition of human locomotion patterns in a cloud environment. The methodology is based on a publicly available benchmark dataset. The investigation implements a denoising and windowing strategy to deal with the unprocessed data. Next, feature extraction is adopted to abstract the main cues from the data. The SelectKBest strategy is used to abstract optimal features from the data. Furthermore, state-of-the-art ML classifiers are used to evaluate the performance of the system, including logistic regression, random forest, gradient boosting and SVM have been investigated to accomplish precise locomotion classification. Finally, a detailed comparative analysis of results is presented to reveal the performance of recognition models.

Keywords: artificial intelligence, cloud computing, IoT, human locomotion, gradient boosting, random forest, neural networks, body-worn sensors

Procedia PDF Downloads 13