Search results for: lidar sensors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1375

Search results for: lidar sensors

85 A Nonlinear Feature Selection Method for Hyperspectral Image Classification

Authors: Pei-Jyun Hsieh, Cheng-Hsuan Li, Bor-Chen Kuo

Abstract:

For hyperspectral image classification, feature reduction is an important pre-processing for avoiding the Hughes phenomena due to the difficulty for collecting training samples. Hence, lots of researches developed feature selection methods such as F-score, HSIC (Hilbert-Schmidt Independence Criterion), and etc., to improve hyperspectral image classification. However, most of them only consider the class separability in the original space, i.e., a linear class separability. In this study, we proposed a nonlinear class separability measure based on kernel trick for selecting an appropriate feature subset. The proposed nonlinear class separability was formed by a generalized RBF kernel with different bandwidths with respect to different features. Moreover, it considered the within-class separability and the between-class separability. A genetic algorithm was applied to tune these bandwidths such that the smallest with-class separability and the largest between-class separability simultaneously. This indicates the corresponding feature space is more suitable for classification. In addition, the corresponding nonlinear classification boundary can separate classes very well. These optimal bandwidths also show the importance of bands for hyperspectral image classification. The reciprocals of these bandwidths can be viewed as weights of bands. The smaller bandwidth, the larger weight of the band, and the more importance for classification. Hence, the descending order of the reciprocals of the bands gives an order for selecting the appropriate feature subsets. In the experiments, three hyperspectral image data sets, the Indian Pine Site data set, the PAVIA data set, and the Salinas A data set, were used to demonstrate the selected feature subsets by the proposed nonlinear feature selection method are more appropriate for hyperspectral image classification. Only ten percent of samples were randomly selected to form the training dataset. All non-background samples were used to form the testing dataset. The support vector machine was applied to classify these testing samples based on selected feature subsets. According to the experiments on the Indian Pine Site data set with 220 bands, the highest accuracies by applying the proposed method, F-score, and HSIC are 0.8795, 0.8795, and 0.87404, respectively. However, the proposed method selects 158 features. F-score and HSIC select 168 features and 217 features, respectively. Moreover, the classification accuracies increase dramatically only using first few features. The classification accuracies with respect to feature subsets of 10 features, 20 features, 50 features, and 110 features are 0.69587, 0.7348, 0.79217, and 0.84164, respectively. Furthermore, only using half selected features (110 features) of the proposed method, the corresponding classification accuracy (0.84168) is approximate to the highest classification accuracy, 0.8795. For other two hyperspectral image data sets, the PAVIA data set and Salinas A data set, we can obtain the similar results. These results illustrate our proposed method can efficiently find feature subsets to improve hyperspectral image classification. One can apply the proposed method to determine the suitable feature subset first according to specific purposes. Then researchers can only use the corresponding sensors to obtain the hyperspectral image and classify the samples. This can not only improve the classification performance but also reduce the cost for obtaining hyperspectral images.

Keywords: hyperspectral image classification, nonlinear feature selection, kernel trick, support vector machine

Procedia PDF Downloads 265
84 Remote Radiation Mapping Based on UAV Formation

Authors: Martin Arguelles Perez, Woosoon Yim, Alexander Barzilov

Abstract:

High-fidelity radiation monitoring is an essential component in the enhancement of the situational awareness capabilities of the Department of Energy’s Office of Environmental Management (DOE-EM) personnel. In this paper, multiple units of unmanned aerial vehicles (UAVs) each equipped with a cadmium zinc telluride (CZT) gamma-ray sensor are used for radiation source localization, which can provide vital real-time data for the EM tasks. To achieve this goal, a fully autonomous system of multicopter-based UAV swarm in 3D tetrahedron formation is used for surveying the area of interest and performing radiation source localization. The CZT sensor used in this study is suitable for small-size multicopter UAVs due to its small size and ease of interfacing with the UAV’s onboard electronics for high-resolution gamma spectroscopy enabling the characterization of radiation hazards. The multicopter platform with a fully autonomous flight feature is suitable for low-altitude applications such as radiation contamination sites. The conventional approach uses a single UAV mapping in a predefined waypoint path to predict the relative location and strength of the source, which can be time-consuming for radiation localization tasks. The proposed UAV swarm-based approach can significantly improve its ability to search for and track radiation sources. In this paper, two approaches are developed using (a) 2D planar circular (3 UAVs) and (b) 3D tetrahedron formation (4 UAVs). In both approaches, accurate estimation of the gradient vector is crucial for heading angle calculation. Each UAV carries the CZT sensor; the real-time radiation data are used for the calculation of a bulk heading vector for the swarm to achieve a UAV swarm’s source-seeking behavior. Also, a spinning formation is studied for both cases to improve gradient estimation near a radiation source. In the 3D tetrahedron formation, a UAV located closest to the source is designated as a lead unit to maintain the tetrahedron formation in space. Such a formation demonstrated a collective and coordinated movement for estimating a gradient vector for the radiation source and determining an optimal heading direction of the swarm. The proposed radiation localization technique is studied by computer simulation and validated experimentally in the indoor flight testbed using gamma sources. The technology presented in this paper provides the capability to readily add/replace radiation sensors to the UAV platforms in the field conditions enabling extensive condition measurement and greatly improving situational awareness and event management. Furthermore, the proposed radiation localization approach allows long-term measurements to be efficiently performed at wide areas of interest to prevent disasters and reduce dose risks to people and infrastructure.

Keywords: radiation, unmanned aerial system(UAV), source localization, UAV swarm, tetrahedron formation

Procedia PDF Downloads 99
83 Iron Oxide Reduction Using Solar Concentration and Carbon-Free Reducers

Authors: Bastien Sanglard, Simon Cayez, Guillaume Viau, Thomas Blon, Julian Carrey, Sébastien Lachaize

Abstract:

The need to develop clean production processes is a key challenge of any industry. Steel and iron industries are particularly concerned since they emit 6.8% of global anthropogenic greenhouse gas emissions. One key step of the process is the high-temperature reduction of iron ore using coke, leading to large amounts of CO2 emissions. One route to decrease impacts is to get rid of fossil fuels by changing both the heat source and the reducer. The present work aims at investigating experimentally the possibility to use concentrated solar energy and carbon-free reducing agents. Two sets of experimentations were realized. First, in situ X-ray diffraction on pure and industrial powder of hematite was realized to study the phase evolution as a function of temperature during reduction under hydrogen and ammonia. Secondly, experiments were performed on industrial iron ore pellets, which were reduced by NH3 or H2 into a “solar furnace” composed of a controllable 1600W Xenon lamp to simulate and control the solar concentrated irradiation of a glass reactor and of a diaphragm to control light flux. Temperature and pressure were recorded during each experiment via thermocouples and pressure sensors. The percentage of iron oxide converted to iron (called thereafter “reduction ratio”) was found through Rietveld refinement. The power of the light source and the reduction time were varied. Results obtained in the diffractometer reaction chamber show that iron begins to form at 300°C with pure Fe2O3 powder and 400°C with industrial iron ore when maintained at this temperature for 60 minutes and 80 minutes, respectively. Magnetite and wuestite are detected on both powders during the reduction under hydrogen; under ammonia, iron nitride is also detected for temperatures between400°C and 600°C. All the iron oxide was converted to iron for a reaction of 60 min at 500°C, whereas a conversion ratio of 96% was reached with industrial powder for a reaction of 240 min at 600°C under hydrogen. Under ammonia, full conversion was also reached after 240 min of reduction at 600 °C. For experimentations into the solar furnace with iron ore pellets, the lamp power and the shutter opening were varied. An 83.2% conversion ratio was obtained with a light power of 67 W/cm2 without turning over the pellets. Nevertheless, under the same conditions, turning over the pellets in the middle of the experiment permits to reach a conversion ratio of 86.4%. A reduction ratio of 95% was reached with an exposure of 16 min by turning over pellets at half time with a flux of 169W/cm2. Similar or slightly better results were obtained under an ammonia reducing atmosphere. Under the same flux, the highest reduction yield of 97.3% was obtained under ammonia after 28 minutes of exposure. The chemical reaction itself, including the solar heat source, does not produce any greenhouse gases, so solar metallurgy represents a serious way to reduce greenhouse gas emission of metallurgy industry. Nevertheless, the ecological impact of the reducers must be investigated, which will be done in future work.

Keywords: solar concentration, metallurgy, ammonia, hydrogen, sustainability

Procedia PDF Downloads 138
82 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 47
81 An Adaptable Semi-Numerical Anisotropic Hyperelastic Model for the Simulation of High Pressure Forming

Authors: Daniel Tscharnuter, Eliza Truszkiewicz, Gerald Pinter

Abstract:

High-quality surfaces of plastic parts can be achieved in a very cost-effective manner using in-mold processes, where e.g. scratch resistant or high gloss polymer films are pre-formed and subsequently receive their support structure by injection molding. The pre-forming may be done by high-pressure forming. In this process, a polymer sheet is heated and subsequently formed into the mold by pressurized air. Due to the heat transfer to the cooled mold the polymer temperature drops below its glass transition temperature. This ensures that the deformed microstructure is retained after depressurizing, giving the sheet its final formed shape. The development of a forming process relies heavily on the experience of engineers and trial-and-error procedures. Repeated mold design and testing cycles are however both time- and cost-intensive. It is, therefore, desirable to study the process using reliable computer simulations. Through simulations, the construction of the mold and the effect of various process parameters, e.g. temperature levels, non-uniform heating or timing and magnitude of pressure, on the deformation of the polymer sheet can be analyzed. Detailed knowledge of the deformation is particularly important in the forming of polymer films with integrated electro-optical functions. Care must be taken in the placement of devices, sensors and electrical and optical paths, which are far more sensitive to deformation than the polymers. Reliable numerical prediction of the deformation of the polymer sheets requires sophisticated material models. Polymer films are often either transversely isotropic or orthotropic due to molecular orientations induced during manufacturing. The anisotropic behavior affects the resulting strain field in the deformed film. For example, parts of the same shape but different strain fields may be created by varying the orientation of the film with respect to the mold. The numerical simulation of the high-pressure forming of such films thus requires material models that can capture the nonlinear anisotropic mechanical behavior. There are numerous commercial polymer grades for the engineers to choose from when developing a new part. The effort required for comprehensive material characterization may be prohibitive, especially when several materials are candidates for a specific application. We, therefore, propose a class of models for compressible hyperelasticity, which may be determined from basic experimental data and which can capture key features of the mechanical response. Invariant-based hyperelastic models with a reduced number of invariants are formulated in a semi-numerical way, such that the models are determined from a single uniaxial tensile tests for isotropic materials, or two tensile tests in the principal directions for transversely isotropic or orthotropic materials. The simulation of the high pressure forming of an orthotropic polymer film is finally done using an orthotropic formulation of the hyperelastic model.

Keywords: hyperelastic, anisotropic, polymer film, thermoforming

Procedia PDF Downloads 617
80 In-Flight Aircraft Performance Model Enhancement Using Adaptive Lookup Tables

Authors: Georges Ghazi, Magali Gelhaye, Ruxandra Botez

Abstract:

Over the years, the Flight Management System (FMS) has experienced a continuous improvement of its many features, to the point of becoming the pilot’s primary interface for flight planning operation on the airplane. With the assistance of the FMS, the concept of distance and time has been completely revolutionized, providing the crew members with the determination of the optimized route (or flight plan) from the departure airport to the arrival airport. To accomplish this function, the FMS needs an accurate Aircraft Performance Model (APM) of the aircraft. In general, APMs that equipped most modern FMSs are established before the entry into service of an individual aircraft, and results from the combination of a set of ordinary differential equations and a set of performance databases. Unfortunately, an aircraft in service is constantly exposed to dynamic loads that degrade its flight characteristics. These degradations endow two main origins: airframe deterioration (control surfaces rigging, seals missing or damaged, etc.) and engine performance degradation (fuel consumption increase for a given thrust). Thus, after several years of service, the performance databases and the APM associated to a specific aircraft are no longer representative enough of the actual aircraft performance. It is important to monitor the trend of the performance deterioration and correct the uncertainties of the aircraft model in order to improve the accuracy the flight management system predictions. The basis of this research lies in the new ability to continuously update an Aircraft Performance Model (APM) during flight using an adaptive lookup table technique. This methodology was developed and applied to the well-known Cessna Citation X business aircraft. For the purpose of this study, a level D Research Aircraft Flight Simulator (RAFS) was used as a test aircraft. According to Federal Aviation Administration the level D is the highest certification level for the flight dynamics modeling. Basically, using data available in the Flight Crew Operating Manual (FCOM), a first APM describing the variation of the engine fan speed and aircraft fuel flow w.r.t flight conditions was derived. This model was next improved using the proposed methodology. To do that, several cruise flights were performed using the RAFS. An algorithm was developed to frequently sample the aircraft sensors measurements during the flight and compare the model prediction with the actual measurements. Based on these comparisons, a correction was performed on the actual APM in order to minimize the error between the predicted data and the measured data. In this way, as the aircraft flies, the APM will be continuously enhanced, making the FMS more and more precise and the prediction of trajectories more realistic and more reliable. The results obtained are very encouraging. Indeed, using the tables initialized with the FCOM data, only a few iterations were needed to reduce the fuel flow prediction error from an average relative error of 12% to 0.3%. Similarly, the FCOM prediction regarding the engine fan speed was reduced from a maximum error deviation of 5.0% to 0.2% after only ten flights.

Keywords: aircraft performance, cruise, trajectory optimization, adaptive lookup tables, Cessna Citation X

Procedia PDF Downloads 264
79 Vision and Challenges of Developing VR-Based Digital Anatomy Learning Platforms and a Solution Set for 3D Model Marking

Authors: Gizem Kayar, Ramazan Bakir, M. Ilkay Koşar, Ceren U. Gencer, Alperen Ayyildiz

Abstract:

Anatomy classes are crucial for general education of medical students, whereas learning anatomy is quite challenging and requires memorization of thousands of structures. In traditional teaching methods, learning materials are still based on books, anatomy mannequins, or videos. This results in forgetting many important structures after several years. However, more interactive teaching methods like virtual reality, augmented reality, gamification, and motion sensors are becoming more popular since such methods ease the way we learn and keep the data in mind for longer terms. During our study, we designed a virtual reality based digital head anatomy platform to investigate whether a fully interactive anatomy platform is effective to learn anatomy and to understand the level of teaching and learning optimization. The Head is one of the most complicated human anatomy structures, with thousands of tiny, unique structures. This makes the head anatomy one of the most difficult parts to understand during class sessions. Therefore, we developed a fully interactive digital tool with 3D model marking, quiz structures, 2D/3D puzzle structures, and VR support so as to integrate the power of VR and gamification. The project has been developed in Unity game engine with HTC Vive Cosmos VR headset. The head anatomy 3D model has been selected with full skeletal, muscular, integumentary, head, teeth, lymph, and vein system. The biggest issue during the development was the complexity of our model and the marking of it in the 3D world system. 3D model marking requires to access to each unique structure in the counted subsystems which means hundreds of marking needs to be done. Some parts of our 3D head model were monolithic. This is why we worked on dividing such parts to subparts which is very time-consuming. In order to subdivide monolithic parts, one must use an external modeling tool. However, such tools generally come with high learning curves, and seamless division is not ensured. Second option was to integrate tiny colliders to all unique items for mouse interaction. However, outside colliders which cover inner trigger colliders cause overlapping, and these colliders repel each other. Third option is using raycasting. However, due to its own view-based nature, raycasting has some inherent problems. As the model rotate, view direction changes very frequently, and directional computations become even harder. This is why, finally, we studied on the local coordinate system. By taking the pivot point of the model into consideration (back of the nose), each sub-structure is marked with its own local coordinate with respect to the pivot. After converting the mouse position to the world position and checking its relation with the corresponding structure’s local coordinate, we were able to mark all points correctly. The advantage of this method is its applicability and accuracy for all types of monolithic anatomical structures.

Keywords: anatomy, e-learning, virtual reality, 3D model marking

Procedia PDF Downloads 100
78 3D Design of Orthotic Braces and Casts in Medical Applications Using Microsoft Kinect Sensor

Authors: Sanjana S. Mallya, Roshan Arvind Sivakumar

Abstract:

Orthotics is the branch of medicine that deals with the provision and use of artificial casts or braces to alter the biomechanical structure of the limb and provide support for the limb. Custom-made orthoses provide more comfort and can correct issues better than those available over-the-counter. However, they are expensive and require intricate modelling of the limb. Traditional methods of modelling involve creating a plaster of Paris mould of the limb. Lately, CAD/CAM and 3D printing processes have improved the accuracy and reduced the production time. Ordinarily, digital cameras are used to capture the features of the limb from different views to create a 3D model. We propose a system to model the limb using Microsoft Kinect2 sensor. The Kinect can capture RGB and depth frames simultaneously up to 30 fps with sufficient accuracy. The region of interest is captured from three views, each shifted by 90 degrees. The RGB and depth data are fused into a single RGB-D frame. The resolution of the RGB frame is 1920px x 1080px while the resolution of the Depth frame is 512px x 424px. As the resolution of the frames is not equal, RGB pixels are mapped onto the Depth pixels to make sure data is not lost even if the resolution is lower. The resulting RGB-D frames are collected and using the depth coordinates, a three dimensional point cloud is generated for each view of the Kinect sensor. A common reference system was developed to merge the individual point clouds from the Kinect sensors. The reference system consisted of 8 coloured cubes, connected by rods to form a skeleton-cube with the coloured cubes at the corners. For each Kinect, the region of interest is the square formed by the centres of the four cubes facing the Kinect. The point clouds are merged by considering one of the cubes as the origin of a reference system. Depending on the relative distance from each cube, the three dimensional coordinate points from each point cloud is aligned to the reference frame to give a complete point cloud. The RGB data is used to correct for any errors in depth data for the point cloud. A triangular mesh is generated from the point cloud by applying Delaunay triangulation which generates the rough surface of the limb. This technique forms an approximation of the surface of the limb. The mesh is smoothened to obtain a smooth outer layer to give an accurate model of the limb. The model of the limb is used as a base for designing the custom orthotic brace or cast. It is transferred to a CAD/CAM design file to design of the brace above the surface of the limb. The proposed system would be more cost effective than current systems that use MRI or CT scans for generating 3D models and would be quicker than using traditional plaster of Paris cast modelling and the overall setup time is also low. Preliminary results indicate that the accuracy of the Kinect2 is satisfactory to perform modelling.

Keywords: 3d scanning, mesh generation, Microsoft kinect, orthotics, registration

Procedia PDF Downloads 190
77 Enhancing Engineering Students Educational Experience: Studying Hydrostatic Pumps Association System in Fluid Mechanics Laboratories

Authors: Alexandre Daliberto Frugoli, Pedro Jose Gabriel Ferreira, Pedro Americo Frugoli, Lucio Leonardo, Thais Cavalheri Santos

Abstract:

Laboratory classes in Engineering courses are essential for students to be able to integrate theory with practical reality, by handling equipment and observing experiments. In the researches of physical phenomena, students can learn about the complexities of science. Over the past years, universities in developing countries have been reducing the course load of engineering courses, in accordance with cutting cost agendas. Quality education is the object of study for researchers and requires educators and educational administrators able to demonstrate that the institutions are able to provide great learning opportunities at reasonable costs. Didactic test benches are indispensable equipment in educational activities related to turbo hydraulic pumps and pumping facilities study, which have a high cost and require long class time due to measurements and equipment adjustment time. In order to overcome the aforementioned obstacles, aligned with the professional objectives of an engineer, GruPEFE - UNIP (Research Group in Physics Education for Engineering - Universidade Paulista) has developed a multi-purpose stand for the discipline of fluid mechanics which allows the study of velocity and flow meters, loads losses and pump association. In this work, results obtained by the association in series and in parallel of hydraulic pumps will be presented and discussed, mainly analyzing the repeatability of experimental procedures and their agreement with the theory. For the association in series two identical pumps were used, consisting of the connection of the discharge of a pump to the suction of the next one, allowing the fluid to receive the power of all machines in the association. The characteristic curve of the set is obtained from the curves of each of the pumps, by adding the heads corresponding to the same flow rates. The same pumps were associated in parallel. In this association, the discharge piping is common to the two machines together. The characteristic curve of the set was obtained by adding to each value of H (head height), the flow rates of each pump. For the tests, the input and output pressure of each pump were measured. For each set there were three sets of measurements, varying the flow rate in range from 6.0 to 8.5 m 3 / h. For the two associations, the results showed an excellent repeatability with variations of less than 10% between sets of measurements and also a good agreement with the theory. This variation agrees with the instrumental uncertainty. Thus, the results validate the use of the fluids bench designed for didactic purposes. As a future work, a digital acquisition system is being developed, using differential sensors of extremely low pressures (2 to 2000 Pa approximately) for the microcontroller Arduino.

Keywords: engineering education, fluid mechanics, hydrostatic pumps association, multi-purpose stand

Procedia PDF Downloads 220
76 Assessing Moisture Adequacy over Semi-arid and Arid Indian Agricultural Farms using High-Resolution Thermography

Authors: Devansh Desai, Rahul Nigam

Abstract:

Crop water stress (W) at a given growth stage starts to set in as moisture availability (M) to roots falls below 75% of maximum. It has been found that ratio of crop evapotranspiration (ET) and reference evapotranspiration (ET0) is an indicator of moisture adequacy and is strongly correlated with ‘M’ and ‘W’. The spatial variability of ET0 is generally less over an agricultural farm of 1-5 ha than ET, which depends on both surface and atmospheric conditions, while the former depends only on atmospheric conditions. Solutions from surface energy balance (SEB) and thermal infrared (TIR) remote sensing are now known to estimate latent heat flux of ET. In the present study, ET and moisture adequacy index (MAI) (=ET/ET0) have been estimated over two contrasting western India agricultural farms having rice-wheat system in semi-arid climate and arid grassland system, limited by moisture availability. High-resolution multi-band TIR sensing observations at 65m from ECOSTRESS (ECOsystemSpaceborne Thermal Radiometer Experiment on Space Station) instrument on-board International Space Station (ISS) were used in an analytical SEB model, STIC (Surface Temperature Initiated Closure) to estimate ET and MAI. The ancillary variables used in the ET modeling and MAI estimation were land surface albedo, NDVI from close-by LANDSAT data at 30m spatial resolution, ET0 product at 4km spatial resolution from INSAT 3D, meteorological forcing variables from short-range weather forecast on air temperature and relative humidity from NWP model. Farm-scale ET estimates at 65m spatial resolution were found to show low RMSE of 16.6% to 17.5% with R2 >0.8 from 18 datasets as compared to reported errors (25 – 30%) from coarser-scale ET at 1 to 8 km spatial resolution when compared to in situ measurements from eddy covariance systems. The MAI was found to show lower (<0.25) and higher (>0.5) magnitudes in the contrasting agricultural farms. The study showed the potential need of high-resolution high-repeat spaceborne multi-band TIR payloads alongwith optical payload in estimating farm-scale ET and MAI for estimating consumptive water use and water stress. A set of future high-resolution multi-band TIR sensors are planned on-board Indo-French TRISHNA, ESA’s LSTM, NASA’s SBG space-borne missions to address sustainable irrigation water management at farm-scale to improve crop water productivity. These will provide precise and fundamental variables of surface energy balance such as LST (Land Surface Temperature), surface emissivity, albedo and NDVI. A synchronization among these missions is needed in terms of observations, algorithms, product definitions, calibration-validation experiments and downstream applications to maximize the potential benefits.

Keywords: thermal remote sensing, land surface temperature, crop water stress, evapotranspiration

Procedia PDF Downloads 70
75 The Effects of Adding Vibrotactile Feedback to Upper Limb Performance during Dual-Tasking and Response to Misleading Visual Feedback

Authors: Sigal Portnoy, Jason Friedman, Eitan Raveh

Abstract:

Introduction: Sensory substitution is possible due to the capacity of our brain to adapt to information transmitted by a synthetic receptor via an alternative sensory system. Practical sensory substitution systems are being developed in order to increase the functionality of individuals with sensory loss, e.g. amputees. For upper limb prosthetic-users the loss of tactile feedback compels them to allocate visual attention to their prosthesis. The effect of adding vibrotactile feedback (VTF) to the applied force has been studied, however its effect on the allocation if visual attention during dual-tasking and the response during misleading visual feedback have not been studied. We hypothesized that VTF will improve the performance and reduce visual attention during dual-task assignments in healthy individuals using a robotic hand and improve the performance in a standardized functional test, despite the presence of misleading visual feedback. Methods: For the dual-task paradigm, twenty healthy subjects were instructed to toggle two keyboard arrow keys with the left hand to retain a moving virtual car on a road on a screen. During the game, instructions for various activities, e.g. mix the sugar in the glass with a spoon, appeared on the screen. The subject performed these tasks with a robotic hand, attached to the right hand. The robotic hand was controlled by the activity of the flexors and extensors of the right wrist, recorded using surface EMG electrodes. Pressure sensors were attached at the tips of the robotic hand and induced VTF using vibrotactile actuators attached to the right arm of the subject. An eye-tracking system tracked to visual attention of the subject during the trials. The trials were repeated twice, with and without the VTF. Additionally, the subjects performed the modified box and blocks, hidden from eyesight, in a motion laboratory. A virtual presentation of a misleading visual feedback was be presented on a screen so that twice during the trial, the virtual block fell while the physical block was still held by the subject. Results: This is an ongoing study, which current results are detailed below. We are continuing these trials with transradial myoelectric prosthesis-users. In the healthy group, the VTF did not reduce the visual attention or improve performance during dual-tasking for the tasks that were typed transfer-to-target, e.g. place the eraser on the shelf. An improvement was observed for other tasks. For example, the average±standard deviation of time to complete the sugar-mixing task was 13.7±17.2s and 19.3±9.1s with and without the VTF, respectively. Also, the number of gaze shifts from the screen to the hand during this task were 15.5±23.7 and 20.0±11.6, with and without the VTF, respectively. The response of the subjects to the misleading visual feedback did not differ between the two conditions, i.e. with and without VTF. Conclusions: Our interim results suggest that the performance of certain activities of daily living may be improved by VTF. The substitution of visual sensory input by tactile feedback might require a long training period so that brain plasticity can occur and allow adaptation to the new condition.

Keywords: prosthetics, rehabilitation, sensory substitution, upper limb amputation

Procedia PDF Downloads 341
74 Superoleophobic Nanocellulose Aerogel Membrance as Bioinspired Cargo Carrier on Oil by Sol-Gel Method

Authors: Zulkifli, I. W. Eltara, Anawati

Abstract:

Understanding the complementary roles of surface energy and roughness on natural nonwetting surfaces has led to the development of a number of biomimetic superhydrophobic surfaces, which exhibit apparent contact angles with water greater than 150 degrees and low contact angle hysteresis. However, superoleophobic surfaces—those that display contact angles greater than 150 degrees with organic liquids having appreciably lower surface tensions than that of water—are extremely rare. In addition to chemical composition and roughened texture, a third parameter is essential to achieve superoleophobicity, namely, re-entrant surface curvature in the form of overhang structures. The overhangs can be realized as fibers. Superoleophobic surfaces are appealing for example, antifouling, since purely superhydrophobic surfaces are easily contaminated by oily substances in practical applications, which in turn will impair the liquid repellency. On the other studied have demonstrate that such aqueous nanofibrillar gels are unexpectedly robust to allow formation of highly porous aerogels by direct water removal by freeze-drying, they are flexible, unlike most aerogels that suffer from brittleness, and they allow flexible hierarchically porous templates for functionalities, e.g. for electrical conductivity. No crosslinking, solvent exchange nor supercritical drying are required to suppress the collapse during the aerogel preparation, unlike in typical aerogel preparations. The aerogel used in current work is an ultralight weight solid material composed of native cellulose nanofibers. The native cellulose nanofibers are cleaved from the self-assembled hierarchy of macroscopic cellulose fibers. They have become highly topical, as they are proposed to show extraordinary mechanical properties due to their parallel and grossly hydrogen bonded polysaccharide chains. We demonstrate that superoleophobic nanocellulose aerogels coating by sol-gel method, the aerogel is capable of supporting a weight nearly 3 orders of magnitude larger than the weight of the aerogel itself. The load support is achieved by surface tension acting at different length scales: at the macroscopic scale along the perimeter of the carrier, and at the microscopic scale along the cellulose nanofibers by preventing soaking of the aerogel thus ensuring buoyancy. Superoleophobic nanocellulose aerogels have recently been achieved using unmodified cellulose nanofibers and using carboxy methylated, negatively charged cellulose nanofibers as starting materials. In this work, the aerogels made from unmodified cellulose nanofibers were subsequently treated with fluorosilanes. To complement previous work on superoleophobic aerogels, we demonstrate their application as cargo carriers on oil, gas permeability, plastrons, and drag reduction, and we show that fluorinated nanocellulose aerogels are high-adhesive superoleophobic surfaces. We foresee applications including buoyant, gas permeable, dirt-repellent coatings for miniature sensors and other devices floating on generic liquid surfaces.

Keywords: superoleophobic, nanocellulose, aerogel, sol-gel

Procedia PDF Downloads 351
73 Attention Treatment for People With Aphasia: Language-Specific vs. Domain-General Neurofeedback

Authors: Yael Neumann

Abstract:

Attention deficits are common in people with aphasia (PWA). Two treatment approaches address these deficits: domain-general methods like Play Attention, which focus on cognitive functioning, and domain-specific methods like Language-Specific Attention Treatment (L-SAT), which use linguistically based tasks. Research indicates that L-SAT can improve both attentional deficits and functional language skills, while Play Attention has shown success in enhancing attentional capabilities among school-aged children with attention issues compared to standard cognitive training. This study employed a randomized controlled cross-over single-subject design to evaluate the effectiveness of these two attention treatments over 25 weeks. Four PWA participated, undergoing a battery of eight standardized tests measuring language and cognitive skills. The treatments were counterbalanced. Play Attention used EEG sensors to detect brainwaves, enabling participants to manipulate items in a computer game while learning to suppress theta activity and increase beta activity. An algorithm tracked changes in the theta-to-beta ratio, allowing points to be earned during the games. L-SAT, on the other hand, involved hierarchical language tasks that increased in complexity, requiring greater attention from participants. Results showed that for language tests, Participant 1 (moderate aphasia) aligned with existing literature, showing L-SAT was more effective than Play Attention. However, Participants 2 (very severe) and 3 and 4 (mild) did not conform to this pattern; both treatments yielded similar outcomes. This may be due to the extremes of aphasia severity: the very severe participant faced significant overall deficits, making both approaches equally challenging, while the mild participant performed well initially, leaving limited room for improvement. In attention tests, Participants 1 and 4 exhibited results consistent with prior research, indicating Play Attention was superior to L-SAT. Participant 2, however, showed no significant improvement with either program, although L-SAT had a slight edge on the Visual Elevator task, measuring switching and mental flexibility. This advantage was not sustained at the one-month follow-up, likely due to the participant’s struggles with complex attention tasks. Participant 3's results similarly did not align with prior studies, revealing no difference between the two treatments, possibly due to the challenging nature of the attention measures used. Regarding participation and ecological tests, all participants showed similar mild improvements with both treatments. This limited progress could stem from the short study duration, with only five weeks allocated for each treatment, which may not have been enough time to achieve meaningful changes affecting life participation. In conclusion, the performance of participants appeared influenced by their level of aphasia severity. The moderate PWA’s results were most aligned with existing literature, indicating better attention improvement from the domain-general approach (Play Attention) and better language improvement from the domain-specific approach (L-SAT).

Keywords: attention, language, cognitive rehabilitation, neurofeedback

Procedia PDF Downloads 17
72 Hardware Implementation for the Contact Force Reconstruction in Tactile Sensor Arrays

Authors: María-Luisa Pinto-Salamanca, Wilson-Javier Pérez-Holguín

Abstract:

Reconstruction of contact forces is a fundamental technique for analyzing the properties of a touched object and is essential for regulating the grip force in slip control loops. This is based on the processing of the distribution, intensity, and direction of the forces during the capture of the sensors. Currently, efficient hardware alternatives have been used more frequently in different fields of application, allowing the implementation of computationally complex algorithms, as is the case with tactile signal processing. The use of hardware for smart tactile sensing systems is a research area that promises to improve the processing time and portability requirements of applications such as artificial skin and robotics, among others. The literature review shows that hardware implementations are present today in almost all stages of smart tactile detection systems except in the force reconstruction process, a stage in which they have been less applied. This work presents a hardware implementation of a model-driven reported in the literature for the contact force reconstruction of flat and rigid tactile sensor arrays from normal stress data. From the analysis of a software implementation of such a model, this implementation proposes the parallelization of tasks that facilitate the execution of matrix operations and a two-dimensional optimization function to obtain a vector force by each taxel in the array. This work seeks to take advantage of the parallel hardware characteristics of Field Programmable Gate Arrays, FPGAs, and the possibility of applying appropriate techniques for algorithms parallelization using as a guide the rules of generalization, efficiency, and scalability in the tactile decoding process and considering the low latency, low power consumption, and real-time execution as the main parameters of design. The results show a maximum estimation error of 32% in the tangential forces and 22% in the normal forces with respect to the simulation by the Finite Element Modeling (FEM) technique of Hertzian and non-Hertzian contact events, over sensor arrays of 10×10 taxels of different sizes. The hardware implementation was carried out on an MPSoC XCZU9EG-2FFVB1156 platform of Xilinx® that allows the reconstruction of force vectors following a scalable approach, from the information captured by means of tactile sensor arrays composed of up to 48 × 48 taxels that use various transduction technologies. The proposed implementation demonstrates a reduction in estimation time of x / 180 compared to software implementations. Despite the relatively high values of the estimation errors, the information provided by this implementation on the tangential and normal tractions and the triaxial reconstruction of forces allows to adequately reconstruct the tactile properties of the touched object, which are similar to those obtained in the software implementation and in the two FEM simulations taken as reference. Although errors could be reduced, the proposed implementation is useful for decoding contact forces for portable tactile sensing systems, thus helping to expand electronic skin applications in robotic and biomedical contexts.

Keywords: contact forces reconstruction, forces estimation, tactile sensor array, hardware implementation

Procedia PDF Downloads 195
71 Superparamagnetic Sensor with Lateral Flow Immunoassays as Platforms for Biomarker Quantification

Authors: M. Salvador, J. C. Martinez-Garcia, A. Moyano, M. C. Blanco-Lopez, M. Rivas

Abstract:

Biosensors play a crucial role in the detection of molecules nowadays due to their advantages of user-friendliness, high selectivity, the analysis in real time and in-situ applications. Among them, Lateral Flow Immunoassays (LFIAs) are presented among technologies for point-of-care bioassays with outstanding characteristics such as affordability, portability and low-cost. They have been widely used for the detection of a vast range of biomarkers, which do not only include proteins but also nucleic acids and even whole cells. Although the LFIA has traditionally been a positive/negative test, tremendous efforts are being done to add to the method the quantifying capability based on the combination of suitable labels and a proper sensor. One of the most successful approaches involves the use of magnetic sensors for detection of magnetic labels. Bringing together the required characteristics mentioned before, our research group has developed a biosensor to detect biomolecules. Superparamagnetic nanoparticles (SPNPs) together with LFIAs play the fundamental roles. SPMNPs are detected by their interaction with a high-frequency current flowing on a printed micro track. By means of the instant and proportional variation of the impedance of this track provoked by the presence of the SPNPs, quantitative and rapid measurement of the number of particles can be obtained. This way of detection requires no external magnetic field application, which reduces the device complexity. On the other hand, the major limitations of LFIAs are that they are only qualitative or semiquantitative when traditional gold or latex nanoparticles are used as color labels. Moreover, the necessity of always-constant ambient conditions to get reproducible results, the exclusive detection of the nanoparticles on the surface of the membrane, and the short durability of the signal are drawbacks that can be advantageously overcome with the design of magnetically labeled LFIAs. The approach followed was to coat the SPIONs with a specific monoclonal antibody which targets the protein under consideration by chemical bonds. Then, a sandwich-type immunoassay was prepared by printing onto the nitrocellulose membrane strip a second antibody against a different epitope of the protein (test line) and an IgG antibody (control line). When the sample flows along the strip, the SPION-labeled proteins are immobilized at the test line, which provides magnetic signal as described before. Preliminary results using this practical combination for the detection and quantification of the Prostatic-Specific Antigen (PSA) shows the validity and consistency of the technique in the clinical range, where a PSA level of 4.0 ng/mL is the established upper normal limit. Moreover, a LOD of 0.25 ng/mL was calculated with a confident level of 3 according to the IUPAC Gold Book definition. Its versatility has also been proved with the detection of other biomolecules such as troponin I (cardiac injury biomarker) or histamine.

Keywords: biosensor, lateral flow immunoassays, point-of-care devices, superparamagnetic nanoparticles

Procedia PDF Downloads 231
70 Cognitive Radio in Aeronautic: Comparison of Some Spectrum Sensing Technics

Authors: Abdelkhalek Bouchikhi, Elyes Benmokhtar, Sebastien Saletzki

Abstract:

The aeronautical field is experiencing issues with RF spectrum congestion due to the constant increase in the number of flights, aircrafts and telecom systems on board. In addition, these systems are bulky in size, weight and energy consumption. The cognitive radio helps particularly solving the spectrum congestion issue by its capacity to detect idle frequency channels then, allowing an opportunistic exploitation of the RF spectrum. The present work aims to propose a new use case for aeronautical spectrum sharing and to study the performances of three different detection techniques: energy detector, matched filter and cyclostationary detector within the aeronautical use case. The spectrum in the proposed cognitive radio is allocated dynamically where each cognitive radio follows a cognitive cycle. The spectrum sensing is a crucial step. The goal of the sensing is gathering data about the surrounding environment. Cognitive radio can use different sensors: antennas, cameras, accelerometer, thermometer, etc. In IEEE 802.22 standard, for example, a primary user (PU) has always the priority to communicate. When a frequency channel witch used by the primary user is idle, the secondary user (SU) is allowed to transmit in this channel. The Distance Measuring Equipment (DME) is composed of a UHF transmitter/receiver (interrogator) in the aircraft and a UHF receiver/transmitter on the ground. While the future cognitive radio will be used jointly to alleviate the spectrum congestion issue in the aeronautical field. LDACS, for example, is a good candidate; it provides two isolated data-links: ground-to-air and air-to-ground data-links. The first contribution of the present work is a strategy allowing sharing the L-band. The adopted spectrum sharing strategy is as follow: the DME will play the role of PU which is the licensed user and the LDACS1 systems will be the SUs. The SUs could use the L-band channels opportunely as long as they do not causing harmful interference signals which affect the QoS of the DME system. Although the spectrum sensing is a key step, it helps detecting holes by determining whether the primary signal is present or not in a given frequency channel. A missing detection on primary user presence creates interference between PU and SU and will affect seriously the QoS of the legacy radio. In this study, first brief definitions, concepts and the state of the art of cognitive radio will be presented. Then, a study of three communication channel detection algorithms in a cognitive radio context is carried out. The study is made from the point of view of functions, material requirements and signal detection capability in the aeronautical field. Then, we presented a modeling of the detection problem by three different methods (energy, adapted filter, and cyclostationary) as well as an algorithmic description of these detectors is done. Then, we study and compare the performance of the algorithms. Simulations were carried out using MATLAB software. We analyzed the results based on ROCs curves for SNR between -10dB and 20dB. The three detectors have been tested with a synthetics and real world signals.

Keywords: aeronautic, communication, navigation, surveillance systems, cognitive radio, spectrum sensing, software defined radio

Procedia PDF Downloads 174
69 Humanizing Industrial Architecture: When Form Meets Function and Emotion

Authors: Sahar Majed Asad

Abstract:

Industrial structures have historically focused on functionality and efficiency, often disregarding aesthetics and human experience. However, a new approach is emerging that prioritizes humanizing industrial architecture and creating spaces that promote well-being, sustainability, and social responsibility. This study explores the motivations and design strategies behind this shift towards more human-centered industrial environments, providing practical guidance for architects, designers, and other stakeholders interested in incorporating these principles into their work. Through in-depth interviews with architects, designers, and industry experts, as well as a review of relevant literature, this study uncovers the reasons for this change in industrial design. The findings reveal that this shift is driven by a desire to create environments that prioritize the needs and experiences of the people who use them. The study identifies strategies such as incorporating natural elements, flexible design, and advanced technologies as crucial in achieving human-centric industrial design. It also emphasizes that effective communication and collaboration among stakeholders are crucial for successful human-centered design outcomes. This paper provides a comprehensive analysis of the motivations and design strategies behind the humanization of industrial architecture. It begins by examining the history of industrial architecture and highlights the focus on functionality and efficiency. The paper then explores the emergence of human-centered design principles in industrial architecture, discussing the benefits of this approach, including creating more sustainable and socially responsible environments.The paper explains specific design strategies that prioritize the human experience of industrial spaces. It outlines how incorporating natural elements like greenery and natural lighting can create more visually appealing and comfortable environments for industrial workers. Flexible design solutions, such as movable walls and modular furniture, can make spaces more adaptable to changing needs and promote a sense of ownership and creativity among workers. Advanced technologies, such as sensors and automation, can improve the efficiency and safety of industrial spaces while also enhancing the human experience. To provide practical guidance, the paper offers recommendations for incorporating human-centered design principles into industrial structures. It emphasizes the importance of understanding the needs and experiences of the people who use these spaces and provides specific examples of how natural elements, flexible design, and advanced technologies can be incorporated into industrial structures to promote human well-being. In conclusion, this study demonstrates that the humanization of industrial architecture is a growing trend that offers tremendous potential for creating more sustainable and socially responsible built environments. By prioritizing the human experience of industrial spaces, designers can create environments that promote well-being, sustainability, and social responsibility. This research study provides practical guidance for architects, designers, and other stakeholders interested in incorporating human-centered design principles into their work, demonstrating that a human-centered approach can lead to functional and aesthetically pleasing industrial spaces that promote human well-being and contribute to a better future for all.

Keywords: human-centered design, industrial architecture, sustainability, social responsibility

Procedia PDF Downloads 161
68 Radish Sprout Growth Dependency on LED Color in Plant Factory Experiment

Authors: Tatsuya Kasuga, Hidehisa Shimada, Kimio Oguchi

Abstract:

Recent rapid progress in ICT (Information and Communication Technology) has advanced the penetration of sensor networks (SNs) and their attractive applications. Agriculture is one of the fields well able to benefit from ICT. Plant factories control several parameters related to plant growth in closed areas such as air temperature, humidity, water, culture medium concentration, and artificial lighting by using computers and AI (Artificial Intelligence) is being researched in order to obtain stable and safe production of vegetables and medicinal plants all year anywhere, and attain self-sufficiency in food. By providing isolation from the natural environment, a plant factory can achieve higher productivity and safe products. However, the biggest issue with plant factories is the return on investment. Profits are tenuous because of the large initial investments and running costs, i.e. electric power, incurred. At present, LED (Light Emitting Diode) lights are being adopted because they are more energy-efficient and encourage photosynthesis better than the fluorescent lamps used in the past. However, further cost reduction is essential. This paper introduces experiments that reveal which color of LED lighting best enhances the growth of cultured radish sprouts. Radish sprouts were cultivated in the experimental environment formed by a hydroponics kit with three cultivation shelves (28 samples per shelf) each with an artificial lighting rack. Seven LED arrays of different color (white, blue, yellow green, green, yellow, orange, and red) were compared with a fluorescent lamp as the control. Lighting duration was set to 12 hours a day. Normal water with no fertilizer was circulated. Seven days after germination, the length, weight and area of leaf of each sample were measured. Electrical power consumption for all lighting arrangements was also measured. Results and discussions: As to average sample length, no clear difference was observed in terms of color. As regards weight, orange LED was less effective and the difference was significant (p < 0.05). As to leaf area, blue, yellow and orange LEDs were significantly less effective. However, all LEDs offered higher productivity per W consumed than the fluorescent lamp. Of the LEDs, the blue LED array attained the best results in terms of length, weight and area of leaf per W consumed. Conclusion and future works: An experiment on radish sprout cultivation under 7 different color LED arrays showed no clear difference in terms of sample size. However, if electrical power consumption is considered, LEDs offered about twice the growth rate of the fluorescent lamp. Among them, blue LEDs showed the best performance. Further cost reduction e.g. low power lighting remains a big issue for actual system deployment. An automatic plant monitoring system with sensors is another study target.

Keywords: electric power consumption, LED color, LED lighting, plant factory

Procedia PDF Downloads 188
67 Parameter Selection and Monitoring for Water-Powered Percussive Drilling in Green-Fields Mineral Exploration

Authors: S. J. Addinell, T. Richard, B. Evans

Abstract:

The Deep Exploration Technologies Cooperative Research Centre (DET CRC) is researching and developing a new coiled tubing based greenfields mineral exploration drilling system utilising downhole water powered percussive drill tooling. This new drilling system is aimed at significantly reducing the costs associated with identifying mineral resource deposits beneath deep, barron cover. This system has shown superior rates of penetration in water-rich hard rock formations at depths exceeding 500 meters. Several key challenges exist regarding the deployment and use of these bottom hole assemblies for mineral exploration, and this paper discusses some of the key technical challenges. This paper presents experimental results obtained from the research program during laboratory and field testing of the prototype drilling system. A study of the morphological aspects of the cuttings generated during the percussive drilling process is presented and shows a strong power law relationship for particle size distributions. Several percussive drilling parameters such as RPM, applied fluid pressure and weight on bit have been shown to influence the particle size distributions of the cuttings generated. This has direct influence on other drilling parameters such as flow loop performance, cuttings dewatering, and solids control. Real-time, accurate knowledge of percussive system operating parameters will assist the driller in maximising the efficiency of the drilling process. The applied fluid flow, fluid pressure, and rock properties are known to influence the natural oscillating frequency of the percussive hammer, but this paper also shows that drill bit design, drill bit wear and the applied weight on bit can also influence the oscillation frequency. Due to the changing drilling conditions and therefore changing operating parameters, real-time understanding of the natural operating frequency is paramount to achieving system optimisation. Several techniques to understand the oscillating frequency have been investigated and presented. With a conventional top drive drilling rig, spectral analysis of applied fluid pressure, hydraulic feed force pressure, hold back pressure and drill string vibrations have shown the presence of the operating frequency of the bottom hole tooling. Unfortunately, however, with the implementation of a coiled tubing drilling rig, implementing a positive displacement downhole motor to provide drill bit rotation, these signals are not available for interrogation at the surface and therefore another method must be considered. The investigation and analysis of ground vibrations using geophone sensors, similar to seismic-while-drilling techniques have indicated the presence of the natural oscillating frequency of the percussive hammer. This method is shown to provide a robust technique for the determination of the downhole percussive oscillation frequency when used with a coiled tubing drill rig.

Keywords: cuttings characterization, drilling optimization, oscillation frequency, percussive drilling, spectral analysis

Procedia PDF Downloads 230
66 The Effect of Post Spinal Hypotension on Cerebral Oxygenation Using Near-Infrared Spectroscopy and Neonatal Outcomes in Full Term Parturient Undergoing Lower Segment Caesarean Section: A Prospective Observational Study

Authors: Shailendra Kumar, Lokesh Kashyap, Puneet Khanna, Nishant Patel, Rakesh Kumar, Arshad Ayub, Kelika Prakash, Yudhyavir Singh, Krithikabrindha V.

Abstract:

Introduction: Spinal anesthesia is considered a standard anesthesia technique for caesarean delivery. The incidence of spinal hypotension during caesarean delivery is 70 -80%. Spinal hypotension may cause cerebral hypoperfusion in the mother, but physiologically cerebral autoregulatory mechanisms accordingly prevent cerebral hypoxia. Cerebral blood flow remains constant in the 50-150 mmHg of Cerebral Perfusion Pressure (CPP) range. Near-infrared spectroscopy (NIRS) is a non-invasive technology that is used to detect Cerebral Desaturation Events (CDEs) immediately compared to other conventional intraoperative monitoring techniques. Objective: The primary aim of the study is to correlate the change in cerebral oxygen saturation using NIRS with respect to a fall in mean blood pressure after spinal anaesthesia and to find out the effects of spinal hypotension on neonatal APGAR score, neonatal acid-base variations, and presence of Postoperative Delirium (POD). Methodology: NIRS sensors were attached to the forehead of all the patients, and their baseline readings of cerebral oxygenation on the right and left frontal regions and mean blood pressure were noted. Subarachnoid block was given with hyperbaric 0.5% bupivacaine plus fentanyl, the dose being determined by the individual anaesthesiologist. Co-loading of IV crystalloid solutions was given to the patient. Blood pressure reading and cerebral saturation were recorded every 1 minute till 30min. Hypotension was a fall in MAP less than 20% of the baseline values. Patients going for hypotension were treated with an IV Bolus of phenylephrine/ephedrine. Umbilical cord blood samples were taken for blood gas analysis, and neonatal APGAR was noted by a neonatologist. Study design: A prospective observational study conducted in a population of Thirty ASA 2 and 3 parturients scheduled for lower segment caesarean section (LSCS). Results: Mean fall in regional cerebral saturation is 28.48 ± 14.7% with respect to the mean fall in blood pressure 38.92 ± 8.44 mm Hg. The correlation coefficient between fall in saturation and fall in mean blood pressure is 0.057, and p-value {0.7} after subarachnoid block. A fall in regional cerebral saturation occurred 2±1 min before a fall in mean blood pressure. Twenty-nine out of thirty patients required vasopressors during hypotension. The first dose of vasopressor requirement is needed at 6.02±2 min after the block. The mean APGAR score was 7.86 and 9.74 at 1 and 5 min of birth, respectively, and the mean umbilical arterial pH of 7.3±0.1. According to DRS-98 (Delirium Rating Scale), the mean delirium rating score on postoperative day 1 and day 2 were 0.1 and 0.7, respectively. Discussion: There was a fall in regional cerebral oxygen saturation, which started before with respect to a significant fall in mean blood pressure readings but was statistically not significant. Maximal fall in blood pressure requiring vasopressors occurs within 10 min of SAB. Neonatal APGAR scores and acid-base variations were in the normal range with maternal hypotension, and there was no incidence of postoperative delirium in patients with post-spinal hypotension.

Keywords: cerebral oxygenation, LSCS, NIRS, spinal hypotension

Procedia PDF Downloads 69
65 High Speed Motion Tracking with Magnetometer in Nonuniform Magnetic Field

Authors: Jeronimo Cox, Tomonari Furukawa

Abstract:

Magnetometers have become more popular in inertial measurement units (IMU) for their ability to correct estimations using the earth's magnetic field. Accelerometer and gyroscope-based packages fail with dead-reckoning errors accumulated over time. Localization in robotic applications with magnetometer-inclusive IMUs has become popular as a way to track the odometry of slower-speed robots. With high-speed motions, the accumulated error increases over smaller periods of time, making them difficult to track with IMU. Tracking a high-speed motion is especially difficult with limited observability. Visual obstruction of motion leaves motion-tracking cameras unusable. When motions are too dynamic for estimation techniques reliant on the observability of the gravity vector, the use of magnetometers is further justified. As available magnetometer calibration methods are limited with the assumption that background magnetic fields are uniform, estimation in nonuniform magnetic fields is problematic. Hard iron distortion is a distortion of the magnetic field by other objects that produce magnetic fields. This kind of distortion is often observed as the offset from the origin of the center of data points when a magnetometer is rotated. The magnitude of hard iron distortion is dependent on proximity to distortion sources. Soft iron distortion is more related to the scaling of the axes of magnetometer sensors. Hard iron distortion is more of a contributor to the error of attitude estimation with magnetometers. Indoor environments or spaces inside ferrite-based structures, such as building reinforcements or a vehicle, often cause distortions with proximity. As positions correlate to areas of distortion, methods of magnetometer localization include the production of spatial mapping of magnetic field and collection of distortion signatures to better aid location tracking. The goal of this paper is to compare magnetometer methods that don't need pre-productions of magnetic field maps. Mapping the magnetic field in some spaces can be costly and inefficient. Dynamic measurement fusion is used to track the motion of a multi-link system with us. Conventional calibration by data collection of rotation at a static point, real-time estimation of calibration parameters each time step, and using two magnetometers for determining local hard iron distortion are compared to confirm the robustness and accuracy of each technique. With opposite-facing magnetometers, hard iron distortion can be accounted for regardless of position, Rather than assuming that hard iron distortion is constant regardless of positional change. The motion measured is a repeatable planar motion of a two-link system connected by revolute joints. The links are translated on a moving base to impulse rotation of the links. Equipping the joints with absolute encoders and recording the motion with cameras to enable ground truth comparison to each of the magnetometer methods. While the two-magnetometer method accounts for local hard iron distortion, the method fails where the magnetic field direction in space is inconsistent.

Keywords: motion tracking, sensor fusion, magnetometer, state estimation

Procedia PDF Downloads 84
64 Outdoor Thermal Comfort Strategies: The Case of Cool Facades

Authors: Noelia L. Alchapar, Cláudia C. Pezzuto, Erica N. Correa

Abstract:

Mitigating urban overheating is key to achieving the environmental and energy sustainability of cities. The management of the optical properties of the materials that make up the urban envelope -roofing, pavement, and facades- constitutes a profitable and effective tool to improve the urban microclimate and rehabilitate urban areas. Each material that makes up the urban envelope has a different capacity to reflect received solar radiation, which alters the fraction of solar radiation absorbed by the city. However, the paradigm of increasing solar reflectance in all areas of the city without distinguishing their relative position within the urban canyon can cause serious problems of overheating and discomfort among its inhabitants. The hypothesis that supports the research postulates that not all reflective technologies that contribute to urban radiative cooling favor the thermal comfort conditions of pedestrians to equal measure. The objective of this work is to determine to what degree the management of the optical properties of the facades modifies outdoor thermal comfort, given that the mitigation potential of materials with high reflectance in facades is strongly conditioned by geographical variables and by the geometric characteristics of the urban profile aspect ratio (H/W). This research was carried out under two climatic contexts, that of the city of Mendoza-Argentina and that of the city of Campinas-Brazil, according to the Köppen climate classification: BWk and Cwa, respectively. Two areas in two different climatic contexts (Mendoza - Argentina and Campinas - Brazil) were selected. Both areas have comparable urban morphology patterns. These areas are located in a region with low horizontal building density and residential zoning. The microclimatic conditions were monitored during the summer period with temperature and humidity fixed sensors inside vial channels. The microclimate model was simulated in ENVI-Met V5. A grid resolution of 3.5 x 3.5 x 3.5m was used for both cities, totaling an area of 145x145x30 grids. Based on the validated theoretical model, ten scenarios were simulated, modifying the height of buildings and the solar reflectivity of facades. The solar reflectivity façades ranges were: low (0.3) and high (0.75). The density scenarios range from 1th to the 5th level. The study scenarios' performance was assessed by comparing the air temperature, physiological equivalent temperature (PET), and thermal climate index (UTCI). As a result, it is observed that the behavior of the materials of the urban outdoor space depends on complex interactions. Many urban environmental factors influence including constructive characteristics, urban morphology, geographic locations, local climate, and so forth. The role of the vertical urban envelope is decisive for the reduction of urban overheating. One of the causes of thermal gain is the multiple reflections within the urban canyon, which affects not only the air temperature but also the pedestrian thermal comfort. One of the main findings of this work leads to the remarkable importance of considering both the urban warming and the thermal comfort aspects of pedestrians in urban mitigation strategies.

Keywords: materials facades, solar reflectivity, thermal comfort, urban cooling

Procedia PDF Downloads 92
63 Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments

Authors: David X. Dong, Qingming Zhang, Meng Lu

Abstract:

Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management.

Keywords: optical sensor, regression model, nitrites, water quality

Procedia PDF Downloads 72
62 Water Ingress into Underground Mine Voids in the Central Rand Goldfields Area, South Africa-Fluid Induced Seismicity

Authors: Artur Cichowicz

Abstract:

The last active mine in the Central Rand Goldfields area (50 km x 15 km) ceased operations in 2008. This resulted in the closure of the pumping stations, which previously maintained the underground water level in the mining voids. As a direct consequence of the water being allowed to flood the mine voids, seismic activity has increased directly beneath the populated area of Johannesburg. Monitoring of seismicity in the area has been on-going for over five years using the network of 17 strong ground motion sensors. The objective of the project is to improve strategies for mine closure. The evolution of the seismicity pattern was investigated in detail. Special attention was given to seismic source parameters such as magnitude, scalar seismic moment and static stress drop. Most events are located within historical mine boundaries. The seismicity pattern shows a strong relationship between the presence of the mining void and high levels of seismicity; no seismicity migration patterns were observed outside the areas of old mining. Seven years after the pumping stopped, the evolution of the seismicity has indicated that the area is not yet in equilibrium. The level of seismicity in the area appears to not be decreasing over time since the number of strong events, with Mw magnitudes above 2, is still as high as it was when monitoring began over five years ago. The average rate of seismic deformation is 1.6x1013 Nm/year. Constant seismic deformation was not observed over the last 5 years. The deviation from the average is in the order of 6x10^13 Nm/year, which is a significant deviation. The variation of cumulative seismic moment indicates that a constant deformation rate model is not suitable. Over the most recent five year period, the total cumulative seismic moment released in the Central Rand Basin was 9.0x10^14 Nm. This is equivalent to one earthquake of magnitude 3.9. This is significantly less than what was experienced during the mining operation. Characterization of seismicity triggered by a rising water level in the area can be achieved through the estimation of source parameters. Static stress drop heavily influences ground motion amplitude, which plays an important role in risk assessments of potential seismic hazards in inhabited areas. The observed static stress drop in this study varied from 0.05 MPa to 10 MPa. It was found that large static stress drops could be associated with both small and large events. The temporal evolution of the inter-event time provides an understanding of the physical mechanisms of earthquake interaction. Changes in the characteristics of the inter-event time are produced when a stress change is applied to a group of faults in the region. Results from this study indicate that the fluid-induced source has a shorter inter-event time in comparison to a random distribution. This behaviour corresponds to a clustering of events, in which short recurrence times tend to be close to each other, forming clusters of events.

Keywords: inter-event time, fluid induced seismicity, mine closure, spectral parameters of seismic source

Procedia PDF Downloads 285
61 Rotational and Linear Accelerations of an Anthropometric Test Dummy Head from Taekwondo Kicks among Amateur Practitioners

Authors: Gabriel P. Fife, Saeyong Lee, David M. O'Sullivan

Abstract:

Introduction: Although investigations into injury characteristics are represented well in the literature, few have investigated the biomechanical characteristics associated with head impacts in Taekwondo. Therefore, the purpose of this study was to identify the kinematic characteristics of head impacts due to taekwondo kicks among non-elite practitioners. Participants: Male participants (n= 11, 175 + 5.3 cm, 71 + 8.3 kg) with 7.5 + 3.6 years of taekwondo training volunteered for this study. Methods: Participants were asked to perform five repetitions of each technique (i.e., turning kick, spinning hook kick, spinning back kick, front axe kick, and clench axe kick) aimed at the Hybrid III head with their dominant kicking leg. All participants wore a protective foot pad (thickness = 12 mm) that is commonly used in competition and training. To simulate head impact in taekwondo, the target consisted of a Hybrid III 50th Percentile Crash Test Dummy (Hybrid III) head (mass = 5.1 kg) and neck (fitted with taekwondo headgear) secured to an aluminum support frame and positioned to each athlete’s standing height. The Hybrid III head form was instrumented with a 500 g tri-axial accelerometer (PCB Piezotronics) mounted to the head center of gravity to obtain resultant linear accelerations (RLA). Rotational accelerations were collected using three angular rate sensors mounted orthogonally to each other (Diversified Technical Systems ARS-12 K Angular Rate Sensor). The accelerometers were interfaced via a 3-channel, battery-powered integrated circuit piezoelectric sensor signal conditioner (PCB Piezotronics) and connected to a desktop computer for analysis. Acceleration data were captured using LABVIEW Signal Express and processed in accordance with SAE J211-1 channel frequency class 1000. Head injury criteria values (HIC) were calculated using the VSRSoftware. A one-way analysis of variance was used to determine differences between kicks, while the Tukey HSD test was employed for pairwise comparisons. The level of significance was set to an effect size of 0.20. All statistical analyses were done using R 3.1.0. Results: A statistically significant difference was observed in RLA (p = 0.00075); however, these differences were not clinically meaningful (η² = 0.04, 95% CI: -0.94 to 1.03). No differences were identified with ROTA (p = 0.734, η² = 0.0004, 95% CI: -0.98 to 0.98). A statistically significant difference (p < 0.001) between kicks in HIC was observed, with a medium effect (η2= 0.08, 95% CI: -0.98 to 1.07). However, the confidence interval of this difference indicates uncertainty. Tukey HSD test identified differences (p < 0.001) between kicking techniques in RLA and HIC. Conclusion: This study observed head impact levels that were comparable to previous studies of similar objectives and methodology. These data are important as impact measures from this study may be more representative of impact levels experienced by non-elite competitors. Although the clench axe kick elicited a lower RLA, the ROTA of this technique was higher than levels from other techniques (although not large differences in reference to effect sizes). As the axe kick has been reported to cause severe head injury, future studies may consider further study of this kick important.

Keywords: Taekwondo, head injury, biomechanics, kicking

Procedia PDF Downloads 26
60 A Distributed Smart Battery Management System – sBMS, for Stationary Energy Storage Applications

Authors: António J. Gano, Carmen Rangel

Abstract:

Currently, electric energy storage systems for stationary applications have known an increasing interest, namely with the integration of local renewable energy power sources into energy communities. Li-ion batteries are considered the leading electric storage devices to achieve this integration, and Battery Management Systems (BMS) are decisive for their control and optimum performance. In this work, the advancement of a smart BMS (sBMS) prototype with a modular distributed topology is described. The system, still under development, has a distributed architecture with modular characteristics to operate with different battery pack topologies and charge capacities, integrating adaptive algorithms for functional state real-time monitoring and management of multicellular Li-ion batteries, and is intended for application in the context of a local energy community fed by renewable energy sources. This sBMS system includes different developed hardware units: (1) Cell monitoring units (CMUs) for interfacing with each individual cell or module monitoring within the battery pack; (2) Battery monitoring and switching unit (BMU) for global battery pack monitoring, thermal control and functional operating state switching; (3) Main management and local control unit (MCU) for local sBMS’s management and control, also serving as a communications gateway to external systems and devices. This architecture is fully expandable to battery packs with a large number of cells, or modules, interconnected in series, as the several units have local data acquisition and processing capabilities, communicating over a standard CAN bus and will be able to operate almost autonomously. The CMU units are intended to be used with Li-ion cells but can be used with other cell chemistries, with output voltages within the 2.5 to 5 V range. The different unit’s characteristics and specifications are described, including the different implemented hardware solutions. The developed hardware supports both passive and active methods for charge equalization, considered fundamental functionalities for optimizing the performance and the useful lifetime of a Li-ion battery package. The functional characteristics of the different units of this sBMS system, including different process variables data acquisition using a flexible set of sensors, can support the development of custom algorithms for estimating the parameters defining the functional states of the battery pack (State-of-Charge, State-of-Health, etc.) as well as different charge equalizing strategies and algorithms. This sBMS system is intended to interface with other systems and devices using standard communication protocols, like those used by the Internet of Things. In the future, this sBMS architecture can evolve to a fully decentralized topology, with all the units using Wi-Fi protocols and integrating a mesh network, making unnecessary the MCU unit. The status of the work in progress is reported, leading to conclusions on the system already executed, considering the implemented hardware solution, not only as fully functional advanced and configurable battery management system but also as a platform for developing custom algorithms and optimizing strategies to achieve better performance of electric energy stationary storage devices.

Keywords: Li-ion battery, smart BMS, stationary electric storage, distributed BMS

Procedia PDF Downloads 100
59 Multi-scale Geographic Object-Based Image Analysis (GEOBIA) Approach to Segment a Very High Resolution Images for Extraction of New Degraded Zones. Application to The Region of Mécheria in The South-West of Algeria

Authors: Bensaid A., Mostephaoui T., Nedjai R.

Abstract:

A considerable area of Algerian lands are threatened by the phenomenon of wind erosion. For a long time, wind erosion and its associated harmful effects on the natural environment have posed a serious threat, especially in the arid regions of the country. In recent years, as a result of increases in the irrational exploitation of natural resources (fodder) and extensive land clearing, wind erosion has particularly accentuated. The extent of degradation in the arid region of the Algerian Mécheriadepartment generated a new situation characterized by the reduction of vegetation cover, the decrease of land productivity, as well as sand encroachment on urban development zones. In this study, we attempt to investigate the potential of remote sensing and geographic information systems for detecting the spatial dynamics of the ancient dune cords based on the numerical processing of PlanetScope PSB.SB sensors images by September 29, 2021. As a second step, we prospect the use of a multi-scale geographic object-based image analysis (GEOBIA) approach to segment the high spatial resolution images acquired on heterogeneous surfaces that vary according to human influence on the environment. We have used the fractal net evolution approach (FNEA) algorithm to segment images (Baatz&Schäpe, 2000). Multispectral data, a digital terrain model layer, ground truth data, a normalized difference vegetation index (NDVI) layer, and a first-order texture (entropy) layer were used to segment the multispectral images at three segmentation scales, with an emphasis on accurately delineating the boundaries and components of the sand accumulation areas (Dune, dunes fields, nebka, and barkhane). It is important to note that each auxiliary data contributed to improve the segmentation at different scales. The silted areas were classified using a nearest neighbor approach over the Naâma area using imagery. The classification of silted areas was successfully achieved over all study areas with an accuracy greater than 85%, although the results suggest that, overall, a higher degree of landscape heterogeneity may have a negative effect on segmentation and classification. Some areas suffered from the greatest over-segmentation and lowest mapping accuracy (Kappa: 0.79), which was partially attributed to confounding a greater proportion of mixed siltation classes from both sandy areas and bare ground patches. This research has demonstrated a technique based on very high-resolution images for mapping sanded and degraded areas using GEOBIA, which can be applied to the study of other lands in the steppe areas of the northern countries of the African continent.

Keywords: land development, GIS, sand dunes, segmentation, remote sensing

Procedia PDF Downloads 109
58 Phospholipid Cationic and Zwitterionic Compounds as Potential Non-Toxic Antifouling Agents: A Study of Biofilm Formation Assessed by Micro-titer Assays with Marine Bacteria and Eco-toxicological Effect on Marine Microalgae

Authors: D. Malouch, M. Berchel, C. Dreanno, S. Stachowski-Haberkorn, P-A. Jaffres

Abstract:

Biofouling is a complex natural phenomenon that involves biological, physical and chemical properties related to the environment, the submerged surface and the living organisms involved. Bio-colonization of artificial structures can cause various economic and environmental impacts. The increase in costs associated with the over-consumption of fuel from biocolonized vessels has been widely studied. Measurement drifts from submerged sensors, as well as obstructions in heat exchangers, and deterioration of offshore structures are major difficulties that industries are dealing with. Therefore, surfaces that inhibit biocolonization are required in different areas (water treatment, marine paints, etc.) and many efforts have been devoted to produce efficient and eco-compatible antifouling agents. The different steps of surface fouling are widely described in literature. Studying the biofilm and its stages provides a better understanding of how to elaborate more efficient antifouling strategies. Several approaches are currently applied, such as the use of biocide anti-fouling paint (mainly with copper derivatives) and super-hydrophobic coatings. While these two processes are proving to be the most effective, they are not entirely satisfactory, especially in a context of a changing legislation. Nowadays, the challenge is to prevent biofouling with non-biocide compounds, offering a cost effective solution, but with no toxic effects on marine organisms. Since the micro-fouling phase plays an important role in the regulation of the following steps of biofilm formation, it is desired to reduce or delate biofouling of a given surface by inhibiting the micro-fouling at its early stages. In our recent works, we reported that some amphiphilic compounds exhibited bacteriostatic or bactericidal properties at a concentration that did not affect mammalian eukaryotic cells. These remarkable properties invited us to assess this type of bio-inspired phospholipids to prevent the colonization of surfaces by marine bacteria. Of note, other studies reported that amphiphilic compounds interacted with bacteria leading to a reduction of their development. An amphiphilic compound is a molecule consisting of a hydrophobic domain and a polar head (ionic or non-ionic). These compounds appear to have interesting antifouling properties: some ionic compounds have shown antimicrobial activity, and zwitterions can reduce nonspecific adsorption of proteins. Herein, we investigate the potential of amphiphilic compounds as inhibitors of bacterial growth and marine biofilm formation. The aim of this study is to compare the efficacy of four synthetic phospholipids that features a cationic charge or a zwitterionic polar-head group to prevent microfouling with marine bacteria. Toxicity of these compounds was also studied in order to identify the most promising compounds that inhibit biofilm development and show low cytotoxicity on two links representative of coastal marine food webs: phytoplankton and oyster larvae.

Keywords: amphiphilic phospholipids, biofilm, marine fouling, non-toxique assays

Procedia PDF Downloads 134
57 Rapid Building Detection in Population-Dense Regions with Overfitted Machine Learning Models

Authors: V. Mantey, N. Findlay, I. Maddox

Abstract:

The quality and quantity of global satellite data have been increasing exponentially in recent years as spaceborne systems become more affordable and the sensors themselves become more sophisticated. This is a valuable resource for many applications, including disaster management and relief. However, while more information can be valuable, the volume of data available is impossible to manually examine. Therefore, the question becomes how to extract as much information as possible from the data with limited manpower. Buildings are a key feature of interest in satellite imagery with applications including telecommunications, population models, and disaster relief. Machine learning tools are fast becoming one of the key resources to solve this problem, and models have been developed to detect buildings in optical satellite imagery. However, by and large, most models focus on affluent regions where buildings are generally larger and constructed further apart. This work is focused on the more difficult problem of detection in populated regions. The primary challenge with detecting small buildings in densely populated regions is both the spatial and spectral resolution of the optical sensor. Densely packed buildings with similar construction materials will be difficult to separate due to a similarity in color and because the physical separation between structures is either non-existent or smaller than the spatial resolution. This study finds that training models until they are overfitting the input sample can perform better in these areas than a more robust, generalized model. An overfitted model takes less time to fine-tune from a generalized pre-trained model and requires fewer input data. The model developed for this study has also been fine-tuned using existing, open-source, building vector datasets. This is particularly valuable in the context of disaster relief, where information is required in a very short time span. Leveraging existing datasets means that little to no manpower or time is required to collect data in the region of interest. The training period itself is also shorter for smaller datasets. Requiring less data means that only a few quality areas are necessary, and so any weaknesses or underpopulated regions in the data can be skipped over in favor of areas with higher quality vectors. In this study, a landcover classification model was developed in conjunction with the building detection tool to provide a secondary source to quality check the detected buildings. This has greatly reduced the false positive rate. The proposed methodologies have been implemented and integrated into a configurable production environment and have been employed for a number of large-scale commercial projects, including continent-wide DEM production, where the extracted building footprints are being used to enhance digital elevation models. Overfitted machine learning models are often considered too specific to have any predictive capacity. However, this study demonstrates that, in cases where input data is scarce, overfitted models can be judiciously applied to solve time-sensitive problems.

Keywords: building detection, disaster relief, mask-RCNN, satellite mapping

Procedia PDF Downloads 169
56 A Flexible Piezoelectric - Polymer Composite for Non-Invasive Detection of Multiple Vital Signs of Human

Authors: Sarah Pasala, Elizabeth Zacharias

Abstract:

Vital sign monitoring is crucial for both everyday health and medical diagnosis. A significant factor in assessing a human's health is their vital signs, which include heart rate, breathing rate, blood pressure, and electrocardiogram (ECG) readings. Vital sign monitoring has been the focus of many system and method innovations recently. Piezoelectrics are materials that convert mechanical energy into electrical energy and can be used for vital sign monitoring. Piezoelectric energy harvesters that are stretchable and flexible can detect very low frequencies like airflow, heartbeat, etc. Current advancements in piezoelectric materials and flexible sensors have made it possible to create wearable and implantable medical devices that can continuously monitor physiological signals in humans. But because of their non-biocompatible nature, they also produce a large amount of e-waste and require another surgery to remove the implant. This paper presents a biocompatible and flexible piezoelectric composite material for wearable and implantable devices that offers a high-performance platform for seamless and continuous monitoring of human physiological signals and tactile stimuli. It also addresses the issue of e-waste and secondary surgery. A Lead-free piezoelectric, SrBi4Ti4O15, is found to be suitable for this application because the properties can be tailored by suitable substitutions and also by varying the synthesis temperature protocols. In the present work, SrBi4Ti4O15 modified by rare-earth has been synthesized and studied. Coupling factors are calculated from resonant (fr) and anti-resonant frequencies (fa). It is observed that Samarium substitution in SBT has increased the Curie temperature, dielectric and piezoelectric properties. From impedance spectroscopy studies, relaxation, and non-Debye type behaviour are observed. The composite of bioresorbable poly(l-lactide) and Lead-free rare earth modified Bismuth Layered Ferroelectrics leads to a flexible piezoelectric device for non-invasive measurement of vital signs, such as heart rate, breathing rate, blood pressure, and electrocardiogram (ECG) readings and also artery pulse signals in near-surface arteries. These composites are suitable to detect slight movement of the muscles and joints. This Lead-free rare earth modified Bismuth Layered Ferroelectrics – polymer composite is synthesized using a ball mill and the solid-state double sintering method. XRD studies indicated the two phases in the composite. SEM studies revealed the grain size to be uniform and in the range of 100 nm. The electromechanical coupling factor is improved. The elastic constants are calculated and the mechanical flexibility is found to be improved as compared to the single-phase rare earth modified Bismuth Latered piezoelectric. The results indicate that this composite is suitable for the non-invasive detection of multiple vital signs of humans.

Keywords: composites, flexible, non-invasive, piezoelectric

Procedia PDF Downloads 37