Search results for: laryngeal feature variation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3983

Search results for: laryngeal feature variation

2693 Relay Node Selection Algorithm for Cooperative Communications in Wireless Networks

Authors: Sunmyeng Kim

Abstract:

IEEE 802.11a/b/g standards support multiple transmission rates. Even though the use of multiple transmission rates increase the WLAN capacity, this feature leads to the performance anomaly problem. Cooperative communication was introduced to relieve the performance anomaly problem. Data packets are delivered to the destination much faster through a relay node with high rate than through direct transmission to the destination at low rate. In the legacy cooperative protocols, a source node chooses a relay node only based on the transmission rate. Therefore, they are not so feasible in multi-flow environments since they do not consider the effect of other flows. To alleviate the effect, we propose a new relay node selection algorithm based on the transmission rate and channel contention level. Performance evaluation is conducted using simulation, and shows that the proposed protocol significantly outperforms the previous protocol in terms of throughput and delay.

Keywords: cooperative communications, MAC protocol, relay node, WLAN

Procedia PDF Downloads 332
2692 Feature Selection for Production Schedule Optimization in Transition Mines

Authors: Angelina Anani, Ignacio Ortiz Flores, Haitao Li

Abstract:

The use of underground mining methods have increased significantly over the past decades. This increase has also been spared on by several mines transitioning from surface to underground mining. However, determining the transition depth can be a challenging task, especially when coupled with production schedule optimization. Several researchers have simplified the problem by excluding operational features relevant to production schedule optimization. Our research objective is to investigate the extent to which operational features of transition mines accounted for affect the optimal production schedule. We also provide a framework for factors to consider in production schedule optimization for transition mines. An integrated mixed-integer linear programming (MILP) model is developed that maximizes the NPV as a function of production schedule and transition depth. A case study is performed to validate the model, with a comparative sensitivity analysis to obtain operational insights.

Keywords: underground mining, transition mines, mixed-integer linear programming, production schedule

Procedia PDF Downloads 169
2691 Estimation of Global and Diffuse Solar Radiation Over Two Cities of Sindh, Pakistan

Authors: M. A. Ahmed, Sidra A. Shaikh, M. W. Akhtar

Abstract:

Global and Diffuse Solar radiation on horizontal surface over two cities of Sindh, namely Jacobabad and Rohri were carried out using sunshine hour data of the area to assess the feasibility of solar energy utilization in Sindh province. The result obtained shows a high variation in direct and diffuse component of solar radiation in summer and winter months (80% direct and 20% diffuse). The contribution of diffuse solar radiation is low even in monsoon months i.e. July and August. The appearance of cloud is rare even in monsoon months. The estimated value indicates that this part of Sindh has higher solar potential and solar panels can be used for power generation. The solar energy can be utilized throughout the year in this part of Sindh, Pakistan.

Keywords: solar potential over Sindh, global and diffuse solar radiation, radiation over two cities of Sindh, environmental engineering

Procedia PDF Downloads 447
2690 Degradation of the Mechanical Properties of the Polypropylene Talc Nanocomposite in Chemical Environment

Authors: Ahmed Ouadah Bouakkaz, Mohamed Elmeguenni, Bel Abbes Bachir Bouiadjra, Mohamed Belhouari, Abdulmohsen Albedah

Abstract:

In this study, the effect of the chemical environment on the mechanical properties of the polypropylene-talc composite was analyzed. The talc proportion was varied in order to highlight the combined effects of time of immersion in the chemical environment 'benzene' and talc concentration on the mechanical properties of the composite. Tensile test was carried out to evaluate the mechanical properties of PP-talc composite and to analyze the effect of the immersion time on the variation of these properties. The obtained results show that increasing the time of immersion has a very negative effect on the mechanical strength of the PP-talc composite, but this effect can be significantly reduced by the augmentation of the talc proportion.

Keywords: polypropylene (PP), talc, nanocomposite, degradation

Procedia PDF Downloads 385
2689 Blockchain Technology in Supply Chain Management: A Systematic Review And Meta-Analysis

Authors: Mohammad Yousuf Khan, Bhavya Alankar

Abstract:

Blockchain is a promising technology with its features such as immutability and decentralized database. It has applications in various fields such as pharmaceutical, finance, & the food industry. At the core of its heart lies its feature, traceability which is the most desired key in supply chains. However, supply chains have always been hit rock bottom by scandals and controversies. In this review paper, we have explored the advancement and research gaps of blockchain technology (BT) in supply chain management (SCM). We have used the Prisma framework for systematic literature review (SLR) and included a minuscule amount of grey literature to reduce publication bias. We found that supply chain traceability and transparency is the most researched objective in SCM. There was hardly any research in supply chain resilience. Further, we found that 40 % of the papers were application based. Most articles have focused on the advantages of BT, rather than analyzing it critically. This study will help identify gaps and suitable actions to be followed for an efficient implementation of BT in SCM.

Keywords: blockchain technology, supply chain management, supply chain transparency, supply chain resilience

Procedia PDF Downloads 161
2688 Exploring the Spatial Characteristics of Mortality Map: A Statistical Area Perspective

Authors: Jung-Hong Hong, Jing-Cen Yang, Cai-Yu Ou

Abstract:

The analysis of geographic inequality heavily relies on the use of location-enabled statistical data and quantitative measures to present the spatial patterns of the selected phenomena and analyze their differences. To protect the privacy of individual instance and link to administrative units, point-based datasets are spatially aggregated to area-based statistical datasets, where only the overall status for the selected levels of spatial units is used for decision making. The partition of the spatial units thus has dominant influence on the outcomes of the analyzed results, well known as the Modifiable Areal Unit Problem (MAUP). A new spatial reference framework, the Taiwan Geographical Statistical Classification (TGSC), was recently introduced in Taiwan based on the spatial partition principles of homogeneous consideration of the number of population and households. Comparing to the outcomes of the traditional township units, TGSC provides additional levels of spatial units with finer granularity for presenting spatial phenomena and enables domain experts to select appropriate dissemination level for publishing statistical data. This paper compares the results of respectively using TGSC and township unit on the mortality data and examines the spatial characteristics of their outcomes. For the mortality data between the period of January 1st, 2008 and December 31st, 2010 of the Taitung County, the all-cause age-standardized death rate (ASDR) ranges from 571 to 1757 per 100,000 persons, whereas the 2nd dissemination area (TGSC) shows greater variation, ranged from 0 to 2222 per 100,000. The finer granularity of spatial units of TGSC clearly provides better outcomes for identifying and evaluating the geographic inequality and can be further analyzed with the statistical measures from other perspectives (e.g., population, area, environment.). The management and analysis of the statistical data referring to the TGSC in this research is strongly supported by the use of Geographic Information System (GIS) technology. An integrated workflow that consists of the tasks of the processing of death certificates, the geocoding of street address, the quality assurance of geocoded results, the automatic calculation of statistic measures, the standardized encoding of measures and the geo-visualization of statistical outcomes is developed. This paper also introduces a set of auxiliary measures from a geographic distribution perspective to further examine the hidden spatial characteristics of mortality data and justify the analyzed results. With the common statistical area framework like TGSC, the preliminary results demonstrate promising potential for developing a web-based statistical service that can effectively access domain statistical data and present the analyzed outcomes in meaningful ways to avoid wrong decision making.

Keywords: mortality map, spatial patterns, statistical area, variation

Procedia PDF Downloads 258
2687 The Delaying Influence of Degradation on the Divestment of Gas Turbines for Associated Gas Utilisation: Part 1

Authors: Mafel Obhuo, Dodeye I. Igbong, Duabari S. Aziaka, Pericles Pilidis

Abstract:

An important feature of the exploitation of associated gas as fuel for gas turbine engines is a declining supply. So when exploiting this resource, the divestment of prime movers is very important as the fuel supply diminishes with time. This paper explores the influence of engine degradation on the timing of divestments. Hypothetical but realistic gas turbine engines were modelled with Turbomatch, the Cranfield University gas turbine performance simulation tool. The results were deployed in three degradation scenarios within the TERA (Techno-economic and environmental risk analysis) framework to develop economic models. An optimisation with Genetic Algorithms was carried out to maximize the economic benefit. The results show that degradation will have a significant impact. It will delay the divestment of power plants, while they are running less efficiently. Over a 20 year investment, a decrease of $0.11bn, $0.26bn and $0.45bn (billion US dollars) were observed for the three degradation scenarios as against the clean case.

Keywords: economic return, flared associated gas, net present value, optimization

Procedia PDF Downloads 137
2686 Detection of Curvilinear Structure via Recursive Anisotropic Diffusion

Authors: Sardorbek Numonov, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Dongeun Choi, Byung-Woo Hong

Abstract:

The detection of curvilinear structures often plays an important role in the analysis of images. In particular, it is considered as a crucial step for the diagnosis of chronic respiratory diseases to localize the fissures in chest CT imagery where the lung is divided into five lobes by the fissures that are characterized by linear features in appearance. However, the characteristic linear features for the fissures are often shown to be subtle due to the high intensity variability, pathological deformation or image noise involved in the imaging procedure, which leads to the uncertainty in the quantification of anatomical or functional properties of the lung. Thus, it is desired to enhance the linear features present in the chest CT images so that the distinctiveness in the delineation of the lobe is improved. We propose a recursive diffusion process that prefers coherent features based on the analysis of structure tensor in an anisotropic manner. The local image features associated with certain scales and directions can be characterized by the eigenanalysis of the structure tensor that is often regularized via isotropic diffusion filters. However, the isotropic diffusion filters involved in the computation of the structure tensor generally blur geometrically significant structure of the features leading to the degradation of the characteristic power in the feature space. Thus, it is required to take into consideration of local structure of the feature in scale and direction when computing the structure tensor. We apply an anisotropic diffusion in consideration of scale and direction of the features in the computation of the structure tensor that subsequently provides the geometrical structure of the features by its eigenanalysis that determines the shape of the anisotropic diffusion kernel. The recursive application of the anisotropic diffusion with the kernel the shape of which is derived from the structure tensor leading to the anisotropic scale-space where the geometrical features are preserved via the eigenanalysis of the structure tensor computed from the diffused image. The recursive interaction between the anisotropic diffusion based on the geometry-driven kernels and the computation of the structure tensor that determines the shape of the diffusion kernels yields a scale-space where geometrical properties of the image structure are effectively characterized. We apply our recursive anisotropic diffusion algorithm to the detection of curvilinear structure in the chest CT imagery where the fissures present curvilinear features and define the boundary of lobes. It is shown that our algorithm yields precise detection of the fissures while overcoming the subtlety in defining the characteristic linear features. The quantitative evaluation demonstrates the robustness and effectiveness of the proposed algorithm for the detection of fissures in the chest CT in terms of the false positive and the true positive measures. The receiver operating characteristic curves indicate the potential of our algorithm as a segmentation tool in the clinical environment. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: anisotropic diffusion, chest CT imagery, chronic respiratory disease, curvilinear structure, fissure detection, structure tensor

Procedia PDF Downloads 232
2685 Quantitative Structure-Activity Relationship Study of Some Quinoline Derivatives as Antimalarial Agents

Authors: M. Ouassaf, S. Belaid

Abstract:

A series of quinoline derivatives with antimalarial activity were subjected to two-dimensional quantitative structure-activity relationship (2D-QSAR) studies. Three models were implemented using multiple regression linear MLR, a regression partial least squares (PLS), nonlinear regression (MNLR), to see which descriptors are closely related to the activity biologic. We relied on a principal component analysis (PCA). Based on our results, a comparison of the quality of, MLR, PLS, and MNLR models shows that the MNLR (R = 0.914 and R² = 0.835, RCV= 0.853) models have substantially better predictive capability because the MNLR approach gives better results than MLR (R = 0.835 and R² = 0,752, RCV=0.601)), PLS (R = 0.742 and R² = 0.552, RCV=0.550) The model of MNLR gave statistically significant results and showed good stability to data variation in leave-one-out cross-validation. The obtained results suggested that our proposed model MNLR may be useful to predict the biological activity of derivatives of quinoline.

Keywords: antimalarial, quinoline, QSAR, PCA, MLR , MNLR, MLR

Procedia PDF Downloads 156
2684 The Mitidja between Drought and Water Pollution

Authors: Aziez Ouahiba, Remini Boualam, Habi Mohamed

Abstract:

the growth and the development of a pay are strongly related to the existence or the absence of water in this area, The sedentary lifestyle of the population makes that water demand is increasing and the different brandishing (dams, tablecloths or other) are increasingly solicited. In normal time rain and snow of the winter period reloads the slicks and the wadis that fill dams. Over these two decades, global warming fact that temperature is increasingly high and rainfall is increasingly low which induces a charge less and less important tablecloths, add to that the strong demand in irrigation. Our study will focus on the variation of rainfall and irrigation, their effects on the degree of pollution of the groundwater in this area based on statistical analyses by the Xlstat (ACP, correlation...) software for a better explanation of these results and determine the hydrochemistry of different groups or polluted areas pou be able to offer adequate solutions for each area.

Keywords: rainfall, groundwater of mitidja, irrigation, pollution

Procedia PDF Downloads 400
2683 The Relationship between Basic Human Needs and Opportunity Based on Social Progress Index

Authors: Ebru Ozgur Guler, Huseyin Guler, Sera Sanli

Abstract:

Social Progress Index (SPI) whose fundamentals have been thrown in the World Economy Forum is an index which aims to form a systematic basis for guiding strategy for inclusive growth which requires achieving both economic and social progress. In this research, it has been aimed to determine the relations among “Basic Human Needs” (BHN) (including four variables of ‘Nutrition and Basic Medical Care’, ‘Water and Sanitation’, ‘Shelter’ and ‘Personal Safety’) and “Opportunity” (OPT) (that is composed of ‘Personal Rights’, ‘Personal Freedom and Choice’, ‘Tolerance and Inclusion’, and ‘Access to Advanced Education’ components) dimensions of 2016 SPI for 138 countries which take place in the website of Social Progress Imperative by carrying out canonical correlation analysis (CCA) which is a data reduction technique that operates in a way to maximize the correlation between two variable sets. In the interpretation of results, the first pair of canonical variates pointing to the highest canonical correlation has been taken into account. The first canonical correlation coefficient has been found as 0.880 indicating to the high relationship between BHN and OPT variable sets. Wilk’s Lambda statistic has revealed that an overall effect of 0.809 is highly large for the full model in order to be counted as statistically significant (with a p-value of 0.000). According to the standardized canonical coefficients, the largest contribution to BHN set of variables has come from ‘shelter’ variable. The most effective variable in OPT set has been detected to be ‘access to advanced education’. Findings based on canonical loadings have also confirmed these results with respect to the contributions to the first canonical variates. When canonical cross loadings (structure coefficients) are examined, for the first pair of canonical variates, the largest contributions have been provided by ‘shelter’ and ‘access to advanced education’ variables. Since the signs for structure coefficients have been found to be negative for all variables; all OPT set of variables are positively related to all of the BHN set of variables. In case canonical communality coefficients which are the sum of the squares of structure coefficients across all interpretable functions are taken as the basis; amongst all variables, ‘personal rights’ and ‘tolerance and inclusion’ variables can be said not to be useful in the model with 0.318721 and 0.341722 coefficients respectively. On the other hand, while redundancy index for BHN set has been found to be 0.615; OPT set has a lower redundancy index with 0.475. High redundancy implies high ability for predictability. The proportion of the total variation in BHN set of variables that is explained by all of the opposite canonical variates has been calculated as 63% and finally, the proportion of the total variation in OPT set that is explained by all of the canonical variables in BHN set has been determined as 50.4% and a large part of this proportion belongs to the first pair. The results suggest that there is a high and statistically significant relationship between BHN and OPT. This relationship is generally accounted by ‘shelter’ and ‘access to advanced education’.

Keywords: canonical communality coefficient, canonical correlation analysis, redundancy index, social progress index

Procedia PDF Downloads 218
2682 Dynamic Modeling of Wind Farms in the Jeju Power System

Authors: Dae-Hee Son, Sang-Hee Kang, Soon-Ryul Nam

Abstract:

In this paper, we develop a dynamic modeling of wind farms in the Jeju power system. The dynamic model of wind farms is developed to study their dynamic effects on the Jeju power system. PSS/E is used to develop the dynamic model of a wind farm composed of 1.5-MW doubly fed induction generators. The output of a wind farm is regulated based on pitch angle control, in which the two controllable parameters are speed and power references. The simulation results confirm that the pitch angle is successfully controlled, regardless of the variation in wind speed and output regulation.

Keywords: dynamic model, Jeju power system, online limitation, pitch angle control, wind farm

Procedia PDF Downloads 327
2681 Bulk Viscous Bianchi Type V Cosmological Model with Time Dependent Gravitational Constant and Cosmological Constant in General Relativity

Authors: Reena Behal, D. P. Shukla

Abstract:

In this paper, we investigate Bulk Viscous Bianchi Type V Cosmological Model with Time dependent gravitational constant and cosmological constant in general Relativity by assuming ξ(t)=ξ_(0 ) p^m where ξ_(0 ) and m are constants. We also assume a variation law for Hubble parameter as H(R) = a (R^(-n)+1), where a>0, n>1 being constant. Two universe models were obtained, and their physical behavior has been discussed. When n=1 the Universe starts from singular state whereas when n=0 the cosmology follows a no singular state. The presence of bulk viscosity increase matter density’s value.

Keywords: Bulk Viscous Bianchi Type V Cosmological Model, hubble constants, gravitational constant, cosmological constants

Procedia PDF Downloads 175
2680 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting

Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey

Abstract:

Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.

Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method

Procedia PDF Downloads 78
2679 The Inhibitory Effect of Weissella koreensis 521 Isolated from Kimchi on 3T3-L1 Adipocyte Differentiation

Authors: Kyungbae Pi, Kibeom Lee, Yongil Kim, Eun-Jung Lee

Abstract:

Abnormal adipocyte growth, in terms of increased cell numbers and increased cell differentiation, is considered to be a major pathological feature of obesity. Thus, the inhibition of preadipocyte mitogenesis and differentiation could help prevent and suppress obesity. The aim of this study was to assess whether extracts from Weissella koreensis 521 cells isolated from kimchi could exert anti-adipogenic effects in 3T3-L1 cells (fat cells). Differentiating 3T3-L1 cells were treated with W. koreensis 521 cell extracts (W. koreensis 521_CE), and cell viability was assessed by MTT assays. At concentrations below 0.2 mg/ml, W. koreensis 521_CE did not exert any cytotoxic effect in 3T3-L1 cells. However, treatment with W. koreensis 521_CE significantly inhibited adipocyte differentiation, as assessed by morphological analysis and Oil Red O staining of fat. W. koreensis 521_CE treatment (0.2 mg/ml) also reduced lipid accumulation by 24% in fully differentiated 3T3-L1 adipocytes. These findings collectively indicate that Weissella koreensis 521 may help prevent obesity.

Keywords: Weissella koreensis 521, 3T3-L1 cells, adipocyte differentiation, obesity

Procedia PDF Downloads 252
2678 Biogas Production Improve From Waste Activated Sludge Using Fenton Oxidation

Authors: A. Hassiba Zemmouri, B. Nabil Mameri, C. Hakim Lounici

Abstract:

In this study, the effect of Fenton technology pretreatment on the anaerobic digestion of excess waste activated sludge (WAS) was investigated. The variation of physicochemical characteristics (TOC, DS, VSS, VS) and biogas volume (as form of value added products) were also evaluated. The preselected operator conditions of Fenton pretreatment were 0.01ml H2O2/g SS, 150 [H2O2]/[Fe2+], 25g/l TS, at 25 °C and 30, 60 and120 min as treatment duration. The main results show a Maximum solubilization and biodegradability (70%) obtained at 120 min of Fenton pretreatment duration. An increasing of TOC in soluble phase related obviously by releasing organic substances of sludge flocs was contested. Improving in biogas volume was also, increased. Fenton oxidation pretreatment may be a promising chemical pre-treatment for a benefic digestion, stabilization and volume reduction.

Keywords: waste activated sludge, fenton pre-treatment, biodegradability, biogas

Procedia PDF Downloads 640
2677 Dependence of Autoignition Delay Period on Equivalence Ratio for i-Octane, Primary Reference Fuel

Authors: Sunil Verma

Abstract:

In today’s world non-renewable sources are depleting quickly, so there is a need to produce efficient and unconventional engines to minimize the use of fuel. Also, there are many fatal accidents happening every year during extraction, distillation, transportation and storage of fuel. Reason for explosions of gaseous fuel is unwanted autoignition. Autoignition characterstics of fuel are mandatory to study to build efficient engines and to avoid accidents. This report is concerned with study of autoignition delay characteristics of iso-octane by using rapid compression machine. The paper clearly explains the dependence of ignition delay characteristics on variation of equivalence ratios from lean to rich mixtures. The equivalence ratio is varied from 0.3 to 1.2.

Keywords: autoignition, iso-octane, combustion, rapid compression machine, equivalence ratio, ignition delay

Procedia PDF Downloads 446
2676 A Mutually Exclusive Task Generation Method Based on Data Augmentation

Authors: Haojie Wang, Xun Li, Rui Yin

Abstract:

In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.

Keywords: mutex task generation, data augmentation, meta-learning, text classification.

Procedia PDF Downloads 143
2675 Modelling of Air-Cooled Adiabatic Membrane-Based Absorber for Absorption Chillers Using Low Temperature Solar Heat

Authors: M. Venegas, M. De Vega, N. García-Hernando

Abstract:

Absorption cooling chillers have received growing attention over the past few decades as they allow the use of low-grade heat to produce the cooling effect. The combination of this technology with solar thermal energy in the summer period can reduce the electricity consumption peak due to air-conditioning. One of the main components, the absorber, is designed for simultaneous heat and mass transfer. Usually, shell and tubes heat exchangers are used, which are large and heavy. Cooling water from a cooling tower is conventionally used to extract the heat released during the absorption and condensation processes. These are clear inconvenient for the generalization of the absorption technology use, limiting its benefits in the contribution to the reduction in CO2 emissions, particularly for the H2O-LiBr solution which can work with low heat temperature sources as provided by solar panels. In the present work a promising new technology is under study, consisting in the use of membrane contactors in adiabatic microchannel mass exchangers. The configuration here proposed consists in one or several modules (depending on the cooling capacity of the chiller) that contain two vapour channels, separated from the solution by adjacent microporous membranes. The solution is confined in rectangular microchannels. A plastic or synthetic wall separates the solution channels between them. The solution entering the absorber is previously subcooled using ambient air. In this way, the need for a cooling tower is avoided. A model of the configuration proposed is developed based on mass and energy balances and some correlations were selected to predict the heat and mass transfer coefficients. The concentration and temperatures along the channels cannot be explicitly determined from the set of equations obtained. For this reason, the equations were implemented in a computer code using Engineering Equation Solver software, EES™. With the aim of minimizing the absorber volume to reduce the size of absorption cooling chillers, the ratio between the cooling power of the chiller and the absorber volume (R) is calculated. Its variation is shown along the solution channels, allowing its optimization for selected operating conditions. For the case considered the solution channel length is recommended to be lower than 3 cm. Maximum values of R obtained in this work are higher than the ones found in optimized horizontal falling film absorbers using the same solution. Results obtained also show the variation of R and the chiller efficiency (COP) for different ambient temperatures and desorption temperatures typically obtained using flat plate solar collectors. The configuration proposed of adiabatic membrane-based absorber using ambient air to subcool the solution is a good technology to reduce the size of the absorption chillers, allowing the use of low temperature solar heat and avoiding the need for cooling towers.

Keywords: adiabatic absorption, air-cooled, membrane, solar thermal energy

Procedia PDF Downloads 285
2674 Performance Evaluation of Contemporary Classifiers for Automatic Detection of Epileptic EEG

Authors: K. E. Ch. Vidyasagar, M. Moghavvemi, T. S. S. T. Prabhat

Abstract:

Epilepsy is a global problem, and with seizures eluding even the smartest of diagnoses a requirement for automatic detection of the same using electroencephalogram (EEG) would have a huge impact in diagnosis of the disorder. Among a multitude of methods for automatic epilepsy detection, one should find the best method out, based on accuracy, for classification. This paper reasons out, and rationalizes, the best methods for classification. Accuracy is based on the classifier, and thus this paper discusses classifiers like quadratic discriminant analysis (QDA), classification and regression tree (CART), support vector machine (SVM), naive Bayes classifier (NBC), linear discriminant analysis (LDA), K-nearest neighbor (KNN) and artificial neural networks (ANN). Results show that ANN is the most accurate of all the above stated classifiers with 97.7% accuracy, 97.25% specificity and 98.28% sensitivity in its merit. This is followed closely by SVM with 1% variation in result. These results would certainly help researchers choose the best classifier for detection of epilepsy.

Keywords: classification, seizure, KNN, SVM, LDA, ANN, epilepsy

Procedia PDF Downloads 520
2673 1 kW Power Factor Correction Soft Switching Boost Converter with an Active Snubber Cell

Authors: Yakup Sahin, Naim Suleyman Ting, Ismail Aksoy

Abstract:

A 1 kW power factor correction boost converter with an active snubber cell is presented in this paper. In the converter, the main switch turns on under zero voltage transition (ZVT) and turns off under zero current transition (ZCT) without any additional voltage or current stress. The auxiliary switch turns on and off under zero current switching (ZCS). Besides, the main diode turns on under ZVS and turns off under ZCS. The output current and voltage are controlled by the PFC converter in wide line and load range. The simulation results of converter are obtained for 1 kW and 100 kHz. One of the most important feature of the given converter is that it has direct power transfer as well as excellent soft switching techniques. Also, the converter has 0.99 power factor with the sinusoidal input current shape.

Keywords: power factor correction, direct power transfer, zero-voltage transition, zero-current transition, soft switching

Procedia PDF Downloads 962
2672 TMIF: Transformer-Based Multi-Modal Interactive Fusion for Rumor Detection

Authors: Jiandong Lv, Xingang Wang, Cuiling Shao

Abstract:

The rapid development of social media platforms has made it one of the important news sources. While it provides people with convenient real-time communication channels, fake news and rumors are also spread rapidly through social media platforms, misleading the public and even causing bad social impact in view of the slow speed and poor consistency of artificial rumor detection. We propose an end-to-end rumor detection model-TIMF, which captures the dependencies between multimodal data based on the interactive attention mechanism, uses a transformer for cross-modal feature sequence mapping and combines hybrid fusion strategies to obtain decision results. This paper verifies two multi-modal rumor detection datasets and proves the superior performance and early detection performance of the proposed model.

Keywords: hybrid fusion, multimodal fusion, rumor detection, social media, transformer

Procedia PDF Downloads 246
2671 Investigation of Surface Water Quality Intera-Annual Variations, Gorganroud Basin, Iran

Authors: K. Ebrahimi, S. Shahid, H. Dehban

Abstract:

Climate variability can affect surface water quality. The objective of present study is to assess the impacts of climate variability on water quality of Gorganroud River, Iran, over the time period 1971 to 2011. To achieve this aim, climate variability and water quality variations were studied involving a newly developed drought index (MRDI) and hysteresis curves, respectively. The results show that climate variability significantly affected surface water quality over the time. The existence of yearly internal variation and hysteresis phenomenon for pH and EC parameters was observed. It was found that though drought affected pH considerably, it could not affect EC significantly.

Keywords: climate variability, hysteresis curves, multi drought index, water quality

Procedia PDF Downloads 369
2670 Difference Expansion Based Reversible Data Hiding Scheme Using Edge Directions

Authors: Toshanlal Meenpal, Ankita Meenpal

Abstract:

A very important technique in reversible data hiding field is Difference expansion. Secret message as well as the cover image may be completely recovered without any distortion after data extraction process due to reversibility feature. In general, in any difference expansion scheme embedding is performed by integer transform in the difference image acquired by grouping two neighboring pixel values. This paper proposes an improved reversible difference expansion embedding scheme. We mainly consider edge direction for embedding by modifying the difference of two neighboring pixels values. In general, the larger difference tends to bring a degraded stego image quality than the smaller difference. Image quality in the range of 0.5 to 3.7 dB in average is achieved by the proposed scheme, which is shown through the experimental results. However payload wise it achieves almost similar capacity in comparisons with previous method.

Keywords: information hiding, wedge direction, difference expansion, integer transform

Procedia PDF Downloads 484
2669 Determining Disparities in the Distribution of the Energy Efficiency Resource through the History of Michigan Policy

Authors: M. Benjamin Stacey

Abstract:

Energy efficiency has been increasingly recognized as a high value resource through state policies that require utility companies to implement efficiency programs. While policymakers have recognized the statewide economic, environmental, and health related value to residents who rely on this grid supplied resource, varying interests in energy efficiency between socioeconomic groups stands undifferentiated in most state legislation. Instead, the benefits are oftentimes assumed to be distributed equitably across these groups. Despite this fact, these policies are frequently sited by advocacy groups, regulatory bodies and utility companies for their ability to address the negative financial, health and other social impacts of energy poverty in low income communities. Yet, while most states like Michigan require programs that target low income consumers, oftentimes no requirements exist for the equitable investment and energy savings for low income consumers, nor does it stipulate minimal spending levels on low income programs. To further understand the impact of the absence of these factors in legislation, this study examines the distribution of program funds and energy efficiency savings to answer a fundamental energy justice concern; Are there disparities in the investment and benefits of energy efficiency programs between socioeconomic groups? This study compiles data covering the history of Michigan’s Energy Efficiency policy implementation from 2010-2016, analyzing the energy efficiency portfolios of Michigan’s two main energy providers. To make accurate comparisons between these two energy providers' investments and energy savings in low and non-low income programs, the socioeconomic variation for each utility coverage area was captured and accounted for using GIS and US Census data. Interestingly, this study found that both providers invested more equitably in natural gas efficiency programs, however, together these providers invested roughly three times less per household in low income electricity efficiency programs, which resulted in ten times less electricity savings per household. This study also compares variation in commission approved utility plans and actual spending and savings results, with varying patterns pointing to differing portfolio management strategies between companies. This study reveals that for the history of the implementation of Michigan’s Energy Efficiency Policy, that the 35% of Michigan’s population who qualify as low income have received substantially disproportionate funding and energy savings because of the policy. This study provides an overview of results from a social perspective, raises concerns about the impact on energy poverty and equity between consumer groups and is an applicable tool for law makers, regulatory agencies, utility portfolio managers, and advocacy groups concerned with addressing issues related to energy poverty.

Keywords: energy efficiency, energy justice, low income, state policy

Procedia PDF Downloads 187
2668 Deep Convolutional Neural Network for Detection of Microaneurysms in Retinal Fundus Images at Early Stage

Authors: Goutam Kumar Ghorai, Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, G. Sarkar, Ashis K. Dhara

Abstract:

Diabetes mellitus is one of the most common chronic diseases in all countries and continues to increase in numbers significantly. Diabetic retinopathy (DR) is damage to the retina that occurs with long-term diabetes. DR is a major cause of blindness in the Indian population. Therefore, its early diagnosis is of utmost importance towards preventing progression towards imminent irreversible loss of vision, particularly in the huge population across rural India. The barriers to eye examination of all diabetic patients are socioeconomic factors, lack of referrals, poor access to the healthcare system, lack of knowledge, insufficient number of ophthalmologists, and lack of networking between physicians, diabetologists and ophthalmologists. A few diabetic patients often visit a healthcare facility for their general checkup, but their eye condition remains largely undetected until the patient is symptomatic. This work aims to focus on the design and development of a fully automated intelligent decision system for screening retinal fundus images towards detection of the pathophysiology caused by microaneurysm in the early stage of the diseases. Automated detection of microaneurysm is a challenging problem due to the variation in color and the variation introduced by the field of view, inhomogeneous illumination, and pathological abnormalities. We have developed aconvolutional neural network for efficient detection of microaneurysm. A loss function is also developed to handle severe class imbalance due to very small size of microaneurysms compared to background. The network is able to locate the salient region containing microaneurysms in case of noisy images captured by non-mydriatic cameras. The ground truth of microaneurysms is created by expert ophthalmologists for MESSIDOR database as well as private database, collected from Indian patients. The network is trained from scratch using the fundus images of MESSIDOR database. The proposed method is evaluated on DIARETDB1 and the private database. The method is successful in detection of microaneurysms for dilated and non-dilated types of fundus images acquired from different medical centres. The proposed algorithm could be used for development of AI based affordable and accessible system, to provide service at grass root-level primary healthcare units spread across the country to cater to the need of the rural people unaware of the severe impact of DR.

Keywords: retinal fundus image, deep convolutional neural network, early detection of microaneurysms, screening of diabetic retinopathy

Procedia PDF Downloads 142
2667 Genetics of Pharmacokinetic Drug-Drug Interactions of Most Commonly Used Drug Combinations in the UK: Uncovering Unrecognised Associations

Authors: Mustafa Malki, Ewan R. Pearson

Abstract:

Tools utilized by health care practitioners to flag potential adverse drug reactions secondary to drug-drug interactions ignore individual genetic variation, which has the potential to markedly alter the severity of these interactions. To our best knowledge, there have been limited published studies on the impact of genetic variation on drug-drug interactions. Therefore, our aim in this project is the discovery of previously unrecognized, clinically important drug-drug-gene interactions (DDGIs) within the list of most commonly used drug combinations in the UK. The UKBB database was utilized to identify the top most frequently prescribed drug combinations in the UK with at least one route of interaction (over than 200 combinations were identified). We have recognised 37 common and unique interacting genes considering all of our drug combinations. Out of around 600 potential genetic variants found in these 37 genes, 100 variants have met the selection criteria (common variant with minor allele frequency ≥ 5%, independence, and has passed HWE test). The association between these variants and the use of each of our top drug combinations has been tested with a case-control analysis under the log-additive model. As the data is cross-sectional, drug intolerance has been identified from the genotype distribution as presented by the lower percentage of patients carrying the risky allele and on the drug combination compared to those free of these risk factors and vice versa with drug tolerance. In GoDARTs database, the same list of common drug combinations identified by the UKBB was utilized here with the same list of candidate genetic variants but with the addition of 14 new SNPs so that we have a total of 114 variants which have met the selection criteria in GoDARTs. From the list of the top 200 drug combinations, we have selected 28 combinations where the two drugs in each combination are known to be used chronically. For each of our 28 combinations, three drug response phenotypes have been identified (drug stop/switch, dose decrease, or dose increase of any of the two drugs during their interaction). The association between each of the three phenotypes belonging to each of our 28 drug combinations has been tested against our 114 candidate genetic variants. The results show replication of four findings between both databases : (1) Omeprazole +Amitriptyline +rs2246709 (A > G) variant in CYP3A4 gene (p-values and ORs with the UKBB and GoDARTs respectively = 0.048,0.037,0.92,and 0.52 (dose increase phenotype)) (2) Simvastatin + Ranitidine + rs9332197 (T > C) variant in CYP2C9 gene (0.024,0.032,0.81, and 5.75 (drug stop/switch phenotype)) (3) Atorvastatin + Doxazosin + rs9282564 (T > C) variant in ABCB1 gene (0.0015,0.0095,1.58,and 3.14 (drug stop/switch phenotype)) (4) Simvastatin + Nifedipine + rs2257401 (C > G) variant in CYP3A7 gene (0.025,0.019,0.77,and 0.30 (drug stop/switch phenotype)). In addition, some other non-replicated, but interesting, significant findings were detected. Our work also provides a great source of information for researchers interested in DD, DG, or DDG interactions studies as it has highlighted the top common drug combinations in the UK with recognizing 114 significant genetic variants related to drugs' pharmacokinetic.

Keywords: adverse drug reactions, common drug combinations, drug-drug-gene interactions, pharmacogenomics

Procedia PDF Downloads 163
2666 Magnetic Study on Ybₐ₂Cu₃O₇₋δ Nanoparticles Doped by Ferromagnetic Nanoparticles of Y₃Fe₅O₁₂

Authors: Samir Khene

Abstract:

Present and future industrial uses of high critical temperature superconductors require high critical temperatures TC and strong current densities JC. These two aims constitute the two motivations of scientific research in this domain. The most significant feature of any superconductor, from the viewpoint of uses, is the maximum electrical transport current density that this superconductor is capable of withstanding without loss of energy. In this work, vortices pinning in conventional and high-TC superconductors will be studied. Our experiments on vortices pinning in single crystals and nanoparticles of YBₐ₂Cu₃O₇₋δ and La₁.₈₅ Sr₀.₁₅CuO will be presented. It will be given special attention to the study of the YBₐ₂Cu₃O₇₋δ nanoparticles doped by ferromagnetic nanoparticles of Y₃Fe₅O₁₂. The ferromagnetism and superconductivity coexistence in this compound will be demonstrated, and the influence of these ferromagnetic nanoparticles on the variations of the critical current density JC in YBₐ₂Cu₃O7₇₋δ nanoparticles as a function of applied field H and temperature T will be studied.

Keywords: superconductors, high critical temperature, vortices pinning, nanoparticles, ferromagnetism, coexistence

Procedia PDF Downloads 69
2665 Protection and Safeguarding of Groundwater in Algeria between Law and Right to Use

Authors: Aziez Ouahiba, Remini Boualem, Habi Mohamed

Abstract:

The growth and the development of a pay are strongly related to the existence or the absence of water in this area, the sedentary lifestyle of the population makes that water demand is increasing and the different brandishing (dams, tablecloths or other) are increasingly solicited. In normal time rain and snow of the winter period reloads the slicks and the wadis that fill dams. Over these two decades, Global warming fact that temperature is increasingly high and rainfall is increasingly low, which induces a charge less and less important tablecloths, add to that the strong demand in irrigation. Our study will focus on the variation of rainfall and irrigation, Their effects on the degree of pollution of the groundwater in this area based on statistical analyses by the Xlstat (ACP, correlation...) software for a better explanation of these results and determine the hydrochemistry of different groups or polluted areas pou be able to offer adequate solutions for each area.

Keywords: water in the basement, legislation, over exploitation, pollution, water prices

Procedia PDF Downloads 382
2664 A Calibration Method for Temperature Distribution Measurement of Thermochromic Liquid Crystal Based on Mathematical Morphology of Hue Image

Authors: Risti Suryantari, Flaviana

Abstract:

The aim of this research is to design calibration method of Thermochromic Liquid Crystal for temperature distribution measurement based on mathematical morphology of hue image A glass of water is placed on the surface of sample TLC R25C5W at certain temperature. We use scanner for image acquisition. The true images in RGB format is converted to HSV (hue, saturation, value) by taking of hue without saturation and value. Then the hue images is processed based on mathematical morphology using Matlab2013a software to get better images. There are differences on the final images after processing at each temperature variation based on visualization observation and the statistic value. The value of maximum and mean increase with rising temperature. It could be parameter to identify the temperature of the human body surface like hand or foot surface.

Keywords: thermochromic liquid crystal, TLC, mathematical morphology, hue image

Procedia PDF Downloads 472