Search results for: agent based model
25833 Implementing the WHO Air Quality Guideline for PM2.5 Worldwide can Prevent Millions of Premature Deaths Per Year
Authors: Despina Giannadaki, Jos Lelieveld, Andrea Pozzer, John Evans
Abstract:
Outdoor air pollution by fine particles ranks among the top ten global health risk factors that can lead to premature mortality. Epidemiological cohort studies, mainly conducted in United States and Europe, have shown that the long-term exposure to PM2.5 (particles with an aerodynamic diameter less than 2.5μm) is associated with increased mortality from cardiovascular, respiratory diseases and lung cancer. Fine particulates can cause health impacts even at very low concentrations. Previously, no concentration level has been defined below which health damage can be fully prevented. The World Health Organization ambient air quality guidelines suggest an annual mean PM2.5 concentration limit of 10μg/m3. Populations in large parts of the world, especially in East and Southeast Asia, and in the Middle East, are exposed to high levels of fine particulate pollution that by far exceeds the World Health Organization guidelines. The aim of this work is to evaluate the implementation of recent air quality standards for PM2.5 in the EU, the US and other countries worldwide and estimate what measures will be needed to substantially reduce premature mortality. We investigated premature mortality attributed to fine particulate matter (PM2.5) under adults ≥ 30yrs and children < 5yrs, applying a high-resolution global atmospheric chemistry model combined with epidemiological concentration-response functions. The latter are based on the methodology of the Global Burden of Disease for 2010, assuming a ‘safe’ annual mean PM2.5 threshold of 7.3μg/m3. We estimate the global premature mortality by PM2.5 at 3.15 million/year in 2010. China is the leading country with about 1.33 million, followed by India with 575 thousand and Pakistan with 105 thousand. For the European Union (EU) we estimate 173 thousand and the United States (US) 52 thousand in 2010. Based on sensitivity calculations we tested the gains from PM2.5 control by applying the air quality guidelines (AQG) and standards of the World Health Organization (WHO), the EU, the US and other countries. To estimate potential reductions in mortality rates we take into consideration the deaths that cannot be avoided after the implementation of PM2.5 upper limits, due to the contribution of natural sources to total PM2.5 and therefore to mortality (mainly airborne desert dust). The annual mean EU limit of 25μg/m3 would reduce global premature mortality by 18%, while within the EU the effect is negligible, indicating that the standard is largely met and that stricter limits are needed. The new US standard of 12μg/m3 would reduce premature mortality by 46% worldwide, 4% in the US and 20% in the EU. Implementing the AQG by the WHO of 10μg/m3 would reduce global premature mortality by 54%, 76% in China and 59% in India. In the EU and US, the mortality would be reduced by 36% and 14%, respectively. Hence, following the WHO guideline will prevent 1.7 million premature deaths per year. Sensitivity calculations indicate that even small changes at the lower PM2.5 standards can have major impacts on global mortality rates.Keywords: air quality guidelines, outdoor air pollution, particulate matter, premature mortality
Procedia PDF Downloads 31125832 Video Sharing System Based On Wi-fi Camera
Authors: Qidi Lin, Jinbin Huang, Weile Liang
Abstract:
This paper introduces a video sharing platform based on WiFi, which consists of camera, mobile phone and PC server. This platform can receive wireless signal from the camera and show the live video on the mobile phone captured by camera. In addition that, it is able to send commands to camera and control the camera’s holder to rotate. The platform can be applied to interactive teaching and dangerous area’s monitoring and so on. Testing results show that the platform can share the live video of mobile phone. Furthermore, if the system’s PC sever and the camera and many mobile phones are connected together, it can transfer photos concurrently.Keywords: Wifi Camera, socket mobile, platform video monitoring, remote control
Procedia PDF Downloads 34025831 A Use Case-Oriented Performance Measurement Framework for AI and Big Data Solutions in the Banking Sector
Authors: Yassine Bouzouita, Oumaima Belghith, Cyrine Zitoun, Charles Bonneau
Abstract:
Performance measurement framework (PMF) is an essential tool in any organization to assess the performance of its processes. It guides businesses to stay on track with their objectives and benchmark themselves from the market. With the growing trend of the digital transformation of business processes, led by innovations in artificial intelligence (AI) & Big Data applications, developing a mature system capable of capturing the impact of digital solutions across different industries became a necessity. Based on the conducted research, no such system has been developed in academia nor the industry. In this context, this paper covers a variety of methodologies on performance measurement, overviews the major AI and big data applications in the banking sector, and covers an exhaustive list of relevant metrics. Consequently, this paper is of interest to both researchers and practitioners. From an academic perspective, it offers a comparative analysis of the reviewed performance measurement frameworks. From an industry perspective, it offers exhaustive research, from market leaders, of the major applications of AI and Big Data technologies, across the different departments of an organization. Moreover, it suggests a standardized classification model with a well-defined structure of intelligent digital solutions. The aforementioned classification is mapped to a centralized library that contains an indexed collection of potential metrics for each application. This library is arranged in a manner that facilitates the rapid search and retrieval of relevant metrics. This proposed framework is meant to guide professionals in identifying the most appropriate AI and big data applications that should be adopted. Furthermore, it will help them meet their business objectives through understanding the potential impact of such solutions on the entire organization.Keywords: AI and Big Data applications, impact assessment, metrics, performance measurement
Procedia PDF Downloads 20525830 A Cloud Computing System Using Virtual Hyperbolic Coordinates for Services Distribution
Authors: Telesphore Tiendrebeogo, Oumarou Sié
Abstract:
Cloud computing technologies have attracted considerable interest in recent years. Thus, these latters have become more important for many existing database applications. It provides a new mode of use and of offer of IT resources in general. Such resources can be used “on demand” by anybody who has access to the internet. Particularly, the Cloud platform provides an ease to use interface between providers and users, allow providers to develop and provide software and databases for users over locations. Currently, there are many Cloud platform providers support large scale database services. However, most of these only support simple keyword-based queries and can’t response complex query efficiently due to lack of efficient in multi-attribute index techniques. Existing Cloud platform providers seek to improve performance of indexing techniques for complex queries. In this paper, we define a new cloud computing architecture based on a Distributed Hash Table (DHT) and design a prototype system. Next, we perform and evaluate our cloud computing indexing structure based on a hyperbolic tree using virtual coordinates taken in the hyperbolic plane. We show through our experimental results that we compare with others clouds systems to show our solution ensures consistence and scalability for Cloud platform.Keywords: virtual coordinates, cloud, hyperbolic plane, storage, scalability, consistency
Procedia PDF Downloads 42925829 Chemopreventive Efficacy of Andrographolide in Rat Colon Carcinogenesis Model Using Aberrant Crypt Foci (ACF) as Endpoint Marker
Authors: Maryam Hajrezaie, Mahmood Ameen Abdulla, Nazia Abdul Majid, Hapipa Mohd Ali, Pouya Hassandarvish, Maryam Zahedi Fard
Abstract:
Background: Colon cancer is one of the most prevalent cancers in the world and is the third leading cause of death among cancers in both males and females. The incidence of colon cancer is ranked fourth among all cancers but varies in different parts of the world. Cancer chemoprevention is defined as the use of natural or synthetic compounds capable of inducing biological mechanisms necessary to preserve genomic fidelity. Andrographolide is the major labdane diterpenoidal constituent of the plant Andrographis paniculata (family Acanthaceae), used extensively in the traditional medicine. Extracts of the plant and their constituents are reported to exhibit a wide spectrum of biological activities of therapeutic importance. Laboratory animal model studies have provided evidence that Andrographolide play a role in inhibiting the risk of certain cancers. Objective: Our aim was to evaluate the chemopreventive efficacy of the Andrographolide in the AOM induced rat model. Methods: To evaluate inhibitory properties of andrographolide on colonic aberrant crypt foci (ACF), five groups of 7-week-old male rats were used. Group 1 (control group) were fed with 10% Tween 20 once a day, Group 2 (cancer control) rats were intra-peritoneally injected with 15 mg/kg Azoxymethan, Gropu 3 (drug control) rats were injected with 15 mg/kg azoxymethan and 5-Flourouracil, Group 4 and 5 (experimental groups) were fed with 10 and 20 mg/kg andrographolide each once a day. After 1 week, the treatment group rats received subcutaneous injections of azoxymethane, 15 mg/kg body weight, once weekly for 2 weeks. Control rats were continued on Tween 20 feeding once a day and experimental groups 10 and 20 mg/kg andrographolide feeding once a day for 8 weeks. All rats were sacrificed 8 weeks after the azoxymethane treatment. Colons were evaluated grossly and histopathologically for ACF. Results: Administration of 10 mg/kg and 20 mg/kg andrographolide were found to be effectively chemoprotective, as evidenced microscopily and biochemically. Andrographolide suppressed total colonic ACF formation up to 40% to 60%, respectively, when compared with control group. Pre-treatment with andrographolide, significantly reduced the impact of AOM toxicity on plasma protein and urea levels as well as on plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH) and gamma-glutamyl transpeptidase (GGT) activities. Grossly, colorectal specimens revealed that andrographolide treatments decreased the mean score of number of crypts in AOM-treated rats. Importantly, rats fed andrographolide showed 75% inhibition of foci containing four or more aberrant crypts. The results also showed a significant increase in glutathione (GSH), superoxide dismutase (SOD), nitric oxide (NO), and Prostaglandin E2 (PGE2) activities and a decrease in malondialdehyde (MDA) level. Histologically all treatment groups showed a significant decrease of dysplasia as compared to control group. Immunohistochemical staining showed up-regulation of Hsp70 and down-regulation of Bax proteins. Conclusion: The current study demonstrated that Andrographolide reduce the number of ACF. According to these data, Andrographolide might be a promising chemoprotective activity, in a model of AOM-induced in ACF.Keywords: chemopreventive, andrographolide, colon cancer, aberrant crypt foci (ACF)
Procedia PDF Downloads 43325828 Cybersecurity Assessment of Decentralized Autonomous Organizations in Smart Cities
Authors: Claire Biasco, Thaier Hayajneh
Abstract:
A smart city is the integration of digital technologies in urban environments to enhance the quality of life. Smart cities capture real-time information from devices, sensors, and network data to analyze and improve city functions such as traffic analysis, public safety, and environmental impacts. Current smart cities face controversy due to their reliance on real-time data tracking and surveillance. Internet of Things (IoT) devices and blockchain technology are converging to reshape smart city infrastructure away from its centralized model. Connecting IoT data to blockchain applications would create a peer-to-peer, decentralized model. Furthermore, blockchain technology powers the ability for IoT device data to shift from the ownership and control of centralized entities to individuals or communities with Decentralized Autonomous Organizations (DAOs). In the context of smart cities, DAOs can govern cyber-physical systems to have a greater influence over how urban services are being provided. This paper will explore how the core components of a smart city now apply to DAOs. We will also analyze different definitions of DAOs to determine their most important aspects in relation to smart cities. Both categorizations will provide a solid foundation to conduct a cybersecurity assessment of DAOs in smart cities. It will identify the benefits and risks of adopting DAOs as they currently operate. The paper will then provide several mitigation methods to combat cybersecurity risks of DAO integrations. Finally, we will give several insights into what challenges will be faced by DAO and blockchain spaces in the coming years before achieving a higher level of maturity.Keywords: blockchain, IoT, smart city, DAO
Procedia PDF Downloads 12825827 Development and Characterization of Castor Oil-Based Biopolyurethanes for High-Performance Coatings and Waterproofing Applications
Authors: Julie Anne Braun, Leonardo D. da Fonseca, Gerson C. Parreira, Ricardo J. E. Andrade
Abstract:
Polyurethanes (PU) are multifunctional polymers used across various industries. In construction, thermosetting polyurethanes are applied as coatings for flooring, paints, and waterproofing. They are widely specified in Brazil for waterproofing concrete structures like roof slabs and parking decks. Applied to concrete, they form a fully adhered membrane, providing a protective barrier with low water absorption, high chemical resistance, impermeability to liquids, and low vapor permeability. Their mechanical properties, including tensile strength (1 to 35 MPa) and Shore A hardness (83 to 88), depend on resin molecular weight and functionality, often using Methylene diphenyl diisocyanate. PU production, reliant on fossil-derived isocyanates and polyols, contributes significantly to carbon emissions. Sustainable alternatives, such as biopolyurethanes from renewable sources, are needed. Castor oil is a viable option for synthesizing sustainable polyurethanes. As a bio-based feedstock, castor oil is extensively cultivated in Brazil, making it a feasible option for the national market and ranking third internationally. This study aims to develop and characterize castor oil-based biopolyurethane for high-performance waterproofing and coating applications. A comparative analysis between castor oil-based PU and polyether polyol-based PU was conducted. Mechanical tests (tensile strength, Shore A hardness, abrasion resistance) and surface properties (contact angle, water absorption) were evaluated. Thermal, chemical, and morphological properties were assessed using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The results demonstrated that both polyurethanes exhibited high mechanical strength. Specifically, the tensile strength for castor oil-based PU was 19.18 MPa, compared to 12.94 MPa for polyether polyol-based PU. Similarly, the elongation values were 146.90% for castor oil-based PU and 135.50% for polyether polyol-based PU. Both materials exhibited satisfactory performance in terms of abrasion resistance, with mass loss of 0.067% for castor oil PU and 0.043% for polyether polyol PU and Shore A hardness values of 89 and 86, respectively, indicating high surface hardness. The results of the water absorption and contact angle tests confirmed the hydrophilic nature of polyether polyol PU, with a contact angle of 58.73° and water absorption of 2.53%. Conversely, the castor oil-based PU exhibited hydrophobic properties, with a contact angle of 81.05° and water absorption of 0.45%. The results of the FTIR analysis indicated the absence of a peak around 2275 cm-1, which suggests that all of the NCO groups were consumed in the stoichiometric reaction. This conclusion is supported by the high mechanical test results. The TGA results indicated that polyether polyol PU demonstrated superior thermal stability, exhibiting a mass loss of 13% at the initial transition (around 310°C), in comparison to castor oil-based PU, which experienced a higher initial mass loss of 25% at 335°C. In summary, castor oil-based PU demonstrated mechanical properties comparable to polyether polyol PU, making it suitable for applications such as trafficable coatings. However, its higher hydrophobicity makes it more promising for watertightness. Increasing environmental concerns necessitate reducing reliance on non-renewable resources and mitigating the environmental impacts of polyurethane production. Castor oil is a viable option for sustainable polyurethanes, aligning with emission reduction goals and responsible use of natural resources.Keywords: polyurethane, castor oil, sustainable, waterproofing, construction industry
Procedia PDF Downloads 4925826 Use Process Ring-Opening Polymerization to Melt Processing of Cellulose Nanowhisker from Coconut Husk Fibers-Filled Polylactide-Based Nanocomposites
Authors: Imam Wierawansyah Eltara, Iftitah, Agus Ismail
Abstract:
In the present work, cellulose nanowhiskers (CNW) extracted from coconut husk fibers, were incorporated in polylactide (PLA)-based composites. Prior to the blending, PLA chains were chemically grafted on the surface of CNW to enhance the compatibilization between CNW and the hydrophobic polyester matrix. Ring-opening polymerization of L-lactide was initiated from the hydroxyl groups available at the CNW surface to yield CNW-g-PLA nanohybrids. PLA-based nanocomposites were prepared by melt blending to ensure a green concept of the study thereby limiting the use of organic solvents. The influence of PLA-grafted cellulose nanoparticles on the mechanical and thermal properties of the ensuing nanocomposites was deeply investigated. The thermal behavior and mechanical properties of the nanocomposites were determined using differential scanning calorimetry (DSC) and dynamical mechanical and thermal analysis (DMTA), respectively. In theory, evidenced that the chemical grafting of CNW enhances their compatibility with the polymeric matrix and thus improves the final properties of the nanocomposites. Large modification of the crystalline properties such as the crystallization half-time was evidenced according to the nature of the PLA matrix and the content of nanofillers.Keywords: cellulose nanowhiskers, nanocomposites, coconut husk fiber, ring opening polymerization
Procedia PDF Downloads 32125825 Modeling and Simulation of Secondary Breakup and Its Influence on Fuel Spray in High Torque Low Speed Diesel Engine
Authors: Mohsin Raza, Rizwan Latif, Syed Adnan Qasim, Imran Shafi
Abstract:
High torque low-speed diesel engine has a wide range of industrial and commercial applications. In literature, it’s found that lot of work has been done for the high-speed diesel engine and research on High Torque low-speed is rare. The fuel injection plays a key role in the efficiency of engine and reduction in exhaust emission. The fuel breakup plays a critical role in air-fuel mixture and spray combustion. The current study explains numerically an important phenomenon in spray combustion which is deformation and breakup of liquid drops in compression ignition internal combustion engine. The secondary breakup and its influence on spray and characteristics of compressed gas in-cylinder have been calculated by using simulation software in the backdrop of high torque low-speed diesel like conditions. The secondary spray breakup is modeled with KH - RT instabilities. The continuous field is described by turbulence model and dynamics of the dispersed droplet is modeled by Lagrangian tracking scheme. The results by using KH - RT model are compared against other default methods in OpenFOAM and published experimental data from research and implemented in CFD (Computational Fluid Dynamics). These numerical simulation, done in OpenFoam and Matlab, results are analyzed for the complete 720- degree 4 stroke engine cycle at a low engine speed, for favorable agreement to be achieved. Results thus obtained will be analyzed for better evaporation in near nozzle region. The proposed analyses will further help in better engine efficiency, low emission and improved fuel economy.Keywords: diesel fuel, KH-RT, Lagrangian , Open FOAM, secondary breakup
Procedia PDF Downloads 26725824 Trajectory Optimization of Re-Entry Vehicle Using Evolutionary Algorithm
Authors: Muhammad Umar Kiani, Muhammad Shahbaz
Abstract:
Performance of any vehicle can be predicted by its design/modeling and optimization. Design optimization leads to efficient performance. Followed by horizontal launch, the air launch re-entry vehicle undergoes a launch maneuver by introducing a carefully selected angle of attack profile. This angle of attack profile is the basic element to complete a specified mission. Flight program of said vehicle is optimized under the constraints of the maximum allowed angle of attack, lateral and axial loads and with the objective of reaching maximum altitude. The main focus of this study is the endo-atmospheric phase of the ascent trajectory. A three degrees of freedom trajectory model is simulated in MATLAB. The optimization process uses evolutionary algorithm, because of its robustness and efficient capacity to explore the design space in search of the global optimum. Evolutionary Algorithm based trajectory optimization also offers the added benefit of being a generalized method that may work with continuous, discontinuous, linear, and non-linear performance matrix. It also eliminates the requirement of a starting solution. Optimization is particularly beneficial to achieve maximum advantage without increasing the computational cost and affecting the output of the system. For the case of launch vehicles we are immensely anxious to achieve maximum performance and efficiency under different constraints. In a launch vehicle, flight program means the prescribed variation of vehicle pitching angle during the flight which has substantial influence reachable altitude and accuracy of orbit insertion and aerodynamic loading. Results reveal that the angle of attack profile significantly affects the performance of the vehicle.Keywords: endo-atmospheric, evolutionary algorithm, efficient performance, optimization process
Procedia PDF Downloads 41225823 An Image Enhancement Method Based on Curvelet Transform for CBCT-Images
Authors: Shahriar Farzam, Maryam Rastgarpour
Abstract:
Image denoising plays extremely important role in digital image processing. Enhancement of clinical image research based on Curvelet has been developed rapidly in recent years. In this paper, we present a method for image contrast enhancement for cone beam CT (CBCT) images based on fast discrete curvelet transforms (FDCT) that work through Unequally Spaced Fast Fourier Transform (USFFT). These transforms return a table of Curvelet transform coefficients indexed by a scale parameter, an orientation and a spatial location. Accordingly, the coefficients obtained from FDCT-USFFT can be modified in order to enhance contrast in an image. Our proposed method first uses a two-dimensional mathematical transform, namely the FDCT through unequal-space fast Fourier transform on input image and then applies thresholding on coefficients of Curvelet to enhance the CBCT images. Consequently, applying unequal-space fast Fourier Transform leads to an accurate reconstruction of the image with high resolution. The experimental results indicate the performance of the proposed method is superior to the existing ones in terms of Peak Signal to Noise Ratio (PSNR) and Effective Measure of Enhancement (EME).Keywords: curvelet transform, CBCT, image enhancement, image denoising
Procedia PDF Downloads 30325822 Development of Mobile Application for Internship Program Management Using the Concept of Model View Controller (MVC) Pattern
Authors: Shutchapol Chopvitayakun
Abstract:
Nowadays, especially for the last 5 years, mobile devices, mobile applications and mobile users, through the deployment of wireless communication and mobile phone cellular network, all these components are growing significantly bigger and stronger. They are being integrated into each other to create multiple purposes and pervasive deployments into every business and non-business sector such as education, medicine, traveling, finance, real estate and many more. Objective of this study was to develop a mobile application for seniors or last-year students who enroll the internship program at each tertiary school (undergraduate school) and do onsite practice at real field sties, real organizations and real workspaces. During the internship session, all students as the interns are required to exercise, drilling and training onsite with specific locations and specific tasks or may be some assignments from their supervisor. Their work spaces are both private and government corporates and enterprises. This mobile application is developed under schema of a transactional processing system that enables users to keep daily work or practice log, monitor true working locations and ability to follow daily tasks of each trainee. Moreover, it provides useful guidance from each intern’s advisor, in case of emergency. Finally, it can summarize all transactional data then calculate each internship cumulated hours from the field practice session for each individual intern.Keywords: internship, mobile application, Android OS, smart phone devices, mobile transactional processing system, guidance and monitoring, tertiary education, senior students, model view controller (MVC)
Procedia PDF Downloads 31925821 Human-Computer Interaction Pluriversal Framework for Ancestral Medicine App in Bogota: Asset-Based Design Case Study
Authors: Laura Niño Cáceres, Daisy Yoo, Caroline Hummels
Abstract:
COVID-19 accelerated digital healthcare technology usage in many countries, such as Colombia, whose digital healthcare vision and projects are proof of this. However, with a significant cultural indigenous and Afro-Colombian heritage, only some parts of the country are willing to follow the proposed digital Western approach to health. Our paper presents the national healthcare system’s digital narrative, which we contrast with the micro-narrative of an Afro-Colombian ethnomedicine unit in Bogota called Kilombo Yumma. This ethnomedical unit is building its mobile app to safeguard and represent its ancestral medicine practices in local and national healthcare information systems. Kilombo Yumma is keen on promoting their beliefs and practices, which have been passed on through oral traditions and currently exist in the hands of a few older women. We unraveled their ambition, core beliefs, and practices through asset-based design. These assets outlined pluriversal and decolonizing forms of digital healthcare to increase social justice and connect Western and ancestral medicine digital opportunities through HCI.Keywords: asset-based design, mobile app, decolonizing HCI, Afro-Colombian ancestral medicine
Procedia PDF Downloads 8525820 Synthesis and Physiochemical Properties of 3-Propanenitrile Imidazolium - Based Dual Functionalized Ionic Liquids Incorporating Dioctyl Sulfosuccinate Anion
Authors: Abobakr Khidir Ziyada, Cecilia Devi Wilfred
Abstract:
In the present work, a new series of 3-propanenitrile imidazolium-based Room Temperature Ionic Liquids (RTILs), incorporating dioctyl sulfosuccinate (DOSS) were prepared by reacting imidazole with acrylonitrile and then reacting the product with allyl chloride, 2-chloroethanol, and benzyl chloride. After the reaction had been completed, metathesis reaction was carried out using sodium dioctyl sulfosuccinate. The densities and viscosities of the present RTILs were measured at atmospheric pressure at T=293.15 to 353.15 K, the refractive index was measured at T=293.15 to 333.15 K, whereas, the start and decomposition temperatures were determined at heating rate 10°C. min^-1. The thermal expansion coefficient, densities at a range of temperatures and pressures, molecular volume, molar refraction, standard entropy and the lattice energy of these RTILs were also estimated. The present RTILs showed higher densities, similar refractive indices, and higher viscosities compared to the other 1-alkyl-3-propanenitrile imidazolium-based RTILs. The densities of the present synthesized RTILs are lower compared to the other nitrile-functionalized ILs. These present RTILs showed a weak temperature dependence on the thermal expansion coefficients, αp=5.0 × 10^−4 to 7.50 × 10−4 K^-1. Empirical correlations were proposed to represent the present data on the physical properties. The lattice energy for the present RTILs was similar to other nitrile–based imidazolium RTILs. The present RTILs showed very high molar refraction when compared similar RTILs incorporating other anions.Keywords: dioctyl sulfosuccinate, nitrile ILs, 3-propanenitrile, anion, room temperature ionic liquids, RTIL
Procedia PDF Downloads 34125819 Recent Developments in the Application of Deep Learning to Stock Market Prediction
Authors: Shraddha Jain Sharma, Ratnalata Gupta
Abstract:
Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume
Procedia PDF Downloads 9525818 RGB Color Based Real Time Traffic Sign Detection and Feature Extraction System
Authors: Kay Thinzar Phu, Lwin Lwin Oo
Abstract:
In an intelligent transport system and advanced driver assistance system, the developing of real-time traffic sign detection and recognition (TSDR) system plays an important part in recent research field. There are many challenges for developing real-time TSDR system due to motion artifacts, variable lighting and weather conditions and situations of traffic signs. Researchers have already proposed various methods to minimize the challenges problem. The aim of the proposed research is to develop an efficient and effective TSDR in real time. This system proposes an adaptive thresholding method based on RGB color for traffic signs detection and new features for traffic signs recognition. In this system, the RGB color thresholding is used to detect the blue and yellow color traffic signs regions. The system performs the shape identify to decide whether the output candidate region is traffic sign or not. Lastly, new features such as termination points, bifurcation points, and 90’ angles are extracted from validated image. This system uses Myanmar Traffic Sign dataset.Keywords: adaptive thresholding based on RGB color, blue color detection, feature extraction, yellow color detection
Procedia PDF Downloads 31625817 Software Architecture Implications on Development Productivity: A Case of Malawi Point of Care Electronic Medical Records
Authors: Emmanuel Mkambankhani, Tiwonge Manda
Abstract:
Software platform architecture includes system components, their relationships, and design, as well as evolution principles. Software architecture and documentation affect a platform's customizability and openness to external innovators, thus affecting developer productivity. Malawi Point of Care (POC) Electronic Medical Records System (EMRS) follows some architectural design standards, but it lacks third-party innovators and is difficult to customize as compared to CommCare and District Health Information System 2 (DHIS2). Improving software architecture and documentation for the Malawi POC will increase productivity and third-party contributions. A conceptual framework based on Generativity and Boundary Resource Model (BRM) was used to compare the three platforms. Interviews, observations, and document analysis were used to collect primary and secondary data. Themes were found by analyzing qualitative and quantitative data, which led to the following results. Configurable, flexible, and cross-platform software platforms and the availability of interfaces (Boundary Resources) that let internal and external developers interact with the platform's core functionality, hence boosting developer productivity. Furthermore, documentation increases developer productivity, while its absence inhibits the use of resources. The study suggests that the architecture and openness of the Malawi POC EMR software platform will be improved by standardizing web application program interfaces (APIs) and making interfaces that can be changed by the user. In addition, increasing the availability of documentation and training will improve the use of boundary resources, thus improving internal and third-party development productivity.Keywords: health systems, configurable platforms, software architecture, software documentation, software development productivity
Procedia PDF Downloads 9325816 An intelligent Troubleshooting System and Performance Evaluator for Computer Network
Authors: Iliya Musa Adamu
Abstract:
This paper seeks to develop an expert system that would troubleshoot computer network and evaluate the network system performance so as to reduce the workload on technicians and increase the efficiency and effectiveness of solutions proffered to computer network problems. The platform of the system was developed using ASP.NET, whereas the codes are implemented in Visual Basic and integrated with SQL Server 2005. The knowledge base was represented using production rule, whereas the searching method that was used in developing the network troubleshooting expert system is the forward-chaining-rule-based-system. This software tool offers the advantage of providing an immediate solution to most computer network problems encountered by computer users.Keywords: expert system, forward chaining rule based system, network, troubleshooting
Procedia PDF Downloads 65325815 Compatibility of Copolymer-Based Grinding Aids and Sulfonated Acetone-Formaldehyde Superplasticizer
Authors: Zhang Tailong
Abstract:
Compatibility between sulfonated acetone-formalehyde superplasticizer (SAF) and copolymer-based grinding aids (GA) were studied by fluidity, Zeta potential, setting time of cement pasts, initial slump and slump flow of concrete and compressive strength of concrete. ESEM, MIP, and XRD were used to investigate the changing of microstructure of interior concrete. The results indicated that GA could noticeably enhance the dispersion ability of SAF. It was found that better fluidity and slump-keeping ability of cement paste were obtained in the case of GA. In addition, GA and SAF together had a certain retardation effect on hydration of cement paste. With increasing of the GA dosage, the dispersion ability and retardation effect of admixture increased. The compressive strength of the sample made with SAF and GA after 28 days was higher than that of the control sample made only with SAF. The initial slump and slump flow of concrete increased by 10.0% and 22.9%, respectively, while 0.09 wt.% GA was used. XRD examination indicated that new products were not found in the case of GA. In addition, more dense arrangement of hydrates and lower porosity of the specimen were observed by ESEM and MIP, which contributed to higher compressive strength.Keywords: copolymer-based grinding aids, superplasiticizer, compatibility, microstructure, cement, concrete
Procedia PDF Downloads 24925814 The Counselling Practice of School Social Workers in Swedish Elementary Schools - A Focus Group Study
Authors: Kjellgren Maria, Lilliehorn Sara, Markström Urban
Abstract:
This article describes the counselling practice of school social workers (SSWs) with individual children. SSWs work in the school system’s pupil health team, whose primary task is health promotion and prevention. The work of SSWs is about helping children and adolescents who, for various reasons, suffer from mental ill-health, school absenteeism, or stress that make them unable to achieve their intended goals. SSWs preferably meet these children in individual counselling sessions. The aim of this article is to describe and analyse SSWs’ experience of counselling with children and to examine the characteristics of counselling practice. The data collection was conducted through four semi-structured focus group interviews with a total of 22 SSWs in four different regions in Sweden. SSWs provide counselling to children in order to bring about improved feelings or behavioural changes. It can be noted that SSWs put emphasis on both the counselling process and the alliance with the child. The interviews showed a common practice among SSWs regarding the structure of the counselling sessions, with certain steps and approaches being employed. However, the specific interventions differed and were characterised by an eclectic standpoint in which SSWs utilise a broad repertoire of therapeutic schools and techniques. Furthermore, a relational perspective emerged as a most prominent focus for the SSWs by re-emerging throughout the material. We believe that SSWs could benefit from theoretical perspectives on ‘contextual model’ and ‘attachment theory’ as ‘models of the mind’. Being emotionally close to the child and being able to follow their development requires a lot from SSWs, as both professional caregivers and as “safe havens”.Keywords: school social conselling, school social workers, contextual model, attachment thory
Procedia PDF Downloads 13825813 Evaluation of the Irritation Potential of Three Topical Formulations of Minoxidil 2% Using Patch Test
Authors: Sule Pallavi, Shah Priyank, Thavkar Amit, Rohira Poonam, Mehta Suyog
Abstract:
Introduction: Minoxidil has been used topically for a long time to assist hair growth in the management of male androgenetic alopecia. The aim of this study was a comparative assessment of the irritation potential of three commercial formulations of minoxidil 2% topical solution in a human patch test. Methodology: The study was a non-randomized, double-blind, controlled, single-center study of 56 healthy adult Indian subjects. A 24-hour occlusive patch test was conducted with three formulations of minoxidil 2% topical solution. Products tested were aqueous-based minoxidil 2% (AnasureTM 2%, Sun Pharma, India – Brand A), alcohol-based minoxidil 2% (Brand B) and aqueous-based minoxidil 2% (Brand C). Isotonic saline 0.9% and 1% w/w sodium lauryl sulphate as a negative and positive control, respectively, were included. Patches were applied on the back, followed by removal after 24 hours. The Draize scale (0-4 points scale for erythema/dryness/wrinkles and for oedema) was used to evaluate and clinically score the skin reaction under constant artificial daylight 24 hours after the removal of the patches. The patch test was based on the principles outlined by Bureau of Indian Standards (BIS) (IS 4011:2018; Methods of Test for safety evaluation of Cosmetics-3rd revision). A mean combined score up to 2.0/8.0 indicates that a product is “non-irritant,” and a score between 2.0/8.0 and 4.0/8.0 indicates “mildly irritant” and a score above 4.0/8.0 indicates “irritant”. In case of any skin reaction that was observed, a follow-up was planned after one week to confirm recovery. Results: The 56 subjects who participated in the study had a mean age of 28.7 years (28 males and 28 females). The combined mean score ± standard deviation was: 0.09 ± 0.29 (Brand A), 0.29± 0.53 (Brand B), 0.30 ± 0.46 (Brand C), 3.25 ± 0.77 (positive control) and 0.02 ± 0.13 (negative control). This mean score of Brand A (Sun Pharma) was significantly lower than that of Brand B (p=0.016) and that of Brand C (p=0.004). The mean erythema score ± standard deviation was: 0.09 ± 0.29 (Brand A), 0.27 ± 0.49 (Brand B), 0.30 ± 0.46 (Brand C), 2.5 ± 0.66 (positive control) and 0.02 ± 0.13 (negative control). The mean erythema score of Brand A (Sun Pharma) was significantly lower than that of Brand B (p=0.019) and that of Brand C (p=0.004). Reactions that were observed 24 hours after patch removal subsided in a week’s time. Conclusion: Based on the human patch test as per the BIS, IS 4011:2018, all the three topical formulations of minoxidil 2% were found to be non-irritant. Brand A of 2% minoxidil (Sun Pharma) was found to be the least irritant than Brand B and Brand C based on the combined mean score and mean erythema score.Keywords: erythema, irritation, minoxidil, patch test
Procedia PDF Downloads 8625812 Numerical Simulation of the Production of Ceramic Pigments Using Microwave Radiation: An Energy Efficiency Study Towards the Decarbonization of the Pigment Sector
Authors: Pedro A. V. Ramos, Duarte M. S. Albuquerque, José C. F. Pereira
Abstract:
Global warming mitigation is one of the main challenges of this century, having the net balance of greenhouse gas (GHG) emissions to be null or negative in 2050. Industry electrification is one of the main paths to achieving carbon neutrality within the goals of the Paris Agreement. Microwave heating is becoming a popular industrial heating mechanism due to the absence of direct GHG emissions, but also the rapid, volumetric, and efficient heating. In the present study, a mathematical model is used to simulate the production using microwave heating of two ceramic pigments, at high temperatures (above 1200 Celsius degrees). The two pigments studied were the yellow (Pr, Zr)SiO₂ and the brown (Ti, Sb, Cr)O₂. The chemical conversion of reactants into products was included in the model by using the kinetic triplet obtained with the model-fitting method and experimental data present in the Literature. The coupling between the electromagnetic, thermal, and chemical interfaces was also included. The simulations were computed in COMSOL Multiphysics. The geometry includes a moving plunger to allow for the cavity impedance matching and thus maximize the electromagnetic efficiency. To accomplish this goal, a MATLAB controller was developed to automatically search the position of the moving plunger that guarantees the maximum efficiency. The power is automatically and permanently adjusted during the transient simulation to impose stationary regime and total conversion, the two requisites of every converged solution. Both 2D and 3D geometries were used and a parametric study regarding the axial bed velocity and the heat transfer coefficient at the boundaries was performed. Moreover, a Verification and Validation study was carried out by comparing the conversion profiles obtained numerically with the experimental data available in the Literature; the numerical uncertainty was also estimated to attest to the result's reliability. The results show that the model-fitting method employed in this work is a suitable tool to predict the chemical conversion of reactants into the pigment, showing excellent agreement between the numerical results and the experimental data. Moreover, it was demonstrated that higher velocities lead to higher thermal efficiencies and thus lower energy consumption during the process. This work concludes that the electromagnetic heating of materials having high loss tangent and low thermal conductivity, like ceramic materials, maybe a challenge due to the presence of hot spots, which may jeopardize the product quality or even the experimental apparatus. The MATLAB controller increased the electromagnetic efficiency by 25% and global efficiency of 54% was obtained for the titanate brown pigment. This work shows that electromagnetic heating will be a key technology in the decarbonization of the ceramic sector as reductions up to 98% in the specific GHG emissions were obtained when compared to the conventional process. Furthermore, numerical simulations appear as a suitable technique to be used in the design and optimization of microwave applicators, showing high agreement with experimental data.Keywords: automatic impedance matching, ceramic pigments, efficiency maximization, high-temperature microwave heating, input power control, numerical simulation
Procedia PDF Downloads 14125811 Deep Learning for SAR Images Restoration
Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli
Abstract:
In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network
Procedia PDF Downloads 7425810 Fast Aerodynamic Evaluation of Transport Aircraft in Early Phases
Authors: Xavier Bertrand, Alexandre Cayrel
Abstract:
The early phase of an aircraft development is instrumental as it really drives the potential of a new concept. Any weakness in the high-level design (wing planform, moveable surfaces layout etc.) will be extremely difficult and expensive to recover later in the aircraft development process. Aerodynamic evaluation in this very early development phase is driven by two main criteria: a short lead-time to allow quick iterations of the geometrical design, and a high quality of the calculations to get an accurate & reliable assessment of the current status. These two criteria are usually quite contradictory. Actually, short lead time of a couple of hours from end-to-end can be obtained with very simple tools (semi-empirical methods for instance) although their accuracy is limited, whereas higher quality calculations require heavier/more complex tools, which obviously need more complex inputs as well, and a significantly longer lead time. At this point, the choice has to be done between accuracy and lead-time. A brand new approach has been developed within Airbus, aiming at obtaining quickly high quality evaluations of the aerodynamic of an aircraft. This methodology is based on a joint use of Surrogate Modelling and a lifting line code. The Surrogate Modelling is used to get the wing sections characteristics (e.g. lift coefficient vs. angle of attack), whatever the airfoil geometry, the status of the moveable surfaces (aileron/spoilers) or the high-lift devices deployment. From these characteristics, the lifting line code is used to get the 3D effects on the wing whatever the flow conditions (low/high Mach numbers etc.). This methodology has been applied successfully to a concept of medium range aircraft.Keywords: aerodynamics, lifting line, surrogate model, CFD
Procedia PDF Downloads 36325809 Physics-Informed Convolutional Neural Networks for Reservoir Simulation
Authors: Jiangxia Han, Liang Xue, Keda Chen
Abstract:
Despite the significant progress over the last decades in reservoir simulation using numerical discretization, meshing is complex. Moreover, the high degree of freedom of the space-time flow field makes the solution process very time-consuming. Therefore, we present Physics-Informed Convolutional Neural Networks(PICNN) as a hybrid scientific theory and data method for reservoir modeling. Besides labeled data, the model is driven by the scientific theories of the underlying problem, such as governing equations, boundary conditions, and initial conditions. PICNN integrates governing equations and boundary conditions into the network architecture in the form of a customized convolution kernel. The loss function is composed of data matching, initial conditions, and other measurable prior knowledge. By customizing the convolution kernel and minimizing the loss function, the neural network parameters not only fit the data but also honor the governing equation. The PICNN provides a methodology to model and history-match flow and transport problems in porous media. Numerical results demonstrate that the proposed PICNN can provide an accurate physical solution from a limited dataset. We show how this method can be applied in the context of a forward simulation for continuous problems. Furthermore, several complex scenarios are tested, including the existence of data noise, different work schedules, and different good patterns.Keywords: convolutional neural networks, deep learning, flow and transport in porous media, physics-informed neural networks, reservoir simulation
Procedia PDF Downloads 15225808 Testing Depression in Awareness Space: A Proposal to Evaluate Whether a Psychotherapeutic Method Based on Spatial Cognition and Imagination Therapy Cures Moderate Depression
Authors: Lucas Derks, Christine Beenhakker, Michiel Brandt, Gert Arts, Ruud van Langeveld
Abstract:
Background: The method Depression in Awareness Space (DAS) is a psychotherapeutic intervention technique based on the principles of spatial cognition and imagination therapy with spatial components. The basic assumptions are: mental space is the primary organizing principle in the mind, and all psychological issues can be treated by first locating and by next relocating the conceptualizations involved. The most clinical experience was gathered over the last 20 years in the area of social issues (with the social panorama model). The latter work led to the conclusion that a mental object (image) gains emotional impact when it is placed more central, closer and higher in the visual field – and vice versa. Changing the locations of mental objects in space thus alters the (socio-) emotional meaning of the relationships. The experience of depression seems always associated with darkness. Psychologists tend to see the link between depression and darkness as a metaphor. However, clinical practice hints to the existence of more literal forms of darkness. Aims: The aim of the method Depression in Awareness Space is to reduce the distress of clients with depression in the clinical counseling practice, as a reliable alternative method of psychological therapy for the treatment of depression. The method Depression in Awareness Space aims at making dark areas smaller, lighter and more transparent in order to identify the problem or the cause of the depression which lies behind the darkness. It was hypothesized that the darkness is a subjective side-effect of the neurological process of repression. After reducing the dark clouds the real problem behind the depression becomes more visible, allowing the client to work on it and in that way reduce their feelings of depression. This makes repression of the issue obsolete. Results: Clients could easily get into their 'sadness' when asked to do so and finding the location of the dark zones proved pretty easy as well. In a recent pilot study with five participants with mild depressive symptoms (measured on two different scales and tested against an untreated control group with similar symptoms), the first results were also very promising. If the mental spatial approach to depression can be proven to be really effective, this would be very good news. The Society of Mental Space Psychology is now looking for sponsoring of an up scaled experiment. Conclusions: For spatial cognition and the research into spatial psychological phenomena, the discovery of dark areas can be a step forward. Beside out of pure scientific interest, it is great to know that this discovery has a clinical implication: when darkness can be connected to depression. Also, darkness seems to be more than metaphorical expression. Progress can be monitored over measurement tools that quantify the level of depressive symptoms and by reviewing the areas of darkness.Keywords: depression, spatial cognition, spatial imagery, social panorama
Procedia PDF Downloads 17325807 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images
Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn
Abstract:
The detection and segmentation of mitochondria from fluorescence microscopy are crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. In the literature, a number of open-source software tools and artificial intelligence (AI) methods have been described for analyzing mitochondrial images, achieving remarkable classification and quantitation results. However, the availability of combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compatibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source python and openCV library, the algorithms are implemented in three stages: pre-processing, image binarization, and coarse-to-fine segmentation. The proposed model is validated using the mitochondrial fluorescence dataset. Ground truth labels generated using a Lab kit were also used to evaluate the performance of our detection and segmentation model. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks conclude the paper.Keywords: 2D, binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation
Procedia PDF Downloads 36325806 The Construct of Assessment Instrument for Value, Attitude and Professionalism among Students Faculty of Sports Science and Coaching
Authors: Ahmad Hashim, Thariq Khan Azizuddin Khan, Zulakbal Abd Karim, Nohazira Abdul Karim
Abstract:
This research aims to obtain the validity and reliability of a survey instrument to evaluate the values, attitudes, and professionalism of sports science students, from the Faculty of Sports Science and Coaching, Universiti Pendidikan Sultan Idris (UPSI). It is a survey which is divided into two components namely first; moral, self-esteem, proactive, self-reliant and voluntary and second; ethics and professionalism. Development of the survey instrument is based on the Malaysian Education Development Plan, Higher Education Malaysia. There are 50 items prepared based on the five-point Likert scale which were tested at the pilot test level. It involved 212 research subjects selected based on random sampling. In addition, the research method applied is in the form of pre-experimental one group pre-test-post-test. Results of the analysis showed that overall field expert validity is r = .89, while the Cronbach alpha reliability correlation value of outdoor education instrument evaluation survey is r = .85. Next, this survey was tested again for construct validity using the factor analysis method for statistical analysis which would validate each item tested was supposed to be in the right component. From the analysis, results show that Bartlett's test is significant p < .05 and Kaiser-Meyer-Olkin index range is r = .87. The result showed 39 survey items are produced out of 50 items of the survey based on this factor analysis method. Research has shown that the survey instrument developed is valid and reliable to be used for the Faculty of Sports Sciences and Coaching, UPSI.Keywords: values, attitudes, professionalism, ethics, professionalism
Procedia PDF Downloads 19625805 Ground Beetle’s Diversity in Agroecosystems of a Steppe Region, Algeria
Authors: Nawel Ganaoui, Chadli Souhila, Gahdab Chakal
Abstract:
This study presents the results of a comparative research aiming to examine the distribution of beetles in four agroecosystems in the Tiaret region, located in northwestern Algeria, during the year 2023. This study was initiated across 04 stations that were randomly distributed within the Ksar Chellala region and selected based on their plant composition. The sampling method used was based on pitfall traps, which were filled two-thirds with a solution of saltwater supplemented with vinegar. In total, 40 species of beetles belonging to 9 families were identified. Among them, tenebrionids were the most abundant group (43%), followed by scarab beetles (30%) The comparison between the four types of agroecosystems - olive culture, sheep farming, cereal cultivation, and Pomegranate cultivation- in this region revealed that cereal cultivation harbored the greatest species diversity (30 species), followed by the sheep farming site (32 species), and then the other sites based on their ecological importance and trophic interactions, these beetle species were mainly categorized as coprophages, phytophages, and predators. The spatiotemporal evolution of beetle activity highlighted peaks of rich-ness and abundance, mainly during the dry period (from April to May), while the cold period (January) showed the low-est levels. The specific diversity of beetles varied significantly from one habitat to another.Keywords: agroecosystem, beetle, entomology, steppe regoin
Procedia PDF Downloads 7625804 Use of a Symptom Scale Based on Degree of Functional Impairment for Acute Concussion
Authors: Matthew T. McCarthy, Sarah Janse, Natalie M. Pizzimenti, Anthony K. Savino, Brian Crosser, Sean C. Rose
Abstract:
Concussion is diagnosed clinically using a comprehensive history and exam, supported by ancillary testing. Frequently, symptom checklists are used as part of the evaluation of concussion. Existing symptom scales are based on a subjective Likert scale, without relation of symptoms to clinical or functional impairment. This is a retrospective review of 133 patients under age 30 seen in an outpatient neurology practice within 30 days of a probable or definite concussion. Each patient completed 2 symptom checklists at the initial visit – the SCAT-3 symptom evaluation (22 symptoms, 0-6 scale) and a scale based on the degree of clinical impairment for each symptom (22 symptoms, 0-3 scale related to functional impact of the symptom). Final clearance date was determined by the treating physician. 60.9% of patients were male with mean age 15.7 years (SD 2.3). Mean time from concussion to first visit was 6.9 days (SD 6.2), and 101 patients had definite concussions (75.9%), while 32 were diagnosed as probable (24.1%). 94 patients had a known clearance date (70.7%) with mean clearance time of 20.6 days (SD 18.6) and median clearance time of 19 days (95% CI 16-21). Mean total symptom score was 27.2 (SD 22.9) on the SCAT-3 and 14.7 (SD 11.9) for the functional impairment scale. Pearson’s correlation between the two scales was 0.98 (p < 0.001). After adjusting for patient and injury characteristics, an equivalent increase in score on each scale was associated with longer time to clearance (SCAT-3 hazard ratio 0.885, 95%CI 0.835-0.938, p < 0.001; functional impairment scale hazard ratio 0.851, 95%CI 0.802-0.902, p < 0.001). A concussion symptom scale based on degree of functional impairment correlates strongly with the SCAT-3 scale and demonstrates a similar association with time to clearance. By assessing the degree of impact on clinical functioning, this symptom scale reflects a more intuitive approach to rating symptoms and can be used in the management of concussion.Keywords: checklist, concussion, neurology, scale, sports, symptoms
Procedia PDF Downloads 156