Search results for: restructuringdigital factory model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17082

Search results for: restructuringdigital factory model

4152 Investigation of Seismic T-Resisting Frame with Shear and Flexural Yield of Horizontal Plate Girders

Authors: Helia Barzegar Sedigh, Farzaneh Hamedi, Payam Ashtari

Abstract:

There are some limitations in common structural systems, such as providing appropriate lateral stiffness, adequate ductility, and architectural openings at the same time. Consequently, the concept of T-Resisting Frame (TRF) has been introduced to overcome all these deficiencies. The configuration of TRF in this study is a Vertical Plate Girder (VPG) which is placed within the span and two Horizontal Plate Girders (HPGs) connect VPG to side columns at each story level by the use of rigid connections. System performance is improved by utilizing rigid connections in side columns base joint. Shear yield of HPGs causes energy dissipation in TRF; therefore, high plastic deformation in web of HPGs and VPG affects the ductility of system. Moreover, in order to prevent shear buckling in web of TRF’s members and appropriate criteria for placement of web stiffeners are applied. In this paper, an experimental study is conducted by applying cyclic loading and using finite element models and numerical studies such as push over method are assessed on shear and flexural yielding of HPGs. As a result, seismic parameters indicate adequate lateral stiffness, and high ductility factor of 6.73, and HPGs’ shear yielding achieved as a proof of TRF’s better performance.

Keywords: experimental study, finite element model, flexural and shear yielding, t-resisting frame

Procedia PDF Downloads 235
4151 Deep Reinforcement Learning Model for Autonomous Driving

Authors: Boumaraf Malak

Abstract:

The development of intelligent transportation systems (ITS) and artificial intelligence (AI) are spurring us to pave the way for the widespread adoption of autonomous vehicles (AVs). This is open again opportunities for smart roads, smart traffic safety, and mobility comfort. A highly intelligent decision-making system is essential for autonomous driving around dense, dynamic objects. It must be able to handle complex road geometry and topology, as well as complex multiagent interactions, and closely follow higher-level commands such as routing information. Autonomous vehicles have become a very hot research topic in recent years due to their significant ability to reduce traffic accidents and personal injuries. Using new artificial intelligence-based technologies handles important functions in scene understanding, motion planning, decision making, vehicle control, social behavior, and communication for AV. This paper focuses only on deep reinforcement learning-based methods; it does not include traditional (flat) planar techniques, which have been the subject of extensive research in the past because reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. The DRL algorithm used so far found solutions to the four main problems of autonomous driving; in our paper, we highlight the challenges and point to possible future research directions.

Keywords: deep reinforcement learning, autonomous driving, deep deterministic policy gradient, deep Q-learning

Procedia PDF Downloads 88
4150 A Simple Approach to Reliability Assessment of Structures via Anomaly Detection

Authors: Rims Janeliukstis, Deniss Mironovs, Andrejs Kovalovs

Abstract:

Operational Modal Analysis (OMA) is widely applied as a method for Structural Health Monitoring for structural damage identification and assessment by tracking the changes of the identified modal parameters over time. Unfortunately, modal parameters also depend on such external factors as temperature and loads. Any structural condition assessment using modal parameters should be done taking into consideration those external factors, otherwise there is a high chance of false positives. A method of structural reliability assessment based on anomaly detection technique called Machalanobis Squared Distance (MSD) is proposed. It requires a set of reference conditions to learn healthy state of a structure, which all future parameters are compared to. In this study, structural modal parameters (natural frequency and mode shape), as well as ambient temperature and loads acting on the structure are used as features. Numerical tests were performed on a finite element model of a carbon fibre reinforced polymer composite beam with delamination damage at various locations and of various severities. The advantages of the demonstrated approach include relatively few computational steps, ability to distinguish between healthy and damaged conditions and discriminate between different damage severities. It is anticipated to be promising in reliability assessment of massively produced structural parts.

Keywords: operational modal analysis, reliability assessment, anomaly detection, damage, mahalanobis squared distance

Procedia PDF Downloads 118
4149 Inactivation of Rhodotorula spp. 74 with Cold Atmospheric Plasma

Authors: Zoran Herceg, Višnja Stulić, Tomislava Vukušić, Anet Režek Jambrak

Abstract:

High voltage electrical discharge is a new technology used for inactivation of pathogen microorganisms. Pathogen yeasts can cause diseases in humans if they are ingested. Nowadays new technologies have become the focus of researching all over the world. Rhodotorula is known as yeast that can cause diseases in humans. The aim of this study was to examine whether the high voltage electrical discharge treatment generated in gas phase has an influence on yeast reduction and recovery of Rhodotorula spp 74 in pure culture. Rhodotorula spp. 74 was treated in 200 mL of model solution. Treatment time (5 and 10 min), frequency (60 and 90 Hz) and injected gas (air or argon 99,99%) were changed. Titanium high voltage needle was used as high voltage electrode (positive polarity) through which air or argon was injected at the gas flow of 0.6 L/min. Experimental design and statistical analyses were obtained by Statgraphics Centurion software (StatPoint Technologies, Inc., VA, USA). The best inactivation rate 1.7 log10 reduction was observed after the 10 min of treatment, frequency of 90 Hz and injected air. Also with a longer treatment time inactivation rate was higher. After the 24 h recovery of treated samples was observed. Therefore the further optimization of method is needed to understand the mechanism of yeasts inactivation and cells recovery after the treatment. Acknowledgements: The authors would like to acknowledge the support by Croatian Science Foundation and research project ‘Application of electrical discharge plasma for preservation of liquid foods’.

Keywords: rhodotorula spp. 74, electrical discharge plasma, inactivation, stress response

Procedia PDF Downloads 240
4148 Frames as Interests and Goals: The Case of MedTech Entrepreneurs' Capital Raising Strategies in Australia

Authors: Joelle Hawa, Michael Gilding

Abstract:

The role of interest as a driver of action has been an on-going debate in the sociological sciences. This paper shows evidence as to how economic actors frame their environment in terms of interests and goals to take action. It introduces the concept of 'dynamic actor compass', a cognitive tool that is socially contingent and allows economic actors to navigate their environment, evaluate the level of alignment of interests and goals with other players, and decide whether or not they are willing to rely on, collaborate or partner with others in the field. The paper builds on Kaplan’s model of framing contests and integrates Max Weber’s interests, and ideas construct as well as Beckert’s concept of fictional expectations. The author illustrates this conceptual framework in the case of MedTech entrepreneurs’ capital raising activities in Australia. The study adopts a grounded theory methodology, running in-depth interviews with 24 MedTech entrepreneurs in order to examine their decision-making processes and actions to finance their innovation trajectory. The findings show that participants take into account material and ideal interests and goals that they impose adapt or negotiate with other actors in their environment. These interactions affect the way MedTech entrepreneurs perceive other funders in the field, influencing their capital raising strategies.

Keywords: expectations, financing innovation, frames, goals, interest-oriented action, managerial cognition

Procedia PDF Downloads 145
4147 Orange Peel Derived Activated Carbon /Chitosan Composite as Highly Effective and Low-Cost Adsorbent for Adsorption of Methylene Blue

Authors: Onur Karaman, Ceren Karaman

Abstract:

In this study, the adsorption of Methylene Blue (MB), a cationic dye, onto Orange Peel Derived Activated Carbon (OPAC) and chitosan(OPAC/Chitosan composite) composite (a low-cost absorbent) was carried out using a batch system. The composite was characterised using IR spectra, XRD, FESEM and Pore size studies. The effects of initial pH, adsorbent dose rate and initial dye concentration on the initial adsorption rate, capacity and dye removal efficiency were investigated. The Langmuir and Freundlich adsorption models were used to define the adsorption equilibrium of dye-adsorbent system mathematically and it was decided that the Langmuir model was more suitable to describe the adsorption equilibrium for the system. In addition, first order, second order and saturation type kinetic models were applied to kinetic data of adsorption and kinetic constants were calculated. It was concluded that the second order and the saturation type kinetic models defined the adsorption data more accurately. Finally, the evaluated thermodynamic parameters of adsorption show a spontaneous and exothermic behavior. Overall, this study indicates OPAC/Chitosan composite as an effective and low-cost adsorbent for the removal of MB dye from aqueous solutions.

Keywords: activated carbon, adsorption, chitosan, methylene blue, orange peel

Procedia PDF Downloads 301
4146 Implications of Fuel Reloading in Heterogeneous Thorium-Based Fuel Designs for Improved Fuel Cycle Characteristics

Authors: Hendrik Bernard Van Der Walt, Frik Van Niekerk

Abstract:

Fuel models render a reduction in BOL when thorium is added to a reactor core. Thorium emulates the role of a fertile poison, and is beneficial for reducing beginning of cycle (BOC) excess reactivity. In spite of the build-up of 233U over the duration of a fuel cycle, the effects of fuel reloading have a significant impact on fuel viability, especially in the case of heterogeneous thorium-based fuels. The most common practice of compensating for the reduction of BOC reactivity is the addition of fissile isotopes (uranium fuel with increased enrichment or plutonium). This study introduces a heterogeneous thorium-based fuel with minimal fissile isotope additions. A pseudo reloading scheme was developed for numerical simulations of an infinite reactor based on the North-Anna 1 reactor operating in Virginia, USA. Use of this reloading pattern allows new thorium-based fuel to be loaded into the reactor model as part of a phasing in strategy at the end of any conventional reactor cycle. Results demonstrate the effects of thorium-based fuel on fuel cycle characteristics such as fuel cycle length, neutron economy and material matrix. Application of the above mentioned approach delivered promising results and presents a heterogeneous thorium-based fuel which could replace conventional fuel of typical, currently operating (or future) reactors without the need for expensive reactor redesign or fuel recycling strategies.

Keywords: nuclear fuel, nuclear characteristics, nuclear fuel cycle, thorium-based fuel, heterogeneous design, fuel reloading

Procedia PDF Downloads 138
4145 Quantitative Analysis of the Functional Characteristics of Urban Complexes Based on Station-City Integration: Fifteen Case Studies of European, North American, and East Asian Railway Stations

Authors: Dai Yizheng, Chen-Yang Zhang

Abstract:

As station-city integration has been widely accepted as a strategy for mixed-use development, a quantitative analysis of the functional characteristics of urban complexes based on station-city integration is urgently needed. Taking 15 railway stations in European, North American, and East Asian cities as the research objects, this study analyzes their functional proportion, functional positioning, and functional correlation with respect to four categories of functional facilities for both railway passenger flow and subway passenger flow. We found that (1) the functional proportion of urban complexes was mainly concentrated in three models: complementary, dominant, and equilibrium. (2) The mathematical model affected by the functional proportion was created to evaluate the functional positioning of an urban complex at three scales: station area, city, and region. (3) The strength of the correlation between the functional area and passenger flow was revealed via data analysis using Pearson’s correlation coefficient. Finally, the findings of this study provide a valuable reference for research on similar topics in other countries that are developing station-city integration.

Keywords: urban complex, station-city integration, mixed-use, function, quantitative analysis

Procedia PDF Downloads 119
4144 A Coordinated School Health Program Effect on Cardiorespiratory Fitness in Preschool Children

Authors: Zasha Romero, Roberto Trevino, Lin Wang, Elizabeth Alanis, Jesus Cuellar

Abstract:

Background: There is a strong relationship between low cardiorespiratory fitness (CRF) and high adiposity levels. The purpose of this study was to assess the effects of the Bienestar/Neema Coordinated School Health Program (BN CSHP) on the CRF of preschool children. Methods: This is a randomized cluster trial conducted in preschools of two school districts located along the Texas-Mexico border. Of 48 eligible schools, 28 were randomly selected (intervention, n=14; control, n=14). Family demographics and household health characteristics were collected from parents. CRF, as measured by the Progressive Anaerobic Capacity Endurance Run (PACER) fitness test, was collected from the children. A generalized linear mixed model (GLMM) was used to analyze the data. Results: Family demographics, household health characteristics, and children’s weight, obesity prevalence, and sedentary activity were similar among both treatment groups. After adjusting for covariates, the number of laps run by children in the control group increased by 23% (CI: -5% to 60%) per each data collection period compared with 53% (CI: 7% to 119%) in the intervention group. Conclusions: Children in the BN CSHP, compared to those in the control group, had a significantly higher increase in their CRF. This finding is important because of the health benefits of CRF in children.

Keywords: coordinated school health program, cardiorespiratory fitness, obesity, border health, preschool, physical education, movement

Procedia PDF Downloads 89
4143 Strain Softening of Soil under Cyclic Loading

Authors: Kobid Panthi, Suttisak Soralump, Suriyon Prempramote

Abstract:

In June 27, 2014 slope movement was observed in upstream side of Khlong Pa Bon Dam, Thailand. The slide did not have any major catastrophic impact on the dam structure but raised a very important question; why did the slide occur after 10 years of operation? Various site investigations (Bore Hole Test, SASW, Echo Sounding, and Geophysical Survey), laboratory analysis and numerical modelling using SIGMA/W and SLOPE/W were conducted to determine the cause of slope movement. It was observed that the dam had undergone the greatest differential drawdown in its operational history in the year 2014 and was termed as the major cause of movement. From the laboratory tests, it was found that the shear strength of clay had decreased with a period of time and was near its residual value. The cyclic movement of water, i.e., reservoir filling and emptying was coined out to be the major cause for the reduction of shear strength. The numerical analysis was carried out using a modified cam clay (MCC) model to determine the strain softening behavior of the clay. The strain accumulation was observed in the slope with each reservoir cycle triggering the slope failure in 2014. It can be inferred that if there was no major drawdown in 2014, the slope would not have failed but eventually would have failed after a long period of time. If there was no major drawdown in 2014, the slope would not have failed. However, even if there hadn’t been a drawdown, it would have failed eventually in the long run.

Keywords: slope movement, strain softening, residual strength, modified cam clay

Procedia PDF Downloads 136
4142 Effect of Climate Variability on Honeybee's Production in Ondo State, Nigeria

Authors: Justin Orimisan Ijigbade

Abstract:

The study was conducted to assess the effect of climate variability on honeybee’s production in Ondo State, Nigeria. Multistage sampling technique was employed to collect the data from 60 beekeepers across six Local Government Areas in Ondo State. Data collected were subjected to descriptive statistics and multiple regression model analyses. The results showed that 93.33% of the respondents were male with 80% above 40 years of age. Majority of the respondents (96.67%) had formal education and 90% produced honey for commercial purpose. The result revealed that 90% of the respondents admitted that low temperature as a result of long hours/period of rainfall affected the foraging efficiency of the worker bees, 73.33% claimed that long period of low humidity resulted in low level of nectar flow, while 70% submitted that high temperature resulted in improper composition of workers, dunes and queen in the hive colony. The result of multiple regression showed that beekeepers’ experience, educational level, access to climate information, temperature and rainfall were the main factors affecting honey bees production in the study area. Therefore, beekeepers should be given more education on climate variability and its adaptive strategies towards ensuring better honeybees production in the study area.

Keywords: climate variability, honeybees production, humidity, rainfall and temperature

Procedia PDF Downloads 275
4141 A Theoretical Study of and Phase Change Material Layered Roofs under Specific Climatic Regions in Turkey and the United Kingdom

Authors: Tugba Gurler, Irfan Kurtbas

Abstract:

Roof influences considerably energy demand of buildings. In order to reduce this energy demand, various solutions have been proposed, such as roofs with variable thermal insulation, cool roofs, green roofs, heat exchangers and ventilated roofs, and phase change material (PCM) layered roofs. PCMs suffer from relatively low thermal conductivity despite of their promise of the energy-efficiency initiatives for thermal energy storage (TES). This study not only presents the thermal performance of the concrete roof with PCM layers but also evaluates the products with different design configurations and thicknesses under Central Anatolia Region, Turkey and Nottinghamshire, UK weather conditions. System design limitations and proposed prediction models are discussed in this study. A two-dimensional numerical model has been developed, and governing equations have been solved at each time step. Upper surfaces of the roofs have been modelled with heat flux conditions, while lower surfaces of the roofs with boundary conditions. In addition, suitable roofs have been modeled under symmetry boundary conditions. The results of the designed concrete roofs with PCM layers have been compared with common concrete roofs in Turkey. The UK and the numerical modeling results have been validated with the data given in the literature.

Keywords: phase change material, regional energy demand, roof layers, thermal energy storage

Procedia PDF Downloads 107
4140 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree

Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli

Abstract:

Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.

Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture

Procedia PDF Downloads 425
4139 The Impact of Economic Growth on Carbon Footprints of High-Income and Non-High-Income Countries: A Comparative Analysis

Authors: Ghunchq Khan

Abstract:

The increase in greenhouse gas (GHGs) emissions is a main environmental problem. Diverse human activities and inappropriate economic growth have stimulated a trade-off between economic growth and environmental deterioration all over the world. The impact of economic growth on the environment has received attention as global warming and environmental problems have become more serious. The focus of this study is on carbon footprints (production and consumption) and analyses the impact of GDP per capita on carbon footprints. A balanced panel of 99 countries from 2000 to 2016 is estimated by employing autoregressive distributed lags (ARDL) model – mean group (MG) and pooled mean group (PMG) estimators. The empirical results indicate that GDP per capita has a significant and positive impact in the short run but a negative effect in the long run on the carbon footprint of production in high-income countries by controlling trade openness, industry share, biological capacity, and population density. At the same time, GDP per capita has a significant and positive impact in both the short and long run on the carbon footprint of the production of non-high-income countries. The results also indicate that GDP per capita negatively impacts the carbon footprint of consumption for high-income countries; on the other hand, the carbon footprint of consumption increases as GDP per capita grows in non-high-income countries.

Keywords: ARDL, carbon footprint, economic growth, industry share, trade openness

Procedia PDF Downloads 99
4138 Prediction of Boundary Shear Stress with Flood Plains Enlargements

Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua

Abstract:

The river is our main source of water which is a form of open channel flow and the flow in the open channel provides with many complex phenomena of sciences that need to be tackled such as the critical flow conditions, boundary shear stress, and depth-averaged velocity. The development of society, more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. During floods, part of a river is carried by the simple main channel and rest is carried by flood plains. For such compound asymmetric channels, the flow structure becomes complicated due to momentum exchange between the main channel and adjoining flood plains. Distribution of boundary shear in subsections provides us with the concept of momentum transfer between the interface of the main channel and the flood plains. Experimentally, to get better data with accurate results are very complex because of the complexity of the problem. Hence, CES software has been used to tackle the complex processes to determine the shear stresses at different sections of an open channel having asymmetric flood plains on both sides of the main channel, and the results are compared with the symmetric flood plains for various geometrical shapes and flow conditions. Error analysis is also performed to know the degree of accuracy of the model implemented.

Keywords: depth average velocity, non prismatic compound channel, relative flow depth, velocity distribution

Procedia PDF Downloads 180
4137 Exploring the Influence of High-Frequency Acoustic Parameters on Wave Behavior in Porous Bilayer Materials: An Equivalent Fluid Theory Approach

Authors: Mustapha Sadouk

Abstract:

This study investigates the sensitivity of high-frequency acoustic parameters in a rigid air-saturated porous bilayer material within the framework of the equivalent fluid theory, a specific case of the Biot model. The study specifically focuses on the sensitivity analysis in the frequency domain. The interaction between the fluid and solid phases of the porous medium incorporates visco-inertial and thermal exchange, characterized by two functions: the dynamic tortuosity α(ω) proposed by Johnson et al. and the dynamic compressibility β(ω) proposed by Allard, refined by Sadouki for the low-frequency domain of ultrasound. The parameters under investigation encompass porosity, tortuosity, viscous characteristic length, thermal characteristic length, as well as viscous and thermal shape factors. A +30% variation in these parameters is considered to assess their impact on the transmitted wave amplitudes. By employing this larger variation, a more comprehensive understanding of the sensitivity of these parameters is obtained. The outcomes of this study contribute to a better comprehension of the high-frequency wave behavior in porous bilayer materials, providing valuable insights for the design and optimization of such materials across various applications.

Keywords: bilayer materials, ultrasound, sensitivity analysis, equivalent fluid theory, dynamic tortuosity., porous material

Procedia PDF Downloads 89
4136 Participation in Decision Making and Work Outcomes: The Moderating Role of Ethical Climate

Authors: Ali Muhammad

Abstract:

The study examines the consequences of decision making in Kuwait work organization. The framework used in this study proposes that participation in decision making improves organizational ethical climate, which in turn increases employee’s trust in supervisor and trust in the organization. Furthermore, the model suggests that allowing employees to voice their opinions positively effects their perceptions of organizational justice. Providing employees with the opportunity to participate in decision making (voice), enhances their perceptions of the fairness of those decisions. Allowing employees to express their opinions and feeling about decisions being made show that the organization respect appreciates their views. This feeling of respect and appreciation reflects positively on employee’s perception of justice. Survey data were collected from a sample of 292 employees working in Kuwaiti work organizations. Pearson correlation, non-parametric tests, and structural equation models were used to analyze the data. Results of the analysis show that participation in decision making enhances employee perception of ethical climate, which in turn increases perception organizational justice and organizational trust. Implications of the findings and directions for future research are discussed.

Keywords: participation in decision making, organizational trust, trust in supervisor, organizational justice, ethical climate

Procedia PDF Downloads 118
4135 The Effect of Critical Audit Matters on Financial Information Quality: The Role of Audit Committee Expertise

Authors: Khawla Hlel

Abstract:

Purpose: This study aims to examine whether critical audit matters (CAM) affect financial information quality. We also investigate the moderating role of the audit committee on the association between CAM and financial information quality. Design/Methodology/Approach: The analysis is based on GLS and GMM regressions explaining the absolute value of discretionary accruals by using 52 Tunisian listed firms on the Tunisia Stock Exchange (TSE) for the period 2017-2020. Findings: We find evidence that managers react to the CAM by increasing the quality of financial disclosures. This study provides insights into how a change in the auditor’s report model might impact the quality of financial information. It suggests that external auditors and audit committees serve as a beneficial mechanism for enhancing financial information quality by reducing information asymmetry. In addition, our results indicate that CAM is an efficient monitoring mechanism that increases financial reporting quality and supervises managers. Originality: This study is important for potential investors who should assess CAM when evaluating firms. Furthermore, the authors expect the findings to be interesting to firms, as this study highlights the effectiveness of the auditor in reducing managerial opportunistic behavior and improving information quality. The results could encourage audit regulators to ameliorate the standards, as this research reinforces the role of the auditor in increasing the quality of financial disclosure by offering the required information for shareholders.

Keywords: critical audit matters, audit committee, information quality, Tunisian firms

Procedia PDF Downloads 89
4134 Shear Layer Investigation through a High-Load Cascade in Low-Pressure Gas Turbine Conditions

Authors: Mehdi Habibnia Rami, Shidvash Vakilipour, Mohammad H. Sabour, Rouzbeh Riazi, Hossein Hassannia

Abstract:

This paper deals with the steady and unsteady flow behavior on the separation bubble occurring on the rear portion of the suction side of T106A blade. The first phase was to implement the steady condition capturing the separation bubble. To accurately predict the separated region, the effects of three different turbulence models and computational grids were separately investigated. The results of Large Eddy Simulation (LES) model on the finest grid structure are acceptably in a good agreement with its relevant experimental results. The second phase is mainly to address the effects of wake entrance on bubble disappearance in unsteady situation. In the current simulations, from what was suggested in an experiment, simulating the flow unsteadiness, with concentrations on small scale disturbances instead of simulating a complete oncoming wake, is the key issue. Subsequently, the results from the current strategy to apply the effects of the wake and two other experimental work were compared to be in a good agreement. Between the two experiments, one of them deals with wake passing unsteady flow, and the other one implements experimentally the same approach as the current Computational Fluid Dynamics (CFD) simulation.

Keywords: low-pressure turbine cascade, large-Eddy simulation (LES), RANS turbulence models, unsteady flow measurements, flow separation

Procedia PDF Downloads 308
4133 RACK1 Integrates Light and Brassinosteroid Signaling to Coordinate Cell Division During Root Soil Penetration

Authors: Liang Jiansheng, Zhu Wei

Abstract:

Light and brassinosteroids are essential external and internal cues for plant survival. Although the coordination of light with phytohormone signals is crucial for plant growth and development, the molecular connection between light and brassinosteroid signaling during root soil penetration remains elusive. Here, we reveal that light-stabilized RACK1 couples a brassinosteroid signaling cascade to drive cell division in root meristems. RACK1 family scaffold proteins positively regulate light-induced the promotion of root elongation during soil penetration. Under the light condition, RACK1A interacts with both phyB and SPA1, then reinforces the phyB-SPA1 association to accumulate its abundance in roots. In response to brassinosteroid signals, RACK1A competes with BKI1 to attenuate the BRI1-BKI1 interaction, thereby leading to activating BRI1 actions in root development. Furthermore, RACK1A binds to BES1 to repress its DNA binding activity toward the target gene CYCD3;1. This ultimately allows to release the inhibition of CYCD3;1 transcription, and promotes cell division during root growth. Our study illustrates a new mechanistic model of how plants engage scaffold proteins in transducing light information to facilitate brassinosteroid signaling for root growth in the soil.

Keywords: root growth, cell division, light signaling, brassinosteroid signaling, soil penetration, scaffold protein, RACK1

Procedia PDF Downloads 85
4132 Living Lab as a Service: Developing Context Induced, Co-creational Innovation Routines as a Process Tool for Nature Based Solutions

Authors: Immanuel Darkwa

Abstract:

Climate change and environmental degradation are existential threats requiring urgent transnational action. The SDGs, as well as regional initiatives the like European Green Deal, as ambitious as they are, put an emphasis on innovatively tackling threats posed by climate change regionally. While co-creational approaches are being propagated, there is no reference blueprint for how potential solutions, particularly nature-based solutions, may be developed and implemented within urban-settings. Using a single case study in Zagreb, Croatia, this paper proposes a workshop-tool for a Living Lab as a Service model for sustainable Nature-Based-Thinking, Nature–Centred-Design and Nature based solutions. The approach is based on a co-creational methodology developed through literature synthesis, expert interviews, focus group discussions, surveys and synthesized through rigorous research analysis and participatory observation. The ensuing tool involves workshop-processes, tested with through-the-process identified stakeholders with distinctive roles and functions. The resulting framework proposes a Nature-Based-Centred-Thinking process tool involving ‘green’ routines supported by a focal unit and a collaborative network, and that allows for the development of nature-based solutions.

Keywords: living labs, nature-based solutions, nature- based design, innovation processes, innovation routines and tools

Procedia PDF Downloads 81
4131 Time Series Forecasting (TSF) Using Various Deep Learning Models

Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan

Abstract:

Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed-length window in the past as an explicit input. In this paper, we study how the performance of predictive models changes as a function of different look-back window sizes and different amounts of time to predict the future. We also consider the performance of the recent attention-based Transformer models, which have had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (RNN, LSTM, GRU, and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the UCI website, which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Average Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.

Keywords: air quality prediction, deep learning algorithms, time series forecasting, look-back window

Procedia PDF Downloads 159
4130 Examining How Teachers’ Backgrounds and Perceptions for Technology Use Influence on Students’ Achievements

Authors: Zhidong Zhang, Amanda Resendez

Abstract:

This study is to examine how teachers’ perspective on education technology use in their class influence their students’ achievement. The authors hypothesized that teachers’ perspective can directly or indirectly influence students’ learning, performance, and achievements. In this study, a questionnaire entitled, Teacher’s Perspective on Educational Technology, was delivered to 63 teachers and 1268 students’ mathematics and reading achievement records were collected. The questionnaire consists of four parts: a) demographic variables, b) attitudes on technology integration, c) outside factor affecting technology integration, and d) technology use in the classroom. Kruskal-Wallis and hierarchical regression analysis techniques were used to examine: 1) the relationship between the demographic variables and teachers’ perspectives on educational technology, and 2) how the demographic variables were causally related to students’ mathematics and reading achievements. The study found that teacher demographics were significantly related to the teachers’ perspective on educational technology with p < 0.05 and p < 0.01 separately. These teacher demographical variables included the school district, age, gender, the grade currently teach, teaching experience, and proficiency using new technology. Further, these variables significantly predicted students’ mathematics and reading achievements with p < 0.05 and p < 0.01 separately. The variations of R² are between 0.176 and 0.467. That means 46.7% of the variance of a given analysis can be explained by the model.

Keywords: teacher's perception of technology use, mathematics achievement, reading achievement, Kruskal-Wallis test, hierarchical regression analysis

Procedia PDF Downloads 137
4129 Novel Method of In-Situ Tracking of Mechanical Changes in Composite Electrodes during Charging-Discharging by QCM-D

Authors: M. D. Levi, Netanel Shpigel, Sergey Sigalov, Gregory Salitra, Leonid Daikhin, Doron Aurbach

Abstract:

We have developed an in-situ method for tracking ions adsorption into composite nanoporous carbon electrodes based on quartz-crystal microbalance (QCM). In these first papers QCM was used as a simple gravimetric probe of compositional changes in carbon porous composite electrodes during their charging since variation of the electrode potential did not change significantly width of the resonance. In contrast, when we passed from nanoporous carbons to a composite Li-ion battery material such as LiFePO4 olivine, the change in the resonance width was comparable with change of the resonance frequency (polymeric binder PVdF was shown to be completely rigid when used in aqueous solutions). We have provided a quantitative hydrodynamic admittance model of ion-insertion processes into electrode host accompanied by intercalation-induced dimensional changes of electrode particles, and hence the entire electrode coating. The change in electrode deformation and the related porosity modify hydrodynamic solid-liquid interactions tracked by QCM with dissipation monitoring. Using admittance modeling, we are able to evaluate the changes of effective thickness and permeability/porosity of composite electrode caused by applied potential and as a function of cycle number. This unique non-destructive technique may have great advantage in early diagnostics of cycling life durability of batteries and supercapacitors.

Keywords: Li-ion batteries, particles deformations, QCM-D, viscoelasticity

Procedia PDF Downloads 447
4128 Feeling Bad May Not Make You Behave Unethically! Lessons Learned From the 2022 Shanghai COVID-19 Lockdown

Authors: Zeren Li, Wenkai Song

Abstract:

Shanghai experienced a 3-month lockdown in 2022. This unprecedented lockdown made local residents afraid, anxious and worried about the unpredictability of the future. During the lockdown, many unethical behaviors related to lockdown are noticed by the public. Our studies documented unethical behavior during this lockdown by moral hypocrisy and moral justification examined whether or not the lockdown makes people behave more unethically, and analyzed the relationship between negative emotions and unethical behavior. In Study 1, we recruited 240 participants from Shanghai (n = 120) and other cities (n = 120) to compare people in lockdown and non-lockdown areas. Surprisingly, we found that people in lockdown areas tend to behave more ethically, exhibiting less moral hypocrisy. In addition, residents of the lockdown area have significantly higher negative emotions (afraid, nervousness, upset, and feelings of uncertainty). In Study 2, we recruited 70 respondents from Shanghai and found that people behave relatively ethically in lockdown-related scenarios (negatively correlated with anxiety about the lockdown) with relatively less moral justification than in lockdown-unrelated scenarios. We propose that negative emotions may reduce unethical behavior that may exacerbate the causes (in our study, the lockdown) of these negative emotions. Experiments may help to establish the causal relationship and verify the model in future research.

Keywords: COVID-19, unethical behavior, emotion, anxiety, moral justification, moral hypocrisy, China

Procedia PDF Downloads 87
4127 Influence of Kinematic, Physical and Mechanical Structure Parameters on Aeroelastic GTU Shaft Vibrations in Magnetic Bearings

Authors: Evgeniia V. Mekhonoshina, Vladimir Ya. Modorskii, Vasilii Yu. Petrov

Abstract:

At present, vibrations of rotors of gas transmittal unit evade sustainable forecasting. This paper describes elastic oscillation modes in resilient supports and rotor impellers modeled during computational experiments with regard to interference in the system of gas-dynamic flow and compressor rotor. Verification of aeroelastic approach was done on model problem of interaction between supersonic jet in shock tube with deformed plate. ANSYS 15.0 engineering analysis system was used as a modeling tool of numerical simulation in this paper. Finite volume method for gas dynamics and finite elements method for assessment of the strain stress state (SSS) components were used as research methods. Rotation speed and material’s elasticity modulus varied during calculations, and SSS components and gas-dynamic parameters in the dynamic system of gas-dynamic flow and compressor rotor were evaluated. The analysis of time dependence demonstrated that gas-dynamic parameters near the rotor blades oscillate at 200 Hz, and SSS parameters at the upper blade edge oscillate four times higher, i.e. with blade frequency. It has been detected that vibration amplitudes correction in the test points at magnetic bearings by aeroelasticity may correspond up to 50%, and about -π/4 for phases.

Keywords: Centrifugal compressor, aeroelasticity, interdisciplinary calculation, oscillation phase displacement, vibration, nonstationarity

Procedia PDF Downloads 262
4126 Application of Machine Learning on Google Earth Engine for Forest Fire Severity, Burned Area Mapping and Land Surface Temperature Analysis: Rajasthan, India

Authors: Alisha Sinha, Laxmi Kant Sharma

Abstract:

Forest fires are a recurring issue in many parts of the world, including India. These fires can have various causes, including human activities (such as agricultural burning, campfires, or discarded cigarettes) and natural factors (such as lightning). This study presents a comprehensive and advanced methodology for assessing wildfire susceptibility by integrating diverse environmental variables and leveraging cutting-edge machine learning techniques across Rajasthan, India. The primary goal of the study is to utilize Google Earth Engine to compare locations in Sariska National Park, Rajasthan (India), before and after forest fires. High-resolution satellite data were used to assess the amount and types of changes caused by forest fires. The present study meticulously analyzes various environmental variables, i.e., slope orientation, elevation, normalized difference vegetation index (NDVI), drainage density, precipitation, and temperature, to understand landscape characteristics and assess wildfire susceptibility. In addition, a sophisticated random forest regression model is used to predict land surface temperature based on a set of environmental parameters.

Keywords: wildfire susceptibility mapping, LST, random forest, GEE, MODIS, climatic parameters

Procedia PDF Downloads 27
4125 NextCovps: Design and Stress Analysis of Dome Composite Overwrapped Pressure Vessels using Geodesic Trajectory Approach

Authors: Ammar Maziz, Prateek Gupta, Thiago Vasconcellos Birro, Benoit Gely

Abstract:

Hydrogen as a sustainable fuel has the highest energy density per mass as compared to conventional non-renewable sources. As the world looks to move towards sustainability, especially in the sectors of aviation and automotive, it becomes important to address the issue of storage of hydrogen as compressed gas in high-pressure tanks. To improve the design for the efficient storage and transportation of Hydrogen, this paper presents the design and stress analysis of Dome Composite Overwrapped Pressure Vessels (COPVs) using the geodesic trajectory approach. The geodesic trajectory approach is used to optimize the dome design, resulting in a lightweight and efficient structure. Python scripting is employed to implement the mathematical modeling of the COPV, and after validating the model by comparison to the published paper, stress analysis is conducted using Abaqus commercial code. The results demonstrate the effectiveness of the geodesic trajectory approach in achieving a lightweight and structurally sound dome design, as well as the accuracy and reliability of the stress analysis using Abaqus commercial code. This study provides insights into the design and analysis of COPVs for aerospace applications, with the potential for further optimization and application in other industries.

Keywords: composite overwrapped pressure vessels, carbon fiber, geodesic trajectory approach, dome design, stress analysis, plugin python

Procedia PDF Downloads 97
4124 Social Studies Teachers’ Sustained, Collaborative Professional Development Centered Round Innovative Curriculum Materials

Authors: Cory Callahan

Abstract:

Here the author synthesizes findings and implications from two research studies that comprise a continuing line of inquiry into the potential of an innovative professional development program to help in-service teachers understand and implement a complex model of social studies instruction. The paper specifically explores the question: To what degree can a collaborative professional development program centered around innovative curriculum materials help social studies teachers understand and implement a powerful social studies approach? Findings suggest the teachers increasingly incorporated substantive thinking (i.e., second-order historical domain knowledge) into their respective practice and they facilitated students’ use of historical photographs as evidence to begin to answer a compelling question. The teachers also began to effectively support students’ abilities to make claims about the past. Implications include the foregrounding of high-quality questions during planning and the need for explicit guidance in the form of structures and procedures (i.e., scaffolds) to help teachers systematically review students’ work products. The work shared here may contribute to scholarship that posits explanations for why teacher-support is routinely ineffectual and suggests ways to provide substantive collaborative support for in-service social studies teachers.

Keywords: educative curriculum, social studies, professional development, lesson study

Procedia PDF Downloads 69
4123 The Structural System Concept of Reinforced Concrete Pier Accompanied with Friction Device plus Gap in Numerical Analysis

Authors: Angga S. Fajar, Y. Takahashi, J. Kiyono, S. Sawada

Abstract:

The problem of medium span bridge bearing support in the extreme temperatures fluctuation region is deterioration in case the suppression of superstructure that sustains temperature expansion. The other hand, the behavior and the parameter of RC column accompanied with friction damping mechanism were determined successfully based on the experiment and numerical analysis. This study proposes the structural system of RC pier accompanied with multi sliding friction damping mechanism to substitute the conventional system of pier together with bearing support. In this system, the pier has monolith behavior to the superstructure with flexible small deformation to accommodate thermal expansion of the superstructure. The flexible small deformation behavior is realized by adding the gap mechanism in the multi sliding friction devices form. The important performances of this system are sufficient lateral flexibility in small deformation, sufficient elastic deformation capacity, sufficient lateral force resistance, and sufficient energy dissipation. Numerical analysis performed for this system with fiber element model. It shows that the structural system has good performance not only under small deformation due to thermal expansion of the superstructure but also under seismic load.

Keywords: RC Pier, thermal expansion, multi sliding friction device, flexible small deformation

Procedia PDF Downloads 310