Search results for: soil conditioning materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9660

Search results for: soil conditioning materials

8400 Study of Receiving Opportunity of Water Soluble and Non-Ballast Micro Fertilizer on the Base of Manganese-Containing Materials

Authors: Marine Shavlakadze

Abstract:

From the raw material base existed in Georgia (manganese ores, manganese containing mud), particularly, within the point of view of production availability, especial interest is paid to micro- fertilizers containing manganese. As a result of conducted investigation, there was established receiving of such manganese containing materials on the basis of manganese raw-material base (ore, mud) existed in Georgia, which shall be able to maximally provide assimilation ability of manganese, as microelement, in the desired period of time. And also, determinant of effectiveness and competitiveness of received materials with new composition shall become high content (more than 30%) of microelements in them (in comparison with existed similar products), when the total sum of useful components presented in them (active i.e. assimilated) is more than 50-70%, i.e. received materials belong to the materials having low-ballast and functionally revealed possibilities.

Keywords: manganese, fertilizers, non-ballast, micro- fertilizers

Procedia PDF Downloads 254
8399 Acoustic and Thermal Insulating Materials Based on Natural Fibres Used in Floor Construction

Authors: Jitka Hroudova, Jiri Zach

Abstract:

The majority of contemporary insulation materials commonly used in the building industry is made from non-renewable raw materials; furthermore, their production often brings high energy costs. A long-term trend as far as sustainable development is concerned has been the reduction of energy and material demands of building material production. One of the solutions is the possibility of using easily renewable natural raw material sources which are considerably more ecological and their production is mostly less energy-consuming compared to the production of normal insulations (mineral wool, polystyrene). The paper describes the results of research focused on the development of thermal and acoustic insulation materials based on natural fibres intended for floor constructions. Given the characteristic open porosity of natural fibre materials, the hygrothermal behaviour of the developed materials was studied. Especially the influence of relative humidity and temperature on thermal insulation properties was observed.

Keywords: Green thermal and acoustic insulating materials, natural fibres, technical hemp, flax, floor construction

Procedia PDF Downloads 322
8398 Reliability Based Performance Evaluation of Stone Column Improved Soft Ground

Authors: A. GuhaRay, C. V. S. P. Kiranmayi, S. Rudraraju

Abstract:

The present study considers the effect of variation of different geotechnical random variables in the design of stone column-foundation systems for assessing the bearing capacity and consolidation settlement of highly compressible soil. The soil and stone column properties, spacing, diameter and arrangement of stone columns are considered as the random variables. Probability of failure (Pf) is computed for a target degree of consolidation and a target safe load by Monte Carlo Simulation (MCS). The study shows that the variation in coefficient of radial consolidation (cr) and cohesion of soil (cs) are two most important factors influencing Pf. If the coefficient of variation (COV) of cr exceeds 20%, Pf exceeds 0.001, which is unsafe following the guidelines of US Army Corps of Engineers. The bearing capacity also exceeds its safe value for COV of cs > 30%. It is also observed that as the spacing between the stone column increases, the probability of reaching a target degree of consolidation decreases. Accordingly, design guidelines, considering both consolidation and bearing capacity of improved ground, are proposed for different spacing and diameter of stone columns and geotechnical random variables.

Keywords: bearing capacity, consolidation, geotechnical random variables, probability of failure, stone columns

Procedia PDF Downloads 342
8397 Geomorphology Evidence of Climate Change in Gavkhouni Lagoon, South East Isfahan, Iran

Authors: Manijeh Ghahroudi Tali, Ladan Khedri Gharibvand

Abstract:

Gavkhouni lagoon, in the South East of Isfahan (Iran), is one of the pluvial lakes and legacy of Quaternary era which has emerged during periods with more precipitation and less evaporation. Climate change, lack of water resources and dried freshwater of Zayandehrood resulted in increased entropy and activated a dynamic which in turn is converted to Playa. The morphometry of 61 polygonal clay microforms in wet zone soil, 52 polygonal clay microforms in pediplain zone soil and 63 microforms in sulfate soil, is evaluated by fractal model. After calculating the microforms’ area–perimeter fractal dimension, their turbulence level was analyzed. Fractal dimensions (DAP) obtained from the microforms’ analysis of pediplain zone, wet zone, and sulfate soils are 1/21-1/39, 1/27-1/44 and 1/29-1/41, respectively, which is indicative of turbulence in these zones. Logarithmic graph drawn for each region also shows that there is a linear relationship between logarithm of the microforms’ area and perimeter so that correlation coefficient (R2) obtained for wet zone is larger than 0.96, for pediplain zone is larger than 0.99 and for sulfated zone is 0.9. Increased turbulence in this region suggests morphological transformation of the system and lagoon’s conversion to a new ecosystem which can be accompanied with serious risks.

Keywords: fractal, Gavkhouni, microform, Iran

Procedia PDF Downloads 256
8396 Ground Water Contamination by Tannery Effluents and Its Impact on Human Health in Peshawar, Pakistan

Authors: Fawad Ali, Muhammad Ateeq, Ikhtiar Khan

Abstract:

Ground water, a major source of drinking water supply in Peshawar has been severely contaminated by leather tanning industry. Effluents from the tanneries contain high concentration of chromium besides several other chemical species. Release of untreated effluents from the tanning industry has severely damaged surface and ground water, agriculture soil as well as vegetables and crops. Chromium is a well-known carcinogenic and mutagenic agent. Once in the human food chain, it causes multiple problems to the exposed population including various types of cancer, skin dermatitis, and DNA damage. In order to assess the extent of chromium and other heavy metals contamination, water samples were analyzed for heavy metals using Graphite Furnace Atomic Absorption Spectrometer (GFAAS, Analyst 700, Perkin Elmer). Total concentration of chromium was above the permissible limit (0.048 mg/l) in 85% of the groundwater (drinking water) samples. The concentration of cobalt, manganese, cadmium, nickel, lead, zinc and iron was also determined in the ground water, surface water, agriculture soil, and vegetables samples from the affected area.

Keywords: heavy metals, soil, groundwater, tannery effluents, food chain

Procedia PDF Downloads 330
8395 Comparison of GIS-Based Soil Erosion Susceptibility Models Using Support Vector Machine, Binary Logistic Regression and Artificial Neural Network in the Southwest Amazon Region

Authors: Elaine Lima Da Fonseca, Eliomar Pereira Da Silva Filho

Abstract:

The modeling of areas susceptible to soil loss by hydro erosive processes consists of a simplified instrument of reality with the purpose of predicting future behaviors from the observation and interaction of a set of geoenvironmental factors. The models of potential areas for soil loss will be obtained through binary logistic regression, artificial neural networks, and support vector machines. The choice of the municipality of Colorado do Oeste in the south of the western Amazon is due to soil degradation due to anthropogenic activities, such as agriculture, road construction, overgrazing, deforestation, and environmental and socioeconomic configurations. Initially, a soil erosion inventory map constructed through various field investigations will be designed, including the use of remotely piloted aircraft, orbital imagery, and the PLANAFLORO/RO database. 100 sampling units with the presence of erosion will be selected based on the assumptions indicated in the literature, and, to complement the dichotomous analysis, 100 units with no erosion will be randomly designated. The next step will be the selection of the predictive parameters that exert, jointly, directly, or indirectly, some influence on the mechanism of occurrence of soil erosion events. The chosen predictors are altitude, declivity, aspect or orientation of the slope, curvature of the slope, composite topographic index, flow power index, lineament density, normalized difference vegetation index, drainage density, lithology, soil type, erosivity, and ground surface temperature. After evaluating the relative contribution of each predictor variable, the erosion susceptibility model will be applied to the municipality of Colorado do Oeste - Rondônia through the SPSS Statistic 26 software. Evaluation of the model will occur through the determination of the values of the R² of Cox & Snell and the R² of Nagelkerke, Hosmer and Lemeshow Test, Log Likelihood Value, and Wald Test, in addition to analysis of the Confounding Matrix, ROC Curve and Accumulated Gain according to the model specification. The validation of the synthesis map resulting from both models of the potential risk of soil erosion will occur by means of Kappa indices, accuracy, and sensitivity, as well as by field verification of the classes of susceptibility to erosion using drone photogrammetry. Thus, it is expected to obtain the mapping of the following classes of susceptibility to erosion very low, low, moderate, very high, and high, which may constitute a screening tool to identify areas where more detailed investigations need to be carried out, applying more efficient social resources.

Keywords: modeling, susceptibility to erosion, artificial intelligence, Amazon

Procedia PDF Downloads 53
8394 Getting to Know the Types of Asphalt, Its Manufacturing and Processing Methods and Its Application in Road Construction

Authors: Hamid Fallah

Abstract:

Asphalt is generally a mixture of stone materials with continuous granulation and a binder, which is usually bitumen. Asphalt is made in different shapes according to its use. The most familiar type of asphalt is hot asphalt or hot asphalt concrete. Stone materials usually make up more than 90% of the asphalt mixture. Therefore, stone materials have a significant impact on the quality of the resulting asphalt. According to the method of application and mixing, asphalt is divided into three categories: hot asphalt, protective asphalt, and cold asphalt. Cold mix asphalt is a mixture of stone materials and mixed bitumen or bitumen emulsion whose raw materials are mixed at ambient temperature. In some types of cold asphalt, the bitumen may be heated as necessary, but other materials are mixed with the bitumen without heating. Protective asphalts are used to make the roadbed impermeable, increase its abrasion and sliding resistance, and also temporarily improve the existing asphalt and concrete surfaces. This type of paving is very economical compared to hot asphalt due to the speed and ease of implementation and the limited need for asphalt machines and equipment. The present article, which is prepared in descriptive library form, introduces asphalt, its types, characteristics, and its application.

Keywords: asphalt, type of asphalt, asphalt concrete, sulfur concrete, bitumen in asphalt, sulfur, stone materials

Procedia PDF Downloads 48
8393 Study of Properties of Concretes Made of Local Building Materials and Containing Admixtures, and Their Further Introduction in Construction Operations and Road Building

Authors: Iuri Salukvadze

Abstract:

Development of Georgian Economy largely depends on its effective use of its transit country potential. The value of Georgia as the part of Europe-Asia corridor has increased; this increases the interest of western and eastern countries to Georgia as to the country that laid on the transit axes that implies transit infrastructure creation and development in Georgia. It is important to use compacted concrete with the additive in modern road construction industry. Even in the 21-century, concrete remains as the main vital constructive building material, therefore innovative, economic and environmentally protected technologies are needed. Georgian construction market requires the use of concrete of new generation, adaptation of nanotechnologies to the local realities that will give the ability to create multifunctional, nano-technological high effective materials. It is highly important to research their physical and mechanical states. The study of compacted concrete with the additives is necessary to use in the road construction in the future and to increase hardness of roads in Georgia. The aim of the research is to study the physical-mechanical properties of the compacted concrete with the additives based on the local materials. Any experimental study needs large number of experiments from one side in order to achieve high accuracy and optimal number of the experiments with minimal charges and in the shortest period of time from the other side. To solve this problem in practice, it is possible to use experiments planning static and mathematical methods. For the materials properties research we will use distribution hypothesis, measurements results by normal law according to which divergence of the obtained results is caused by the error of method and inhomogeneity of the object. As the result of the study, we will get resistible compacted concrete with additives for the motor roads that will improve roads infrastructure and give us saving rate while construction of the roads and their exploitation.

Keywords: construction, seismic protection systems, soil, motor roads, concrete

Procedia PDF Downloads 229
8392 Efficacy of Pisum sativum and Arbuscular Mycorrhizal Symbiosis for Phytoextraction of Heavy Metalloids from Soil

Authors: Ritu Chaturvedi, Manoj Paul

Abstract:

A pot experiment was conducted to investigate the effect of Arbuscular mycorrhizal fungus (AMF) on metal(loid) uptake and accumulation efficiency of Pisum sativum along with physiological and biochemical response. Plants were grown in soil spiked with 50 and 100 mg kg-1 Pb, 25 and 50 mg kg-1 Cd, 50 and 100 mg kg-1 As and a combination of all three metal(loid)s. A parallel set was maintained and inoculated with arbuscular mycorrhizal fungus for comparison. After 60 days, plants were harvested and analysed for metal(loid) content. A steady increase in metal(loid) accumulation was observed on increment of metal(loid) dose and also on AMF inoculation. Plant height, biomass, chlorophyll, carotenoid and carbohydrate content reduced upon metal(loid) exposure. Increase in enzymatic (CAT, SOD and APX) and nonenzymatic (Proline) defence proteins was observed on metal(loid) exposure. AMF inoculation leads to an increase in plant height, biomass, chlorophyll, carotenoids, carbohydrate and enzymatic defence proteins (p≤0.001) under study; whereas proline content was reduced. Considering the accumulation efficiency and adaptive response of plants and alleviation of stress by AMF, this symbiosis can be applied for on-site remediation of Pb and Cd contaminated soil.

Keywords: heavy metal, mycorrhiza, pea, phyroremediation

Procedia PDF Downloads 217
8391 Influence of Organic Supplements on Shoot Multiplication Efficiency of Phaius tankervilleae var. alba

Authors: T. Punjansing, M. Nakkuntod, S. Homchan, P. Inthima, A. Kongbangkerd

Abstract:

The influence of organic supplements on growth and multiplication efficiency of Phaius tankervilleae var. alba seedlings was investigated. 12 week-old seedlings were cultured on half-strength semi-solid Murashige and Skoog (MS) medium supplemented with 30 g/L sucrose, 8 g/L agar and various concentrations of coconut water (0, 50, 100, 150 and 200 mL/L) combined with potato extract (0, 25 and 50 g/L) and the pH was adjusted to 5.8 prior to autoclaving. The cultures were then kept under constant photoperiod (16 h light: 8 h dark) at 25 ± 2 °C for 12 weeks. The highest number of shoots (3.0 shoots/explant) was obtained when cultured on the medium added with 50 ml/L coconut water and 50 g/L potato extract whereas the highest number of leaves (5.9 leaves/explant) and roots (6.1 roots/explant) could receive on the medium supplemented with 150 ml/L coconut water and 50 g/L potato extract. with 150 ml/L coconut water and 50 g/L potato extract. Additionally, plantlets of P. tankervilleae var. alba were transferred to grow into seven different substrates i.e. soil, sand, coconut husk chip, soil-sand mix (1: 1), soil-coconut husk chip mix (1: 1), sand-coconut husk chip mix (1: 1) and soil-sand-coconut husk chip mix (1: 1: 1) for four weeks. The results found that acclimatized plants showed 100% of survivals when sand, coconut husk chip and sand-coconut husk chip mix are used as substrates. The number of leaves induced by sand-coconut husk chip mix was significantly higher than that planted in other substrates (P > 0.05). Meanwhile, no significant difference in new shoot formation among these substrates was observed (P < 0.05). This precursory developing protocol was likely to be applied for more large scale of plant production as well as conservation of germplasm of this orchid species.

Keywords: organic supplements, acclimatization, Phaius tankervilleae var. alba, orchid

Procedia PDF Downloads 214
8390 Practical Guide To Design Dynamic Block-Type Shallow Foundation Supporting Vibrating Machine

Authors: Dodi Ikhsanshaleh

Abstract:

When subjected to dynamic load, foundation oscillates in the way that depends on the soil behaviour, the geometry and inertia of the foundation and the dynamic exctation. The practical guideline to analysis block-type foundation excitated by dynamic load from vibrating machine is presented. The analysis use Lumped Mass Parameter Method to express dynamic properties such as stiffness and damping of soil. The numerical examples are performed on design block-type foundation supporting gas turbine compressor which is important equipment package in gas processing plant

Keywords: block foundation, dynamic load, lumped mass parameter

Procedia PDF Downloads 474
8389 Thermal Decontamination of Soils Polluted by Polychlorinated Biphenyls and Microplastics

Authors: Roya Biabani, Mentore Vaccari, Piero Ferrari

Abstract:

Accumulated microplastic (MPLs) in soil pose the risk of adsorbing and transporting polychlorinated biphenyls (PCBs) into the food chain or bodies. PCBs belong to a class of man-made hydrophobic organic chemicals (HOCs) that are classified as probable human carcinogens and a hazard to biota. Therefore, to take effective action and not aggravate the already recognized problems, the knowledge of PCB remediation in the presence of MPLs needs to be complete. Due to the high efficiency and little secondary pollution production, thermal desorption (TD) has been widely used for processing a variety of pollutants, especially for removing volatile and semi-volatile organic matter from contaminated solids and sediment. This study investigates the fate of PCB compounds during the thermal remediation method. For this, the PCB-contaminated soil was collected from the earth-canal downstream Caffaro S.p.A. chemical factory, which produced PCBs and PCB mixtures between 1930 and 1984. For MPL analysis, MPLs were separated by density separation and oxidation of organic matter. An operational range for the key parameters of thermal desorption processes was experimentally evaluated. Moreover, the temperature treatment characteristics of the PCBs-contaminated soil under anaerobic and aerobic conditions were studied using the Thermogravimetric Analysis (TGA).

Keywords: contaminated soils, microplastics, polychlorinated biphenyls, thermal desorption

Procedia PDF Downloads 87
8388 Allelopathic Effect of Duranta Repens on Salinity-Stressed Solanum Lycopersicum Seedlings

Authors: Olusola Nafisat Omoniyi

Abstract:

Aqueous extract of Duranta repens leaves was investigated for its allelopathic effect on Solanum lycopersicum Seedlings germinated and grown under salinity condition. The study was carried out using both laboratory petri dish and pot assays to simulate the plant’s natural environmental conditions. The experiment consisted of 5 groups (1-5), each containing 5 replicates (of 10 seeds). Group 1 was treated with distilled water; Group 2 was treated with 5 mM NaCl; Group 3 was treated with the Extract, Group 4 was treated with a mixture of 5 mM NaCl and the Extract (2:1 v/v), and Group 5 was treated with a mixture of 5 mM NaCl and the Extract (1:2 v/v). The results showed that treatment with NaCl caused significant reductions in germination, growth parameters (plumule and radicle lengths), and chlorophyll concentration of S. lycopersicum seedlings when compared to those treated with D. rupens aqueous leaf extract. Salinity also caused an increase in malondialdehyde and proline concentrations and lowered the activity of superoxide dismutase. However, in the presence of the extract, the adverse effects of the NaCl were attenuated, implying that the extract improved tolerance of S. lycopersicum seedlings. In conclusion, the findings of this study show that the extract is very important in the optimal growth of the plant in saline soil, which has become useful for the management of soil salinity problems.

Keywords: agriculture, allelopathic, salinity, soil, tomato, production, photosynthesis

Procedia PDF Downloads 201
8387 Regulation of Transfer of 137cs by Polymeric Sorbents for Grow Ecologically Sound Biomass

Authors: A. H. Tadevosyan, S. K. Mayrapetyan, N. B. Tavakalyan, K. I. Pyuskyulyan, A. H. Hovsepyan, S. N. Sergeeva

Abstract:

Soil contamination with radiocesium has a long-term radiological impact due to its long physical half-life (30.1 years for 137Cs and 2 years for 134Cs) and its high biological availability. 137Cs causes the largest concerns because of its deleterious effect on agriculture and stock farming, and, thus, human life for decades. One of the important aspects of the problem of contaminated soils remediation is understand of protective actions aimed at the reduction of biological migration of radionuclides in soil-plant system. The most effective way to bind radionuclides is the use of selective sorbents. The proposed research mainly aims to achieve control on transfer of 137Cs in a system growing media–plant due to counter ions variation in the polymeric sorbents. As the research object, Japanese basil-Perilla frutescens was chosen. Productivity of plants depending on the presence (control-without presence of polymer) and type of polymer material, as well as content of 137Cs in plant material has been determined. The character of different polymers influences on the 137Cs migration in growing media–plant system as well as accumulation in the plants has been cleared up.

Keywords: radioceaseum, Japanese basil, polymer, soil-plant system

Procedia PDF Downloads 173
8386 The Mechanical Behavior of a Chemically Stabilized Soil

Authors: I Lamri, L Arabet, M. Hidjeb

Abstract:

The direct shear test was used to determine the shear strength parameters C and Ø of a series of samples with different cement content. Samples stabilized with a certain percentage of cement showed a substantial gain in compressive strength and a significant increase in shear strength parameters. C and Ø. The laboratory equipment used in UCS tests consisted of a conventional 102mm diameter sample triaxial loading machine. Beyond 4% cement content a very important increase in shear strength was observed. It can be deduced from a comparative study of shear strength of soil samples with 4%, 7%, and 10% cement with sample containing 2 %, that the sample with a 4% cement content showed 90% increase in shear strength while those with 7% and 10% showed an increase of around 13 and 21 fold.

Keywords: cement, compression strength, shear stress, cohesion, angle of internal friction

Procedia PDF Downloads 473
8385 Design of Raw Water Reservoir on Sandy Soil

Authors: Venkata Ramana Pamu

Abstract:

This paper is a case study of a 5310 ML capacity Raw Water Reservoir (RWR), situated in Indian state Rajasthan, which is a part of Rajasthan Rural Water Supply & Fluorosis Mitigation Project. This RWR embankment was constructed by locally available material on natural ground profile. Height of the embankment was varying from 2m to 10m.This is due to existing ground level was varying. Reservoir depth 9m including 1.5m free board and 1V:3H slopes were provided both upstream and downstream side. Proper soil investigation, tests were done and it was confirmed that the existing soil is sandy silt. The existing excavated earth was used as filling material for embankment construction, due to this controlling seepage from upstream to downstream be a challenging task. Slope stability and Seismic analysis of the embankment done by Conventional method for both full reservoir condition and rapid drawdown. Horizontal filter at toe level was provided along with upstream side PCC (Plain Cement Concrete) block and HDPE (High Density poly ethylene) lining as a remedy to control seepage. HDPE lining was also provided at storage area of the reservoir bed level. Mulching was done for downstream side slope protection.

Keywords: raw water reservoir, seepage, seismic analysis, slope stability

Procedia PDF Downloads 487
8384 Proposal for Sustainable Construction of a New College Hostel Building

Authors: Reshma Raskar-Phule, Abhay Shinde, Manesh Konkani, Rohit Nighot, Shrirang Mahajan, Viraj Thorat

Abstract:

Sustainability in construction projects can be considered from three dimensions - environment, economy and society. Key concepts of sustainable construction include the protection of the natural environment, choice of non-toxic materials, reduction and reuse of resources, waste minimization, and life cycle analysis. The present paper attempts to identify and analyze the use of sustainable construction materials for a new college hostel building in terms of sustainability development indices (SDIs). Low SDI materials, say as composite fiberglass reinforcement (SDI 4074.96), compressed earth blocks (SDI 0.47), and fiber-reinforced doors (SDI 0.13) are the proposed sustainable materials for the hostel building. Indian Green Building Certification (IGBC) is applied for the hostel building and it earns 5 points out of total 16 points for criterion 5 – Building Materials and Resources of IGBC.

Keywords: sustainable development, construction materials, IGBC, hostel building

Procedia PDF Downloads 99
8383 Ultrasound-Assisted Soil Washing Process for the Removal of Heavy Metals from Clays

Authors: Sophie Herr, Antoine Leybros, Yves Barre, Sergey Nikitenko, Rachel Pflieger

Abstract:

The proportion of soil contaminated by a wide range of pollutants (heavy metals, PCBs, pesticides, etc.) of anthropogenic origin is constantly increasing, and it is becoming urgent to address this issue. Among remediation methods, soil washing is an effective, relatively fast, and widely used process. This study assesses its coupling with ultrasound: indeed, sonication induces the formation of cavitation bubbles in solution that enhance local mass transfer through agitation and particle erosion. The removal of target toxic elements Ni(II) and Zn(II) from vermiculite clay has been studied under 20 kHz ultrasound and silent conditions. Several acids were tested, and HCl was chosen as the solvent. The effects of solid/liquid ratio and particle size were investigated. Metal repartition in the clay has been followed by Tessier's sequential extraction procedure. The results showed that more metal elements bound to the challenging residual phase were desorbed with 20 kHz ultrasound than in silent conditions. This supports the promising application of ultrasound for heavy metal desorption in difficult conditions. Further experiments were performed at high-frequency US (362 kHz), and it was shown that fragmentation of the vermiculite particles is then limited, while positive effects of US in the decontamination are kept.

Keywords: desorption, heavy metals, ultrasound, vermiculite

Procedia PDF Downloads 129
8382 Estimation of Soil Nutrient Content Using Google Earth and Pleiades Satellite Imagery for Small Farms

Authors: Lucas Barbosa Da Silva, Jun Okamoto Jr.

Abstract:

Precision Agriculture has long being benefited from crop fields’ aerial imagery. This important tool has allowed identifying patterns in crop fields, generating useful information to the production management. Reflectance intensity data in different ranges from the electromagnetic spectrum may indicate presence or absence of nutrients in the soil of an area. Different relations between the different light bands may generate even more detailed information. The knowledge of the nutrients content in the soil or in the crop during its growth is a valuable asset to the farmer that seeks to optimize its yield. However, small farmers in Brazil often lack the resources to access this kind information, and, even when they do, it is not presented in a comprehensive and/or objective way. So, the challenges of implementing this technology ranges from the sampling of the imagery, using aerial platforms, building of a mosaic with the images to cover the entire crop field, extracting the reflectance information from it and analyzing its relationship with the parameters of interest, to the display of the results in a manner that the farmer may take the necessary decisions more objectively. In this work, it’s proposed an analysis of soil nutrient contents based on image processing of satellite imagery and comparing its outtakes with commercial laboratory’s chemical analysis. Also, sources of satellite imagery are compared, to assess the feasibility of using Google Earth data in this application, and the impacts of doing so, versus the application of imagery from satellites like Landsat-8 and Pleiades. Furthermore, an algorithm for building mosaics is implemented using Google Earth imagery and finally, the possibility of using unmanned aerial vehicles is analyzed. From the data obtained, some soil parameters are estimated, namely, the content of Potassium, Phosphorus, Boron, Manganese, among others. The suitability of Google Earth Imagery for this application is verified within a reasonable margin, when compared to Pleiades Satellite imagery and to the current commercial model. It is also verified that the mosaic construction method has little or no influence on the estimation results. Variability maps are created over the covered area and the impacts of the image resolution and sample time frame are discussed, allowing easy assessments of the results. The final results show that easy and cheaper remote sensing and analysis methods are possible and feasible alternatives for the small farmer, with little access to technological and/or financial resources, to make more accurate decisions about soil nutrient management.

Keywords: remote sensing, precision agriculture, mosaic, soil, nutrient content, satellite imagery, aerial imagery

Procedia PDF Downloads 160
8381 Estimations of Spectral Dependence of Tropospheric Aerosol Single Scattering Albedo in Sukhothai, Thailand

Authors: Siriluk Ruangrungrote

Abstract:

Analyses of available data from MFR-7 measurement were performed and discussed on the study of tropospheric aerosol and its consequence in Thailand. Since, ASSA (w) is one of the most important parameters for a determination of aerosol effect on radioactive forcing. Here the estimation of w was directly determined in terms of the ratio of aerosol scattering optical depth to aerosol extinction optical depth (ωscat/ωext) without any utilization of aerosol computer code models. This is of benefit for providing the elimination of uncertainty causing by the modeling assumptions and the estimation of actual aerosol input data. Diurnal w of 5 cloudless-days in winter and early summer at 5 distinct wavelengths of 415, 500, 615, 673 and 870 nm with the consideration of Rayleigh scattering and atmospheric column NO2 and Ozone contents were investigated, respectively. Besides, the tendency of spectral dependence of ω representing two seasons was observed. The characteristic of spectral results reveals that during wintertime the atmosphere of the inland rural vicinity for the period of measurement possibly dominated with a lesser amount of soil dust aerosols loading than one in early summer. Hence, the major aerosol loading particularly in summer was subject to a mixture of both soil dust and biomass burning aerosols.

Keywords: aerosol scattering optical depth, aerosol extinction optical depth, biomass burning aerosol, soil dust aerosol

Procedia PDF Downloads 394
8380 Risk Assessment of Heavy Metals in Soils at Electronic Waste Activity Sites within the Vicinity of Alaba International Market, Nigeria

Authors: A. A. Adebayo, A. O. Ogunkeyede, A. O. Adeigbe

Abstract:

Digital globalisation and yarn of Nigeria society to overcome the digital divide have resulted in contamination of soil by heavy metals (HMs) from e-waste activities at Alaba international market, Lagos, Nigeria. The aim of this research was to determine the concentration of various metals {Cadmium (Cd), Chromium (Cr), Copper (Cu), and Lead (Pb)} and identify their ecological and health risks for the people within the study area. A total of 60 soil samples were collected at Alaba market study area. Two types of samples were collected from each sampling points: topsoil (0-15 cm), subsoil (15 -30 cm). The metal concentration results showed that the soils were heavily contaminated by HMs at topsoil and subsoil. The geoaccummulation and ecological risk indices revealed high pollution level from all studied site. The health risk assessment results suggested that there is high possibility of carcinogenic risk to humans because the carcinogenic risk via corresponding exposure pathways exceeded the safety limit of 10-6 (the acceptable level of carcinogenic risk for human). Furthermore, inhalation of soil particles is the main exposure pathway for Cr to enter the human body for all ages. Children in the vicinity are exposed more to ingestion of Pb since they tend to eat earth (pica) and repeatedly suck their fingers. This study provides basic information to create awareness for a need to introduce pollution control measures and the need to protect the ecosystem and human health within the study area at Alaba international market.

Keywords: contaminated soil, ecological risk, hazard index, risk factor, exposure pathways, heavy metals

Procedia PDF Downloads 242
8379 Thermal Technologies Applications for Soil Remediation

Authors: A. de Folly d’Auris, R. Bagatin, P. Filtri

Abstract:

This paper discusses the importance of having a good initial characterization of soil samples when thermal desorption has to be applied to polluted soils for the removal of contaminants. Particular attention has to be devoted on the desorption kinetics of the samples to identify the gases evolved during the heating, and contaminant degradation pathways. In this study, two samples coming from different points of the same contaminated site were considered. The samples are much different from each other. Moreover, the presence of high initial quantity of heavy hydrocarbons strongly affected the performance of thermal desorption, resulting in formation of dangerous intermediates. Analytical techniques such TGA (Thermogravimetric Analysis), DSC (Differential Scanning Calorimetry) and GC-MS (Gas Chromatography-Mass) provided a good support to give correct indication for field application.

Keywords: desorption kinetics, hydrocarbons, thermal desorption, thermogravimetric measurements

Procedia PDF Downloads 278
8378 Methylene Blue Removal Using NiO nanoparticles-Sand Adsorption Packed Bed

Authors: Nedal N. Marei, Nashaat Nassar

Abstract:

Many treatment techniques have been used to remove the soluble pollutants from wastewater as; dyes and metal ions which could be found in rich amount in the used water of the textile and tanneries industry. The effluents from these industries are complex, containing a wide variety of dyes and other contaminants, such as dispersants, acids, bases, salts, detergents, humectants, oxidants, and others. These techniques can be divided into physical, chemical, and biological methods. Adsorption has been developed as an efficient method for the removal of heavy metals from contaminated water and soil. It is now recognized as an effective method for the removal of both organic and inorganic pollutants from wastewaters. Nanosize materials are new functional materials, which offer high surface area and have come up as effective adsorbents. Nano alumina is one of the most important ceramic materials widely used as an electrical insulator, presenting exceptionally high resistance to chemical agents, as well as giving excellent performance as a catalyst for many chemical reactions, in microelectronic, membrane applications, and water and wastewater treatment. In this study, methylene blue (MB) dye has been used as model dye of textile wastewater in order to synthesize a synthetic MB wastewater. NiO nanoparticles were added in small percentage in the sand packed bed adsorption columns to remove the MB from the synthetic textile wastewater. Moreover, different parameters have been evaluated; flow of the synthetic wastewater, pH, height of the bed, percentage of the NiO to the sand in the packed material. Different mathematical models where employed to find the proper model which describe the experimental data and help to analyze the mechanism of the MB adsorption. This study will provide good understanding of the dyes adsorption using metal oxide nanoparticles in the classical sand bed.

Keywords: adsorption, column, nanoparticles, methylene

Procedia PDF Downloads 249
8377 Characterization of the Microbial Induced Carbonate Precipitation Technique as a Biological Cementing Agent for Sand Deposits

Authors: Sameh Abu El-Soud, Zahra Zayed, Safwan Khedr, Adel M. Belal

Abstract:

The population increase in Egypt is urging for horizontal land development which became a demand to allow the benefit of different natural resources and expand from the narrow Nile valley. However, this development is facing challenges preventing land development and agriculture development. Desertification and moving sand dunes in the west sector of Egypt are considered the major obstacle that is blocking the ideal land use and development. In the proposed research, the sandy soil is treated biologically using Bacillus pasteurii bacteria as these bacteria have the ability to bond the sand partials to change its state of loose sand to cemented sand, which reduces the moving ability of the sand dunes. The procedure of implementing the Microbial Induced Carbonate Precipitation Technique (MICP) technique is examined, and the different factors affecting on this process such as the medium of bacteria sample preparation, the optical density (OD600), the reactant concentration, injection rates and intervals are highlighted. Based on the findings of the MICP treatment for sandy soil, conclusions and future recommendations are reached.

Keywords: soil stabilization, biological treatment, microbial induced carbonate precipitation (MICP), sand cementation

Procedia PDF Downloads 231
8376 An Environmental Method for Renovation of Sewer Systems in Building Structures

Authors: Parastou Kharazmi

Abstract:

Degradation of building materials particularly pipelines causes environmental damage during the renovation or replacement, disturbance for people living in the buildings, is time-consuming and last but not least is very costly. Rehabilitation by composite materials is a solution for renovation of degraded pipeline in residential buildings and any other structures which is less costly, faster and causes less damage to the environment. This study provides a brief state of technology, methods, and materials which are being used in Nordic and some other European countries and an investigation on the performance of the relined pipes after they have been in working condition. The investigation was carried by different analyses in laboratory as well as numerous field inspections.

Keywords: buildings, pipeline, rehabilitation, polymer materials

Procedia PDF Downloads 228
8375 Non-Contact Measurement of Soil Deformation in a Cyclic Triaxial Test

Authors: Erica Elice Uy, Toshihiro Noda, Kentaro Nakai, Jonathan Dungca

Abstract:

Deformation in a conventional cyclic triaxial test is normally measured by using point-wise measuring device. In this study, non-contact measurement technique was applied to be able to monitor and measure the occurrence of non-homogeneous behavior of the soil under cyclic loading. Non-contact measurement is executed through image processing. Two-dimensional measurements were performed using Lucas and Kanade optical flow algorithm and it was implemented Labview. In this technique, the non-homogeneous deformation was monitored using a mirrorless camera. A mirrorless camera was used because it is economical and it has the capacity to take pictures at a fast rate. The camera was first calibrated to remove the distortion brought about the lens and the testing environment as well. Calibration was divided into 2 phases. The first phase was the calibration of the camera parameters and distortion caused by the lens. The second phase was to for eliminating the distortion brought about the triaxial plexiglass. A correction factor was established from this phase. A series of consolidated undrained cyclic triaxial test was performed using a coarse soil. The results from the non-contact measurement technique were compared to the measured deformation from the linear variable displacement transducer. It was observed that deformation was higher at the area where failure occurs.

Keywords: cyclic loading, non-contact measurement, non-homogeneous, optical flow

Procedia PDF Downloads 290
8374 Adsorption of Phenol and 4-Hydroxybenzoic Acid onto Functional Materials

Authors: Mourad Makhlouf, Omar Bouchher, Messabih Sidi Mohamed, Benrachedi Khaled

Abstract:

The objective of this study was to investigate the removal of two organic pollutants; 4-hydroxybenzoic acid (p-hydroxybenzoic acid) and phenol from synthetic wastewater by the adsorption on mesoporous materials. In this context, the aim of this work is to study the adsorption of organic compounds phenol and 4AHB on MCM-41 and FSM-16 non-grafted (NG) and other grafted (G) by trimethylchlorosilane (TMCS). The results of phenol and 4AHB adsorption in aqueous solution show that the adsorption capacity tends to increase after grafting in relation to the increase in hydrophobicity. The materials are distinguished by a higher adsorption capacity to the other NG materials. The difference in the phenol is 14.43% (MCM-41), 14.55% (FSM-16), and 16.72% (MCM-41), 13.57% (FSM-16) in the 4AHB. Our adsorption results show that the grafted materials by TMCS are good adsorbent at 25 °C.

Keywords: MCM-41, FSM-16, TMCS, phenol, 4AHB

Procedia PDF Downloads 250
8373 Provision of Slope Stability with Barette Piles: A Case Analysis

Authors: Leyla Yesilbas, M. Sukru Ozcoban, M. Ergenekon Selcuk

Abstract:

From past to present, there is a constant need for engineering structures such as high-rise buildings, wide-span bridges, airports and stadiums, business towers due to technological developments and increasing population. Because of the large loads transferred from the superstructure to the ground layers in these types of structures, the bearing strength and seating problems usually occur on the floors. In order to solve these problems, piled foundations are used by passing the weak soil layers and transferring the loads from the superstructure to the solid soil layers. Considering the factors such as the characteristics of the building to be constructed, the purpose and location of the building, the basic cost of the pile should be at normal levels. When these requirements are taken into consideration, a new basic system called 'Barette Foundation' has been developed. In this thesis, an application made to provide slope stability with 'Baret Piles' was investigated. In addition, the ground parameters obtained from the field and laboratory experiments were numerically modeled using a PLAXİS 2D finite element software and barette piles. The effects of barette piles on slope stability were investigated by numerical analysis, and the results of inclinometer measurements in the field were compared with numerical analysis results.

Keywords: barette pile, PLAXİS 2D, slope, soil

Procedia PDF Downloads 107
8372 Development of Gully Erosion Prediction Model in Sokoto State, Nigeria, using Remote Sensing and Geographical Information System Techniques

Authors: Nathaniel Bayode Eniolorunda, Murtala Abubakar Gada, Sheikh Danjuma Abubakar

Abstract:

The challenge of erosion in the study area is persistent, suggesting the need for a better understanding of the mechanisms that drive it. Thus, the study evolved a predictive erosion model (RUSLE_Sok), deploying Remote Sensing (RS) and Geographical Information System (GIS) tools. The nature and pattern of the factors of erosion were characterized, while soil losses were quantified. Factors’ impacts were also measured, and the morphometry of gullies was described. Data on the five factors of RUSLE and distances to settlements, rivers and roads (K, R, LS, P, C, DS DRd and DRv) were combined and processed following standard RS and GIS algorithms. Harmonized World Soil Data (HWSD), Shuttle Radar Topographical Mission (SRTM) image, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Sentinel-2 image accessed and processed within the Google Earth Engine, road network and settlements were the data combined and calibrated into the factors for erosion modeling. A gully morphometric study was conducted at some purposively selected sites. Factors of soil erosion showed low, moderate, to high patterns. Soil losses ranged from 0 to 32.81 tons/ha/year, classified into low (97.6%), moderate (0.2%), severe (1.1%) and very severe (1.05%) forms. The multiple regression analysis shows that factors statistically significantly predicted soil loss, F (8, 153) = 55.663, p < .0005. Except for the C-Factor with a negative coefficient, all other factors were positive, with contributions in the order of LS>C>R>P>DRv>K>DS>DRd. Gullies are generally from less than 100m to about 3km in length. Average minimum and maximum depths at gully heads are 0.6 and 1.2m, while those at mid-stream are 1 and 1.9m, respectively. The minimum downstream depth is 1.3m, while that for the maximum is 4.7m. Deeper gullies exist in proximity to rivers. With minimum and maximum gully elevation values ranging between 229 and 338m and an average slope of about 3.2%, the study area is relatively flat. The study concluded that major erosion influencers in the study area are topography and vegetation cover and that the RUSLE_Sok well predicted soil loss more effectively than ordinary RUSLE. The adoption of conservation measures such as tree planting and contour ploughing on sloppy farmlands was recommended.

Keywords: RUSLE_Sok, Sokoto, google earth engine, sentinel-2, erosion

Procedia PDF Downloads 53
8371 Beyond Typical Textbooks: Adapting Authentic Materials for Engaged Learning in the ELT Classroom

Authors: Fatemeh Miraki

Abstract:

The use of authentic materials in English Language Teaching (ELT) has become increasingly prominent as educators recognize the value of exposing learners to real-world language use and cultural contexts. The integration of authentic materials in ELT aligns with the understanding that language learning is most effective when situated within authentic contexts (Richards & Rodgers, 2001). Tomlinson (1998) highlights the significance of authentic materials in ELT by research indicating that they offer learners exposure to genuine language use and cultural contexts. Tomlinson's work emphasizes the importance of creating meaningful learning experiences through the use of authentic materials. Research by Dörnyei (2001) underscores the potential of authentic materials to enhance students' intrinsic motivation through their relevance to real-life language use. The goal of this review paper is to explore the use of authentic materials in English Language Teaching (ELT) and its impact on language learning. It also discusses best practices for selecting and integrating such authentic materials into ELT curriculum, highlighting the benefits and challenges of using authentic materials to enhance student engagement, motivation, and language proficiency. Drawing on current research and practical examples, this paper provides insights into how teachers can effectively navigate the world of authentic materials to create dynamic and meaningful learning experiences for 21st century ELT learners. The findings of this study advocates for a shift towards embracing authentic materials within the ELT classroom, acknowledging their profound impact on language proficiency, intercultural competence, and learner engagement. It showed the transformative potential of authentic materials, educators can undergo a vibrant and immersive language learning experience, enriched with real-world application and cultural authenticity.

Keywords: authentic materials, ELT Classroom, ELT curriculum, students’ engagement

Procedia PDF Downloads 40