Search results for: producing units
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2772

Search results for: producing units

1512 Contribution of the Cogeneration Systems to Environment and Sustainability

Authors: Kemal Çomakli, Uğur Çakir, Ayşegül Çokgez Kuş, Erol Şahin

Abstract:

Kind of energy that buildings need changes in various types, like heating energy, cooling energy, electrical energy and thermal energy for hot top water. Usually the processes or systems produce thermal energy causes emitting pollutant emissions while they produce heat because of fossil fuels they use. A lower consumption of thermal energy will contribute not only to a reduction in the running costs, but also in the reduction of pollutant emissions that contribute to the greenhouse effect and a lesser dependence of the hospital on the external power supply. Cogeneration or CHP (Combined heat and Power) is the system that produces power and usable heat simultaneously. Combined production of mechanical or electrical and thermal energy using a simple energy source, such as oil, coal, natural or liquefied gas, biomass or the sun; affords remarkable energy savings and frequently makes it possible to operate with greater efficiency when compared to a system producing heat and power separately. Because of the life standard of humanity in new age, energy sources must be continually and best qualified. For this reason the installation of a system for the simultaneous generation of electrical, heating and cooling energy would be one of the best solutions if we want to have qualified energy and reduce investment and operating costs and meet ecological requirements. This study aims to bring out the contributions of cogeneration systems to the environment and sustainability by saving the energy and reducing the emissions.

Keywords: sustainability, cogeneration systems, energy economy, energy saving

Procedia PDF Downloads 511
1511 Bystanders' Behavior during Emergencies

Authors: Alan (Avi) Kirschenbaum, Carmit Rapaport

Abstract:

The behavior of bystanders in emergencies and disasters have been examined for over 50 years. Such acts have been cited as contributing to saving lives in terms of providing first responder help until official emergency units can arrive. Several reasons have been suggested for this type of behavior but most focused on a broad segment of individual psychological decision-making processes. Recent theoretical evidence suggests that the external factors for such bystander decisions, mainly disaster community based social contexts factors, are also important. We aim to test these competing arguments. Specifically, we examine alternative explanatory perspectives by focusing on self-efficacy as a proxy for the accepted individual psychological case and contrast it with potential bystander characteristics of the individual as well factors as embedded in the social context of the disaster community. To do so, we will utilize a random sampling of the population from a field study of an urban community in Israel that experienced five years of continuous terror attacks. The results strongly suggest that self-efficacy, as well as external factors: preparedness and having skills for intervention during emergencies along with gender best, predict potential helping behaviors. These results broaden our view of bystander behavior and open a window for enhancing this phenomenon as another element in disaster and crisis management.

Keywords: bystander behavior, disasters emergencies, psychological motivation to help, social context for helping

Procedia PDF Downloads 120
1510 Up-Scaling of Highly Transparent Quasi-Solid State Dye-Sensitized Solar Devices Composed of Nanocomposite Materials

Authors: Dimitra Sygkridou, Andreas Rapsomanikis, Elias Stathatos, Polycarpos Falaras, Evangelos Vitoratos

Abstract:

At the present work highly transparent strip type quasi-solid state dye-sensitized solar cells (DSSCs) were fabricated through inkjet printing using nanocomposite TiO2 inks as raw materials and tested under outdoor illumination conditions. The cells, which can be considered as the structural units of large area modules, were fully characterized electrically and electrochemically and after the evaluation of the received results a large area DSSC module was manufactured. The module design was a sandwich Z-interconnection where the working electrode is deposited on one conductive glass and the counter electrode on a second glass. Silver current collective fingers were printed on the conductive glasses to make the internal electrical connections and the adjacent cells were connected in series and finally insulated using a UV curing resin to protect them from the corrosive (I-/I3-) redox couple of the electrolyte. Finally, outdoor tests were carried out to the fabricated dye-sensitized solar module and its performance data were collected and assessed.

Keywords: dye-sensitized solar devices, inkjet printing, quasi-solid state electrolyte, transparency, up-scaling

Procedia PDF Downloads 334
1509 A Domain Specific Modeling Language Semantic Model for Artefact Orientation

Authors: Bunakiye R. Japheth, Ogude U. Cyril

Abstract:

Since the process of transforming user requirements to modeling constructs are not very well supported by domain-specific frameworks, it became necessary to integrate domain requirements with the specific architectures to achieve an integrated customizable solutions space via artifact orientation. Domain-specific modeling language specifications of model-driven engineering technologies focus more on requirements within a particular domain, which can be tailored to aid the domain expert in expressing domain concepts effectively. Modeling processes through domain-specific language formalisms are highly volatile due to dependencies on domain concepts or used process models. A capable solution is given by artifact orientation that stresses on the results rather than expressing a strict dependence on complicated platforms for model creation and development. Based on this premise, domain-specific methods for producing artifacts without having to take into account the complexity and variability of platforms for model definitions can be integrated to support customizable development. In this paper, we discuss methods for the integration capabilities and necessities within a common structure and semantics that contribute a metamodel for artifact-orientation, which leads to a reusable software layer with concrete syntax capable of determining design intents from domain expert. These concepts forming the language formalism are established from models explained within the oil and gas pipelines industry.

Keywords: control process, metrics of engineering, structured abstraction, semantic model

Procedia PDF Downloads 137
1508 Machine Learning Algorithms for Rocket Propulsion

Authors: Rômulo Eustáquio Martins de Souza, Paulo Alexandre Rodrigues de Vasconcelos Figueiredo

Abstract:

In recent years, there has been a surge in interest in applying artificial intelligence techniques, particularly machine learning algorithms. Machine learning is a data-analysis technique that automates the creation of analytical models, making it especially useful for designing complex situations. As a result, this technology aids in reducing human intervention while producing accurate results. This methodology is also extensively used in aerospace engineering since this is a field that encompasses several high-complexity operations, such as rocket propulsion. Rocket propulsion is a high-risk operation in which engine failure could result in the loss of life. As a result, it is critical to use computational methods capable of precisely representing the spacecraft's analytical model to guarantee its security and operation. Thus, this paper describes the use of machine learning algorithms for rocket propulsion to aid the realization that this technique is an efficient way to deal with challenging and restrictive aerospace engineering activities. The paper focuses on three machine-learning-aided rocket propulsion applications: set-point control of an expander-bleed rocket engine, supersonic retro-propulsion of a small-scale rocket, and leak detection and isolation on rocket engine data. This paper describes the data-driven methods used for each implementation in depth and presents the obtained results.

Keywords: data analysis, modeling, machine learning, aerospace, rocket propulsion

Procedia PDF Downloads 106
1507 Development of an Automatic Monitoring System Based on the Open Architecture Concept

Authors: Andrii Biloshchytskyi, Serik Omirbayev, Alexandr Neftissov, Sapar Toxanov, Svitlana Biloshchytska, Adil Faizullin

Abstract:

Kazakhstan has adopted a carbon neutrality strategy until 2060. In accordance with this strategy, it is necessary to introduce various tools to maintain the environmental safety of the environment. The use of IoT, in combination with the characteristics and requirements of Kazakhstan's environmental legislation, makes it possible to develop a modern environmental monitoring system. The article proposes a solution for developing an example of an automated system for the continuous collection of data on the concentration of pollutants in the atmosphere based on an open architecture. The Audino-based device acts as a microcontroller. It should be noted that the transmission of measured values is carried out via an open wireless communication protocol. The architecture of the system, which was used to build a prototype based on sensors, an Arduino microcontroller, and a wireless data transmission module, is presented. The selection of elementary components may change depending on the requirements of the system; the introduction of new units is limited by the number of ports. The openness of solutions allows you to change the configuration depending on the conditions. The advantages of the solutions are openness, low cost, versatility and mobility. However, there is no comparison of the working processes of the proposed solution with traditional ones.

Keywords: environmental monitoring, greenhouse gases emissions, environmental pollution, Industry 4.0, IoT, microcontroller, automated monitoring system.

Procedia PDF Downloads 41
1506 Hybrid Genetic Approach for Solving Economic Dispatch Problems with Valve-Point Effect

Authors: Mohamed I. Mahrous, Mohamed G. Ashmawy

Abstract:

Hybrid genetic algorithm (HGA) is proposed in this paper to determine the economic scheduling of electric power generation over a fixed time period under various system and operational constraints. The proposed technique can outperform conventional genetic algorithms (CGAs) in the sense that HGA make it possible to improve both the quality of the solution and reduce the computing expenses. In contrast, any carefully designed GA is only able to balance the exploration and the exploitation of the search effort, which means that an increase in the accuracy of a solution can only occure at the sacrifice of convergent speed, and vice visa. It is unlikely that both of them can be improved simultaneously. The proposed hybrid scheme is developed in such a way that a simple GA is acting as a base level search, which makes a quick decision to direct the search towards the optimal region, and a local search method (pattern search technique) is next employed to do the fine tuning. The aim of the strategy is to achieve the cost reduction within a reasonable computing time. The effectiveness of the proposed hybrid technique is verified on two real public electricity supply systems with 13 and 40 generator units respectively. The simulation results obtained with the HGA for the two real systems are very encouraging with regard to the computational expenses and the cost reduction of power generation.

Keywords: genetic algorithms, economic dispatch, pattern search

Procedia PDF Downloads 437
1505 Effects of Initial Moisture Content on the Physical and Mechanical Properties of Norway Spruce Briquettes

Authors: Miloš Matúš, Peter Križan, Ľubomír Šooš, Juraj Beniak

Abstract:

The moisture content of densified biomass is a limiting parameter influencing the quality of this solid biofuel. It influences its calorific value, density, mechanical strength and dimensional stability as well as affecting its production process. This paper deals with experimental research into the effect of moisture content of the densified material on the final quality of biofuel in the form of logs (briquettes or pellets). Experiments based on the single-axis densification of the spruce sawdust were carried out with a hydraulic piston press (piston and die), where the densified logs were produced at room temperature. The effect of moisture content on the qualitative properties of the logs, including density, change of moisture, expansion and physical changes, and compressive and impact resistance were studied. The results show the moisture ranges required for producing good-quality logs. The experiments were evaluated and the moisture content of the tested material was optimized to achieve the optimum value for the best quality of the solid biofuel. The dense logs also have high-energy content per unit volume. The research results could be used to develop and optimize industrial technologies and machinery for biomass densification to achieve high quality solid biofuel.

Keywords: biomass, briquettes, densification, fuel quality, moisture content, density

Procedia PDF Downloads 422
1504 Sustainable Manufacturing of Solenoid Valve Housing in Fiji: Fused Deposition Modeling (FDM) and Emergy Analysis

Authors: M. Hisham, S. Cabemaiwai, S. Prasad, T. Dauvakatini, R. Ananthanarayanan

Abstract:

A solenoid valve is an important part of many fluid systems. Its purpose is to regulate fluid flow in a machine. Due to the crucial role of the solenoid valve and its design intricacy, it is quite expensive to obtain in Fiji and is not manufactured locally. A concern raised by the local health industry is that the housing of the solenoid valve gets damaged when machines are continuously being used and this part of the valve is very costly to replace due to the lack of availability in Fiji and many other South Pacific region countries. This study explores the agile manufacturing of a solenoid coil housing using the Fused Deposition Modeling (FDM) process. An emergy study was carried out to analyze the feasibility and sustainability of producing the part locally after estimating a Unit Emergy Value (or emergy transformity) of 1.27E+05 sej/j for the electricity in Fiji. The total emergy of the process was calculated to be 3.05E+12 sej, of which a majority was sourced from imported services and materials. Renewable emergy sources contributed to just 16.04% of the total emergy. Therefore, the part is suitable to be manufactured in Fiji with a reasonable quality and a cost of $FJ 2.85. However, the loading on the local environment is found to be significant and therefore, alternative raw materials for the filament like recycled PET should be explored or alternative manufacturing processes may be analyzed before committing to fabricating the part using FDM in its analyzed state.

Keywords: emergy analysis, fused deposition modeling, solenoid valve housing, sustainable production

Procedia PDF Downloads 13
1503 Biochar Assisted Municipal Wastewater Treatment and Nutrient Recycling

Authors: A. Pokharel, A. Farooque, B. Acharya

Abstract:

Pyrolysis can be used for energy production from waste biomass of agriculture and forestry. Biochar is the solid byproduct of pyrolysis and its cascading use can offset the cost of the process. A wide variety of research on biochar has highlighted its ability to absorb nutrients, metal and complex compounds; filter suspended solids; enhance microorganisms’ growth; retain water and nutrients as well as to increase carbon content of soil. In addition, sustainable biochar systems are an attractive approach for carbon sequestration and total waste management cycle. Commercially available biochar from Sigma Aldrich was studied for adsorption of nitrogen from effluent of municipal wastewater treatment plant. Adsorption isotherm and breakthrough curve were determined for the biochar. Similarly, biochar’s effects in aerobic as well as anaerobic bioreactors were also studied. In both cases, the biomass was increased in presence of biochar. The amount of gas produced for anaerobic digestion of fruit mix (apple and banana) was similar but the rate of production was significantly faster in biochar fed reactors. The cumulative goal of the study is to use biochar in various wastewater treatment units like aeration tank, secondary clarifier and tertiary nutrient recovery system as well as in anaerobic digestion of the sludge to optimize utilization and add value before being used as a soil amendment.

Keywords: biochar, nutrient recyling, wastewater treatment, soil amendment

Procedia PDF Downloads 140
1502 The Impact of Childhood Cancer on the Quality of Life of Survivor: A Qualitative Analysis of Functionality and Participation

Authors: Catarina Grande, Barbara Mota

Abstract:

The main goal of the present study was to understand the impact of childhood cancer on the quality of life of survivors and the extent to which oncologic disease affects the functionality and participation of survivors at the present time, compared to the time of diagnosis. Six survivors of pediatric cancer participated in the study. Participants were interviewed using a semi-structured interview, adapted from two instruments present in the literature - QALY and QLACS - and piloted through a previous study. This study is based on a qualitative approach using content analysis, allowing the identification of categories and subcategories. Subsequently, the correspondence between the units of meaning and the codes in the International Classification of Functioning, Disability, and Health for Children and Young, which contributed to a more detailed analysis of the impact on the quality of life of survivors in relation to the domains under study. The results showed significant changes between the moment of diagnosis and the present moment, concretely at the microsystem of the survivor. Regarding functionality and participation, the results show that the functions of the body are the most affected domain, emphasizing the emotional component that currently has a greater impact on the quality of life of survivors. The present study allowed identifying a set of codes for the development of a CIF-CJ core set for pediatric cancer survivors. He also indicated the need for future studies to validate and deepen these issues.

Keywords: cancer, participation, quality of life, survivor

Procedia PDF Downloads 233
1501 50/50 Oil-Water Ratio Invert Emulsion Drilling Mud Using Vegetable Oil as Continuous Phase

Authors: P. C. Ihenacho, M. Burby, G. G. Nasr, G. C. Enyi

Abstract:

Formulation of a low oil-water ratio drilling mud with vegetable oil continuous phase without adversely affecting the mud rheology and stability has been a major challenge. A low oil-water ratio is beneficial in producing low fluid loss which is essential for wellbore stability. This study examined the possibility of 50/50 oil-water ratio invert emulsion drilling mud using a vegetable oil continuous phase. Jatropha oil was used as continuous phase. 12 ml of egg yolk which was separated from the albumen was added as the primary emulsifier additive. The rheological, stability and filtration properties were examined. The plastic viscosity and yield point were found to be 36cp and 17 Ib/100 ft2 respectively. The electrical stability at 48.9ºC was 353v and the 30 minutes fluid loss was 6ml. The results compared favourably with a similar formulation using 70/30 oil - water ratio giving plastic viscosity of 31cp, yield point of 17 Ib/100 ft2, electrical stability value of 480v and 12ml for the 30 minutes fluid loss. This study indicates that with a good mud composition using guided empiricism, 50/50 oil-water ratio invert emulsion drilling mud is feasible with a vegetable oil continuous phase. The choice of egg yolk as emulsifier additive is for compatibility with the vegetable oil and environmental concern. The high water content with no fluid loss additive will also minimise the cost of mud formulation.

Keywords: environmental compatibility, low cost of mud formulation, low fluid loss, wellbore stability

Procedia PDF Downloads 387
1500 Fault Detection and Isolation in Sensors and Actuators of Wind Turbines

Authors: Shahrokh Barati, Reza Ramezani

Abstract:

Due to the countries growing attention to the renewable energy producing, the demand for energy from renewable energy has gone up among the renewable energy sources; wind energy is the fastest growth in recent years. In this regard, in order to increase the availability of wind turbines, using of Fault Detection and Isolation (FDI) system is necessary. Wind turbines include of various faults such as sensors fault, actuator faults, network connection fault, mechanical faults and faults in the generator subsystem. Although, sensors and actuators have a large number of faults in wind turbine but have discussed fewer in the literature. Therefore, in this work, we focus our attention to design a sensor and actuator fault detection and isolation algorithm and Fault-tolerant control systems (FTCS) for Wind Turbine. The aim of this research is to propose a comprehensive fault detection and isolation system for sensors and actuators of wind turbine based on data-driven approaches. To achieve this goal, the features of measurable signals in real wind turbine extract in any condition. The next step is the feature selection among the extract in any condition. The next step is the feature selection among the extracted features. Features are selected that led to maximum separation networks that implemented in parallel and results of classifiers fused together. In order to maximize the reliability of decision on fault, the property of fault repeatability is used.

Keywords: FDI, wind turbines, sensors and actuators faults, renewable energy

Procedia PDF Downloads 395
1499 Preparation and Characterization of AlkylAmines’ Surface Functionalized Activated Carbons for Dye Removal

Authors: Said M. AL-Mashaikhi, El-Said I. El-Shafey, Fakhreldin O. Suliman, Saleh Al-Busafi

Abstract:

Activated carbon (AC) was prepared from date palm leaflets via NaOH activation. AC was oxidized using nitric acid, producing oxidized activated carbon (OAC). OAC was surface functionalized using different amine surfactants, including methylamine (ONM), ethylamine (ONE), and diethylamine (ONDE) using the amide coupling process. Produced carbons were surface characterized for surface area and porosity, X-ray diffraction, SEM, FTIR, and TGA. AC surface area (580 m²/g) has shown a decrease in oxidation to 260 m²/g for OAC. On amine functionalization, the surface area has further decreased to 218, 108, and 20 m²/g on functionalization with methylamine, ethylamine, and diethylamine, respectively. FTIR and TGA showed that the nature of amine functionalization of AC is chemical. Methylene blue sorption was tested on these carbons in terms of kinetics and equilibrium. Sorption was found faster on amine-functionalized carbons than both AC and OAC, and this is due to hydrophobic interaction with the alkyl groups immobilized with data following pseudo second-order reaction. On the other hand, AC showed the slowest adsorption kinetic process due to the diffusion in the porous structure of AC. Sorption equilibrium data was found to follow the Langmuir sorption isotherm with maximum sorption found on ONE. Regardless of its lower surface area than activated carbon, ethylamine functionalized AC showed better performance than AC in terms of kinetics and equilibrium for dye removal.

Keywords: activated carbon, dye removal, functionalization, hydrophobic interaction, water treatment

Procedia PDF Downloads 161
1498 Evaluation of Eco Cement as a Stabilizer of Clayey Sand

Authors: Jeeja Menon, M. S. Ravikumar

Abstract:

With the advent of green technology and the concept of zero energy buildings, there is an emerging trend in the utilization of indigenous materials like soil as a construction material. However, fine soils like clays and sand have undesirable properties and stabilization of these soils is essential before it is used to develop a building unit. Eco cement or Ground Granulated Blast Furnace Slag (GGBS), a waste byproduct formed during the manufacture of iron has cementitious properties and has the potential of replacing cement which is the most common stabilizer used for improving the geotechnical properties of soil. This paper highlights the salient observations obtained by the investigations into the effect of GGBS as a stabilizer for clayey sand. The index and engineering properties of the soil on the addition of different percentages (0%, 2%, 4%, 5% & 6% of the dry weight of the soil) of GGBS are tested to arrive at the optimum binder content. The criteria chosen for evaluation are the unconfined compressive strength values of different soil- binder composition. The test results indicate that there are significant strength improvements by the addition of GGBS in the soil, and the optimum GGBS content was determined as 5%. Moreover, utilizing waste binders for developing an ecofriendly, less energy induced building units as well as for stabilizing soil will also contribute to the solid waste management, which is the current environmental crisis of the world.

Keywords: eco cement, GGBS, index properties, stabilization, unconfined compressive strength

Procedia PDF Downloads 132
1497 Establishing a Microbial Co-Culture for Production of Cellulases Using Banana (Musa Paradisiaca) Pseudostem

Authors: Mulanga Luscious Mulaudzi, Ignatious Ncube

Abstract:

In nature, enzymatic degradation of lignocellulose is more efficient compared to in vivo bioprocessing. Thus, a co-culture should enable production of more efficient enzyme preparations that would mimic the natural decomposition of lignocellulose. The aim of the study was to establish a microbial co-culture for the production of highly active cellulase preparations. The objectives were to determine the use of a variety of culture media to isolate cellulose degrading microorganisms from decomposing banana pseudo stem and to optimize production of cellulase by co-cultures of microorganisms producing high levels of cellulose. Screening of fungal isolates was done on carboxylmethylcellulose agar plates which were stained with Congo red to show hydrolytic activity of the isolates. Co-culture and mixed culture of these microorganisms were cultured using Mendel salts with Avicel as the carbon source. Cultures were incubated at 30 °C with shaking at 200 rpm for 240 hrs. Enzyme activity assays were performed to determine endoglycosidase and β-glucosidase. Mixed culture of fungi-dead bacterial cells showed to be the best co-culture/ mixed culture to produce higher levels of cellulase activity in submerged fermentations (SmF) using Avicel™ as a carbon source. The study concludes use microorganism 5A in co-cultures is highly recommended in order to produce high amounts of β-glucosidases, no matter the combination used.

Keywords: avicel, co-culture, submerged fermentation, pseudostem

Procedia PDF Downloads 119
1496 COVID-19 Pandemic Influence on Toddlers and Preschoolers’ Screen Time

Authors: Juliana da Silva Cardoso, Cláudia Correia, Rita Gomes, Carolina Fraga, Inês Cascais, Sara Monteiro, Beatriz Teixeira, Sandra Ribeiro, Carolina Andrade, Cláudia Oliveira, Diana Gonzaga, Catarina Prior, Inês Vaz Matos

Abstract:

The average daily screen time (ST) has been increasing in children, even at young ages. This seems to be associated with a higher incidence of neurodevelopmental disorders, and as the time of exposure increases, the greater is the functional impact. This study aims to compare the daily ST of toddlers and preschoolers previously and during the COVID-19 pandemic. A questionnaire was applied by telephone to parents/caregivers of children between 1 and 5 years old, followed up at 4 primary care units belonging to the Group of Primary Health Care Centers of Western Porto, Portugal. 520 children were included: 52.9% male, mean age 39.4 ± 13.9 months. The mean age of first exposure to screens was 13.9 ± 8.0 months, and most of the children were exposed to more than one screen daily. Considering the WHO recommendations, before the COVID-19 pandemic, 385 (74.0%) and 408 (78.5%) children had excessive ST during the week and the weekend, respectively; during the lockdown, these values increased to 495 (95.2%) and 482 (92.7%). Maternal education and both the child's median age and the median age of first exposure to screens had a statistically significant association with excessive ST, with OR 0.2 (p = 0.03, CI 95% 0.07-0.86), OR 1.1 (p = 0.01, 95% CI 1.05-1.14) and OR 0.9 (p = 0.05, 95% CI 0. 87-0.98), respectively. Most children in this sample had a higher than recommended ST, which increased with the onset of the COVID-19 pandemic. These results are worrisome and point to the need for urgent intervention.

Keywords: COVID-19 pandemic, preschoolers, screen time, toddlers

Procedia PDF Downloads 209
1495 Using Shape Memory Alloys for Structural Engineering Applications

Authors: Donatello Cardone

Abstract:

Shape memory alloys (SMAs) have great potential for use in the field of civil engineering. The author of this manuscript has been involved, since 1996, in several experimental and theoretical studies on the application of SMAs in structural engineering, within national and international research projects. This paper provides an overview of the main results achieved, including the conceptual design, implementation, and testing of different SMA-based devices, namely: (i) energy-dissipating braces for RC buildings, (ii) seismic isolation devices for buildings and bridges, (iii) smart tie-rods for arches and vaults and (iv) seismic restrainers for bridges. The main advantages of using SMA-based devices in the seismic protection of structures derive from the double-flag shape of their hysteresis loops, which implies three favourable features, i.e., self-centering capability, good energy dissipation capability, and high stiffness for small displacements. The main advantages of SMA-based units for steel tie-rods are associated with the thermal behaviour of superelastic SMAs, which is antagonistic compared to that of steel. This implies a strong reduction of force changes due to air temperature variations. Finally, SMA-based seismic restrainers proved to be effective in preventing bridge deck unseating and pounding.

Keywords: seismic protection of structures, shape memory alloys, structural engineering, steel tie-rods, seismic restrainers for bridges

Procedia PDF Downloads 95
1494 Optimizing Fire Tube Boiler Design for Efficient Saturated Steam Production at 2000kg/h

Authors: Yoftahe Nigussie Worku

Abstract:

This study focused on designing a Fire tube boiler to generate saturated steam with a 2000kg/h capacity at a 12bar design pressure. The primary project goal is to achieve efficient steam production while minimizing costs. This involves selecting suitable materials for component parts, employing cost-effective construction methods, and optimizing various parameters. The analysis phase employs iterative processes and relevant formulas to determine key design parameters. This includes optimizing the diameter of tubes for overall heat transfer coefficient, considering a two-pass configuration due to tube and shell size, and using heavy oil fuel no.6 with specific heating values. The designed boiler consumes 140.37kg/hr of fuel, producing 1610kw of heat at an efficiency of 85.25%. The fluid flow is configured as cross flow, leveraging its inherent advantages. The tube arrangement involves welding the tubes inside the shell, which is connected to the tube sheet using a combination of gaskets and welding. The design of the shell adheres to the European Standard code for pressure vessels, accounting for weight and supplementary accessories and providing detailed drawings for components like lifting lugs, openings, ends, manholes, and supports.

Keywords: efficiency, coefficient, saturated steam, fire tube

Procedia PDF Downloads 54
1493 Lightweight Hardware Firewall for Embedded System Based on Bus Transactions

Authors: Ziyuan Wu, Yulong Jia, Xiang Zhang, Wanting Zhou, Lei Li

Abstract:

The Internet of Things (IoT) is a rapidly evolving field involving a large number of interconnected embedded devices. In the design of embedded System-on-Chip (SoC), the key issues are power consumption, performance, and security. However, the easy-to-implement software and untrustworthy third-party IP cores may threaten the safety of hardware assets. Considering that illegal access and malicious attacks against SoC resources pass through the bus that integrates IPs, we propose a Lightweight Hardware Firewall (LHF) to protect SoC, which monitors and disallows the offending bus transactions based on physical addresses. Furthermore, under the LHF architecture, this paper refines two types of firewalls: Destination Hardware Firewall (DHF) and Source Hardware Firewall (SHF). The former is oriented to fine-grained detection and configuration, whose core technology is based on the method of dynamic grading units. In addition, we design the SHF based on static entries to achieve lightweight. Finally, we evaluate the hardware consumption of the proposed method by both Field-Programmable Gate Array (FPGA) and IC. Compared with the exciting efforts, LHF introduces a bus latency of zero clock cycles for every read or write transaction implemented on Xilinx Kintex-7 FPGAs. Meanwhile, the DC synthesis results based on TSMC 90nm show that the area is reduced by about 25% compared with the previous method.

Keywords: IoT, security, SoC, bus architecture, lightweight hardware firewall, FPGA

Procedia PDF Downloads 56
1492 About the Effect of Temperature and Heating Rate on the Pyrolysis of Lignocellulosic Biomass Waste

Authors: María del Carmen Recio-Ruiz, Ramiro Ruiz-Rosas, Juana María Rosas, José Rodríguez-Mirasol, Tomás Cordero

Abstract:

At the present time, conventional fossil fuels show environmental and sustainability disadvantages with regard to renewables energies. Producing energy and chemicals from biomass is an interesting alternative for substitution of conventional fossil sources with a renewable feedstock while enabling zero net greenhouse gases emissions. Pyrolysis is a well-known process to produce fuels and chemicals from biomass. In this work, conventional and fast pyrolysis of different agro-industrial residues (almond shells, hemp hurds, olive stones, and Kraft lignin) was studied. Both processes were carried out in a fixed bed reactor under nitrogen flow and using different operating conditions to analyze the influence of temperature (400-800 ºC) and heating rate (10 and 20 ºC/minfor conventional pyrolysis and 50 ºC/s for fast pyrolysis)on the yields, products distribution, and composition of the different fractions. The results showed that for both conventional and fast pyrolysis, the solid fraction yield decreased with temperature, while the liquid and gas fractions increased. In the case of the fast pyrolysis, a higher content of liquid fraction than that obtained in conventional pyrolysis could be observed due to cracking reactions occur at a lesser extent. With respect to the composition of de non-condensable fraction, the main gases obtained were CO, CO₂ (mainly at low temperatures), CH₄, and H₂ (mainly at high temperatures).

Keywords: bio-oil, biomass, conventional pyrolysis, fast pyrolysis

Procedia PDF Downloads 182
1491 Benzpyrimoxan: An Insecticide for the Control of Rice Plant Hoppers

Authors: E. Satoh, R. Kasahara, T. Aoki, K. Fukatsu, D. Venkata Ramanarao, H. Harayama, T. Murata, A. Suwa

Abstract:

Rice plant hoppers (Hemiptera: Delphacidae) have been causing extensive economic damage in rice and are considered as serious threat in rice producing countries of Asia. They have developed resistance to major groups of chemical insecticide, and severe outbreaks occur commonly throughout Asia. To control these nuisance pests, Nihon Nohyaku Co., Ltd., recently discovered an insecticide, benzpyrimoxan (proposed ISO name), which is under development as NNI-1501 (development code). Benzpyrimoxan has a unique chemical structure which contains benzyloxy and cyclic acetal groups on pyrimidine moiety (5-(1,3-dioxan-2-yl)-4-[4- (trifluoromethyl)benzyloxy]pyrimidine). In order to clarify the biological properties of benzpyrimoxan, we conducted several experiments and found the following results. Benzpyrimoxan has high activity against nymphal stages of rice plant hoppers without any adulticidal activity. It provides excellent and long lasting control against rice plant hoppers, including populations that have developed resistance to several other chemical groups of insecticide. The study on its mode of action is undergoing. These features highlight the versatility of this insecticide as an effective and valuable tool from the viewpoints of insecticide resistance management and integrated pest management program. With the use of benzpyrimoxan, farmers shall be able to lead the best yield potential by keeping the population density of rice plant hoppers and associated virus diseases under control.

Keywords: acetal, benzpyrimoxan, insecticide, NNI-1501, pyrimidine, rice plant hoppers

Procedia PDF Downloads 204
1490 Exaptive Urbanism: Evolutionary Biology and the Regeneration of Mumbai’s Dhobighat

Authors: Piyush Bajpai, Sneha Pandey

Abstract:

Mumbai’s Dhobighat, 150 year old largest open laundry in the world, is the true live-work place and only source of income for some of Mumbai’s highest density ‘urban poor’ residents. The regeneration of Dhobighat, due to its ultra prime location and complex socio-political culture has been a complex issue. This once flourishing urban industrial core has been degrading for the past several decades mainly due to the decline of the open laundry business, the site’s over burdened infrastructure and conflicting socio-political and economic forces. The phenomena of ‘exaptation’ or ‘co-option’ has been observed by evolutionary biologists as a process responsible for producing highly tenacious and resilient offsprings within a species. The reddish egret uses its wings to cast shadow in shallow waters to attract small fish and hunt them. An unrelated feature used opportunistically to produce a very favorable result. How can this idea of co-option be applied to resolve the complex issue of Dhobighat’s regeneration? Our paper proposes a new methodology/approach for the regeneration of Dhobighat through the lens of evolutionary biology. Forces and systems (social, political, economic, cultural and ecological) that seem conflicting or unrelated by nature are opportunistically transformed into symbiotic and complimentary relationships that produce an inclusive, resilient and holistic solution for the regeneration of Dhobighat.

Keywords: urban regeneration, exaptation, resilience, Dhobighat, Mumbai

Procedia PDF Downloads 290
1489 The Relationship Between The Two-spatial World And The Decrease In The Area Of Commercial Properties

Authors: Syedhossein Vakili

Abstract:

According to the opinion of some experts, the world's two-spatialization means the establishment of a new virtual space and placing this new space next to the physical space. This dualization of space has left various effects, one of which is reducing the need for buildings and making the area of business premises economical through the use of virtual space instead of a part of physical space. In such a way that before the virtual space was known, a commercial or educational institution had to block a large part of its capital to acquire physical spaces and buildings in order to provide physical space and places needed for daily activities, but today, Thanks to the addition of the virtual space to the physical space, it has been possible to carry out its activities more widely in a limited environment with a minimum of physical space and drastically reduce costs. In order to understand the impact of virtual space on the reduction of physical space, the researcher used the official reports of the countries regarding the average area mentioned in the permits for the construction of commercial and educational units in the period from 2014 to 2023 and compared the average capital required for the absolute physical period with The period of two-spatialization of the world in the mentioned ten-year period, while using the analytical and comparative method, has proven that virtual space has greatly reduced the amount of investment of business owners to provide the required place for their activities by reducing the need for physical space. And economically, it has made commercial activities more profitable.

Keywords: two spatialization, building area, cyberspace, physical space, virtual place

Procedia PDF Downloads 53
1488 The Development of Packaging to Create Additional Value for Organic Rice Products of Uttaradit Province, Thailand

Authors: Juntima Pokkrong

Abstract:

The objectives of the study were to develop packaging made from rice straws left after the harvest in order to create additional value for organic rice products of Uttaradit Province and to demonstrate the technology of producing straw packaging to the community. The population was promoters of organic rice distributors, governmental organizations, consumers, and three groups of organic rice producers which are the Agriculturist Group of Khorrum Sub-district, Pichai District, Uttaradit Province; the Agriculturist Group of Wangdin Sub-district, Muang District, Uttaradit Province; and the Agriculturist Group of Wangkapi Sub-district, Muang District, Uttaradit Province. The data were collected via group discussions, and two types of questionnaires. The data acquired were then analyzed using descriptive statistic for percentage, mean, standard deviation, and content analysis. It has been found that primary packaging for one kilogram of rice requires vacuumed plastic bags made from thermoplastic or resin because they are able to preserve the quality of rice for a long time, and they are also very cheap. For secondary packaging, the making of straw paper was studied and applied. Straw paper can be used for various purposes, and in this study, it was used to create the secondary packaging models in compliance with packaging preferences acquired from the questionnaires. The models were surveyed among the population for their opinion using satisfaction questionnaires, and the result was overall highly satisfactory.

Keywords: environmentally friendly, organic rice, packaging, straw paper

Procedia PDF Downloads 242
1487 Synthesis, Characterization and Biological Activites of Azomethine Derivatives

Authors: Lynda Golea, Rachid Chebaki

Abstract:

Schiff bases contain heterocyclic structural units with N and O donor atoms which plays an important role in coordination chemistry. Azomethine groups are a broad class of widely used compounds with applications in many fields, including analytical, inorganic chemistry and biological. Schiff's base is of promising research interest due to the widespread antibacterial resistance in medical science. In addition, the research is essential to generate Schiff base metal complexes with various applications. Schiff complexes have been used as drugs and have antibacterial, antifungal, antiviral, and anti-inflammatory properties. The various donor atoms they contain offer a special ability for metal binding. In this research on the physicochemical properties of azomethine groups, we synthesized and studied the Schiff base compounds by a condensation reaction of tryptamines and acetophenone in ethanol. The structure of the prepared compound was interpreted using 1H NMR, 13C NMR, UV-vis and FT-IR. A computational analysis at the level of DFT with functional B3LYP in conjunction with the base 6-311+G (d, p) was conducted to study its electronic and molecular structure. The biological study was performed on three bacterial strains usually causing infection, including Gram-positive and Gram-negative, for antibacterial activity. Results showed moderate biological activity and proportional activity with increasing concentration.

Keywords: azomethine, HOMO, LUMO, RMN, molecular docking

Procedia PDF Downloads 58
1486 Upsetting of Tri-Metallic St-Cu-Al and St-Cu60Zn-Al Cylindrical Billets

Authors: Isik Cetintav, Cenk Misirli, Yilmaz Can

Abstract:

This work investigates upsetting of the tri-metallic cylindrical billets both experimentally and analytically with a reduction ratio 30%. Steel, brass, and copper are used for the outer and outmost rings and aluminum for the inner core. Two different models have been designed to show material flow and the cavity took place over the two interfaces during forming after this reduction ratio. Each model has an outmost ring material as steel. Model 1 has an outer ring between the outmost ring and the solid core material as copper and Model 2 has a material as brass. Solid core is aluminum for each model. Billets were upset in press machine by using parallel flat dies. Upsetting load was recorded and compared for models and single billets. To extend the tests and compare with experimental procedure to a wider range of inner core and outer ring geometries, finite element model was performed. ABAQUS software was used for the simulations. The aim is to show how contact between outmost ring, outer ring and the inner core are carried on throughout the upsetting process. Results have shown that, with changing in height, between outmost ring, outer ring and inner core, the Model 1 and Model 2 had very good interaction, and the contact surfaces of models had various interface behaviour. It is also observed that tri-metallic materials have lower weight but better mechanical properties than single materials. This can give an idea for using and producing these new materials for different purposes.

Keywords: tri-metallic, upsetting, copper, brass, steel, aluminum

Procedia PDF Downloads 338
1485 Performance of Osmotic Microbial Fuel Cell in Wastewater Treatment and Electricity Generation: A Critical Review

Authors: Shubhangi R. Deshmukh, Anupam B. Soni

Abstract:

Clean water and electricity are vital services needed in all communities. Bio-degradation of wastewater contaminants and desalination technologies are the best possible alternatives for the global shortage of fresh water supply. Osmotic microbial fuel cell (OMFC) is a versatile technology that uses microorganism (used for biodegradation of organic waste) and membrane technology (used for water purification) for wastewater treatment and energy generation simultaneously. This technology is the combination of microbial fuel cell (MFC) and forward osmosis (FO) processes. OMFC can give more electricity and clean water than the MFC which has a regular proton exchange membrane. FO gives many improvements such as high contamination removal, lower operating energy, raising high proton flux than other pressure-driven membrane technology. Lower concentration polarization lowers the membrane fouling by giving osmotic water recovery without extra cost. In this review paper, we have discussed the principle, mechanism, limitation, and application of OMFC technology reported to date. Also, we have interpreted the experimental data from various literature on the water recovery and electricity generation assessed by a different component of OMFC. The area of producing electricity using OMFC has further scope for research and seems like a promising route to wastewater treatment.

Keywords: forward osmosis, microbial fuel cell, osmotic microbial fuel cell, wastewater treatment

Procedia PDF Downloads 176
1484 Studies on Lucrative Design of a Waste Heat Recovery System for Air Conditioners

Authors: Ashwin Bala, K. Panthalaraja Kumaran, S. Prithviraj, R. Pradeep, J. Udhayakumar, S. Ajith

Abstract:

In this paper, studies have been carried out for an in-house design of a waste heat recovery system for effectively utilizing the domestic air conditioner heat energy for producing hot water. Theoretical studies have been carried to optimizing the flow rate for getting maximum output with a minimum size of the heater. Critical diameter, wall thickness, and total length of the water pipeline have been estimated from the conventional heat transfer model. Several combinations of pipeline shapes viz., spiral, coil, zigzag wound through the radiator has been attempted and accordingly shape has been optimized using heat transfer analyses. The initial condition is declared based on the water flow rate and temperature. Through the parametric analytical studies we have conjectured that water flow rate, temperature difference between incoming water and radiator skin temperature, pipe material, radiator material, geometry of the water pipe viz., length, diameter, and wall thickness are having bearing on the lucrative design of a waste heat recovery system for air conditioners. Results generated through the numerical studies have been validated using an in-house waste heat recovery system for air conditioners.

Keywords: air conditioner design, energy conversion system, radiator design for energy recovery systems, waste heat recovery system

Procedia PDF Downloads 354
1483 Placer Gold Deposits in Madari Gold Mine, Southern Eastern Desert, Egypt: Orientation, Source and Distribution

Authors: Tarek Sedki

Abstract:

Madari gold mine is delineated by latitudes 22° 30' 29" and 22° 32' 33" N and longitudes 36° 24' 03" and 35°11' 44" E. Geologically, Madari rock units are classified into dismembered ophiolites, arc volcanic assemblage, syntectonic metagabbro-diorites and Mineralized quartz diorite and granodiorite. Deposition of gold in area occurred as a direct result of weathering of nearby gold-bearing veins. Main concentrations of gold are supposed to ensue close to the bed rock. Nevertheless, the several shallow channel-fill features covering lag deposits, arising throughout the alluvial fan sequence would definitely contain a percentage of the finer gold due to the limited washing and sorting capacity of the uncommon flood events. Gold deposits arise as disseminated and separate gold with limited pyrite, arsenopyrite and chalcopyrite everywhere veins in the wall rocks and lode gold deposits in quartz veins. In places, the wall rocks, in near district of the quartz vein, are grieved strong silicification, chloritization and pyritization as a result of a metasomatic alteration due to purification of external hydrothermal fluids. Quartz veins are mostly steeply dipping and display banding features and frequently sheared and brecciated.

Keywords: Madari gold mine, placer deposits, southern eastern desert, gold mineralization, quartz veins

Procedia PDF Downloads 135