Search results for: preparatory experimental schools
7897 Theoretical and Experimental Investigation of the Interaction Behavior of a Bouncing Ball upon a Flexible Surface Impacted in Two Dimensions
Authors: Wiwat Chumai, Perawit Boonsomchua, Kanjana Ongkasin
Abstract:
The ball bouncing problem is a well-known problem in physics involving a ball dropped from a height to the ground. In this paper, the work investigates the theoretical and experimental setup that describes the dynamics of a rigid body on a chaotic elastic surface under air-damp conditions. Examination of four different types of balls is made, including marble, metal ball, tennis ball, and ping-pong ball. In this experiment, the effect of impact velocities is not considered; the ball is dropped from a fixed height. The method in this work employs the Rayleigh Dissipation Function to specify the effects of dissipative forces in Lagrangian mechanics. Our discoveries reveal that the dynamics of the ball exhibit horizontal motion while damping oscillation occurs, forming the destabilization in vertical pinch-off motion. Moreover, rotational motion is studied. According to the investigation of four different balls, the outcomes illustrate that greater mass results in more frequent dynamics, and the experimental results at some points align with the theoretical model. This knowledge contributes to our understanding of the complex fluid system and could serve as a foundation for further developments in water droplet simulation.Keywords: droplet, damping oscillation, nonlinear damping oscillation, bouncing ball problem, elastic surface
Procedia PDF Downloads 1007896 Experimental Characterization of the Thermal Behavior of a Sawdust Mortar
Authors: F. Taouche-Kheloui, O. Fedaoui-Akmoussi, K. Ait tahar, Li. Alex
Abstract:
Currently, the reduction of energy consumption, through the use of abundant and recyclable natural materials, for better thermal insulation represents an important area of research. To this end, the use of bio-sourced materials has been identified as one of the green sectors with a very high economic development potential for the future. Because of its role in reducing the consumption of fossil-based raw materials, it contributes significantly to the storage of atmospheric carbon, limits greenhouse gas emissions and creates new economic opportunities. This study constitutes a contribution to the elaboration and the experimental characterization of the thermal behavior of a sawdust-reduced mortar matrix. We have taken into account the influence of the size of the grain fibers of sawdust, hence the use of three different ranges and also different percentage in the different confections. The intended practical application consists of producing a light weight compound at a lower cost to ensure a better thermal and acoustic behavior compared to that existing in the field, in addition to the desired resistances. Improving energy performance, while reducing greenhouse gas emissions from the building sector, is amongst the objectives to be achieved. The results are very encouraging and highlight the value of the proposed design of organic-source mortar panels which have specific mechanical properties acceptable for their use, low densities, lower cost of manufacture and labor, and above all a positive impact on the environment.Keywords: mortar, sawdust waste, thermal, experimental, analysis
Procedia PDF Downloads 847895 Dilemma between the Education-Area and the Working-Area in Socialization of Teaching Profession: Scrutiny on the Beginning Teachers through the Relationality of the Regulations and Institutions in Turkey Case
Authors: Dilek Dede
Abstract:
This study aims at scrutinized the dilemma between education place and working place with professional socialization dimension over the beginning teachers in Turkey is to be found the solution for the dilemma in Turkey. The research question is that how can be explained the gap between education place and working place for beginning teachers in Turkey. That expected to contribute to literature with the solutions for shorting the gap between working area and education area of the teaching profession in Turkey case. The study is constructed in two section. Firstly, socialization of the teaching profession and teaching modules have been discussed through the profession, education, working place indicators. In the second section, Secondly, two educational specialists from Turkey has been interviewed about their observation on trainee teachers compelling to participate the class for candidate teachers after university grade. Then, the dilemma between education area and working area of the teaching profession has been detected by of semi-structured and in-depth interviews, the literature on the relationality of institutions and regulation is discussed. The following outcomes have been accessed in accordance with the data set and literature linkage axis: Firstly, teachers coming from the distinctive programmes as an educational background. Hence, teachers who pertain to distinctive cultures work in the same environment. That cause cultural conflicts and complication of socialization of profession. Secondly, the insufficient partnership between schools and universities besides, the education classes lead to a struggle of culture among these two institutions. Thirdly, the education classes are designed as bureaucratic form instead of coalescence between head teachers and trainee teachers around a common culture. That become deep the dilemma. In conclusion, on condition that applied-oriented education that advocates in-service learning is promoted and this programme is supported with well-structured the in-service training through the partnership of universities and schools, the gap between the working-area and education-area might be shortened.Keywords: beginning teachers, construction of a common, social mobilization in the teaching profession, teacher training institution, the relationality of the regulations and institutions
Procedia PDF Downloads 1667894 Numerical Investigation of Fiber-Reinforced Polymer (FRP) Panels Resistance to Blast Loads
Authors: Sameh Ahmed, Khaled Galal
Abstract:
Fiber-reinforced polymer (FRP) sandwich panels are increasingly making their way into structural engineering applications. One of these applications is the blast mitigation. This is attributed to FRP ability of absorbing considerable amount of energy relative to their low density. In this study, FRP sandwich panels are numerically studied using an explicit finite element code ANSYS AUTODYN. The numerical model is then validated with the experimental field tests in the literature. The inner core configurations that have been studied in the experimental field tests were formed from different orientations of the honeycomb shape. On the other hand, the conducted numerical study has proposed a new core configuration. The new core configuration is formulated from a combination of woven and honeycomb shapes. Throughout this study, two performance parameters are considered; the amount of the energy absorbed by the panels and the peak deformation of the panels. Following, a parametric study has been conducted with more variations of the studied parameters to examine the enhancement of the panels' performance. It is found that the numerical results have shown a good agreement with the experimental measurements. Furthermore, the analyses have revealed that using the proposed core configuration obviously enhances the FRP panels’ behavior when subjected to blast loads.Keywords: blast load, fiber reinforced polymers, finite element modeling, sandwich panels
Procedia PDF Downloads 3127893 The Effect of Eight Weeks of Aerobic Training on Indices of Cardio-Respiratory and Exercise Tolerance in Overweight Women with Chronic Asthma
Authors: Somayeh Negahdari, Mohsen Ghanbarzadeh, Masoud Nikbakht, Heshmatolah Tavakol
Abstract:
Asthma, obesity and overweight are the main factors causing change within the heart and respiratory airways. Asthma symptoms are normally observed during exercising. Epidemiological studies have indicated asthma symptoms occurring due to certain lifestyle habits; for example, a sedentary lifestyle. In this study, eight weeks of aerobic exercises resulted in a positive effect overall in overweight women experiencing mild chronic asthma. The quasi-experimental applied research has been done based on experimental and control groups. The experimental group (seven patients) and control group (n = 7) were graded before and after the test. According to the Borg dyspnea and fatigue Perception Index, the training intensity has determined. Participants in the study performed a sub-maximal aerobic activity schedule (45% to 80% of maximum heart rate) for two months, while the control group (n = 7) stayed away from aerobic exercise. Data evaluation and analysis of covariance compared both the pre-test and post-test with paired t-test at significance level of P≤ 0.05. After eight weeks of exercise, the results of the experimental group show a significant decrease in resting heart rate, systolic blood pressure, minute ventilation, while a significant increase in maximal oxygen uptake and tolerance activity (P ≤ 0.05). In the control group, there was no significant difference in these parameters ((P ≤ 0.05). The results indicate the aerobic activity can strengthen the respiratory muscles, while other physiological factors could result in breathing and heart recovery. Aerobic activity also resulted in favorable changes in cardiovascular parameters, and exercise tolerance of overweight women with chronic asthma.Keywords: asthma, respiratory cardiac index, exercise tolerance, aerobic, overweight
Procedia PDF Downloads 2347892 Experimental Study on Strength Development of Low Cement Concrete Using Mix Design for Both Binary and Ternary Mixes
Authors: Mulubrhan Berihu, Supratic Gupta, Zena Gebriel
Abstract:
Due to the design versatility, availability, and cost efficiency, concrete is continuing to be the most used construction material on earth. However, the production of Portland cement, the primary component of concrete mix is causing to have a serious effect on environmental and economic impacts. This shows there is a need to study using of supplementary cementitious materials (SCMs). The most commonly used supplementary cementitious materials are wastes and the use of these industrial waste products has technical, economical and environmental benefits besides the reduction of CO2 emission from cement production. The study aims to document the effect on strength property of concrete due to use of low cement by maximizing supplementary cementitious materials like fly ash or marble powder. Based on the different mix proportion of pozzolana and marble powder a range of mix design was formulated. The first part of the project is to study the strength of low cement concrete using fly ash replacement experimentally. The test results showed that using up to 85 kg/m3 of cement is possible for plain concrete works like hollow block concrete to achieve 9.8 Mpa and the experimental results indicates that strength is a function of w/b. In the second part a new set of mix design has been carried out with fly ash and marble powder to study the strength of both binary and ternary mixes. In this experimental study, three groups of mix design (c+FA, c+FA+m and c+m), four sets of mixes for each group were taken up. Experimental results show that c+FA has maintained the best strength and impermeability whereas c+m obtained less compressive strength, poorer permeability and split tensile strength. c+FA shows a big difference in gaining of compressive strength from 7 days to 28 days compression strength compared to others and this obviously shows the slow rate of hydration of fly ash concrete. As the w/b ratio increases the strength decreases significantly. At the same time higher permeability has been seen in the specimens which were tested for three hours than one hour.Keywords: efficiency factor, cement content, compressive strength, mix proportion, w/c ratio, water permeability, SCMs
Procedia PDF Downloads 2097891 The Impact of a Sustainable Solar System on the Growth of Strawberry Plants in an Agricultural Greenhouse
Authors: Ilham Ihoume, Rachid Tadili, Nora Arbaoui
Abstract:
This study examines the effects of a solar-based heating system, in a north-south oriented agricultural greenhouse on the development of strawberry plants during winter. This system relies on the circulation of water as a heat transfer fluid in a closed circuit installed on the greenhouse roof to store heat during the day and release it inside at night. A comparative experimental study was conducted in two greenhouses, one experimental with the solar heating system and the other for control without any heating system. Both greenhouses are located on the terrace of the Solar Energy and Environment Laboratory of the Mohammed V University in Rabat, Morocco. The devel-oped heating system consists of a copper coil inserted in double glazing and placed on the roof of the greenhouse, a water pump circulator, a battery, and a photovoltaic solar panel to power the electrical components. This inexpen-sive and environmentally friendly system allows the greenhouse to be heated during the winter and improves its microclimate system. This improvement resulted in an increase in the air temperature inside the experimental green-house by 6 °C and 8 °C, and a reduction in its relative humidity by 23% and 35% compared to the control greenhouse and the ambient air, respectively, throughout the winter. For the agronomic performance, it was observed that the production was 17 days earlier than in the control greenhouse.Keywords: sustainability, solar energy, thermal energy storage., greenhouse heating
Procedia PDF Downloads 377890 Numerical Resolving of Net Faradaic Current in Fast-Scan Cyclic Voltammetry Considering Induced Charging Currents
Authors: Gabriel Wosiak, Dyovani Coelho, Evaldo B. Carneiro-Neto, Ernesto C. Pereira, Mauro C. Lopes
Abstract:
In this work, the theoretical and experimental effects of induced charging currents on fast-scan cyclic voltammetry (FSCV) are investigated. Induced charging currents arise from the effect of ohmic drop in electrochemical systems, which depends on the presence of an uncompensated resistance. They cause the capacitive contribution to the total current to be different from the capacitive current measured in the absence of electroactive species. The paper shows that the induced charging current is relevant when the capacitive current magnitude is close to the total current, even for systems with low time constant. In these situations, the conventional background subtraction method may be inaccurate. A method is developed that separates the faradaic and capacitive currents by using a combination of voltametric experimental data and finite element simulation, by the obtention of a potential-dependent capacitance. The method was tested in a standard electrochemical cell with Platinum ultramicroelectrodes, in different experimental conditions as well in previously reported data in literature. The proposed method allows the real capacitive current to be separated even in situations where the conventional background subtraction method is clearly inappropriate.Keywords: capacitive current, fast-scan cyclic voltammetry, finite-element method, electroanalysis
Procedia PDF Downloads 757889 Contribution in Fatigue Life Prediction of Composite Material
Authors: Mostefa Bendouba, Djebli Abdelkader, Abdelkrim Aid, Mohamed Benguediab
Abstract:
The damage evolution mechanism is one of the important focuses of fatigue behaviour investigation of composite materials and also is the foundation to predict fatigue life of composite structures for engineering application. This paper is dedicated to a damage investigation under two block loading cycle fatigue conditions submitted to composite material. The loading sequence effect and the influence of the cycle ratio of the first stage on the cumulative fatigue life were studied herein. Two loading sequences, i.e., high-to-low and low-to-high cases are considered in this paper. The proposed damage indicator is connected cycle by cycle to the S-N curve and the experimental results are in agreement with model expectations. Some experimental researches are used to validate this proposition.Keywords: fatigue, damage acumulation, composite, evolution
Procedia PDF Downloads 5017888 Experimental Study of Hydrogen and Water Vapor Extraction from Helium with Zeolite Membranes for Tritium Processes
Authors: Rodrigo Antunes, Olga Borisevich, David Demange
Abstract:
The Tritium Laboratory Karlsruhe (TLK) has identified zeolite membranes as most promising for tritium processes in the future fusion reactors. Tritium diluted in purge gases or gaseous effluents, and present in both molecular and oxidized forms, can be pre-concentrated by a stage of zeolite membranes followed by a main downstream recovery stage (e.g., catalytic membrane reactor). Since 2011 several membrane zeolite samples have been tested to measure the membrane performances in the separation of hydrogen and water vapor from helium streams. These experiments were carried out in the ZIMT (Zeolite Inorganic Membranes for Tritium) facility where mass spectrometry and cold traps were used to measure the membranes’ performances. The membranes were tested at temperatures ranging from 25 °C up to 130 °C, at feed pressures between 1 and 3 bar, and typical feed flows of 2 l/min. During this experimental campaign, several zeolite-type membranes were studied: a hollow-fiber MFI nanocomposite membrane purchased from IRCELYON (France), and tubular MFI-ZSM5, NaA and H-SOD membranes purchased from Institute for Ceramic Technologies and Systems (IKTS, Germany). Among these membranes, only the MFI-based showed relevant performances for the H2/He separation, with rather high permeances (~0.5 – 0.7 μmol/sm2Pa for H2 at 25 °C for MFI-ZSM5), however with a limited ideal selectivity of around 2 for H2/He regardless of the feed concentration. Both MFI and NaA showed higher separation performances when water vapor was used instead; for example, at 30 °C, the separation factor for MFI-ZSM5 is approximately 10 and 38 for 0.2% and 10% H2O/He, respectively. The H-SOD evidenced to be considerably defective and therefore not considered for further experiments. In this contribution, a comprehensive analysis of the experimental methods and results obtained for the separation performance of different zeolite membranes during the past four years in inactive environment is given. These results are encouraging for the experimental campaign with molecular and oxidized tritium that will follow in 2017.Keywords: gas separation, nuclear fusion, tritium processes, zeolite membranes
Procedia PDF Downloads 2487887 Enhancing Skills of Mothers of Asthmatic Children in Techniques of Drug Administration
Authors: Erna Judith Roach, Nalini Bhaskaranand
Abstract:
Background & Significance: Asthma is the most common chronic disease among children. Education is the cornerstone of management of asthma to help the affected children. In India there are about 1.5- 3.0 million asthmatic children in the age group of 5-11 years. Many parents face management dilemmas in administration of medications to their children. Mothers being primary caregivers of children are often responsible for administering medications to them. The purpose of the study was to develop an educational package on techniques of drug administration for mothers of asthmatic children and determine its effectiveness in terms of improvement in skill in drug administration. Methodology: A quasi- experimental time series pre-test post -test control group design was used. Mothers of asthmatic children attending paediatric outpatient departments of selected hospitals along with their children between 5 and 12 years were included. Sample size consisted of 40 mothers in the experimental and 40 mothers in the control groups. Block randomization was used to assign samples to both the groups. The data collection instruments used were Baseline Proforma, Clinical Proforma, Daily asthma drug intake and symptoms diary and Observation Rating Scales on technique of using a metered dose inhaler with spacer; metered dose inhaler with facemask; metered dose inhaler alone and dry powder inhaler. The educational package consisted of a video and booklet on techniques of drug administration. Data were collected at baseline, 1, 3 and 6 months. Findings: The mean post-test scores in techniques of drug administration were higher than the mean pre-test scores in the experimental group in all techniques. The Friedman test (p < 0.01), Wilcoxon Signed Rank test (p < 0.008) and Mann Whitney U (p < 0.01) showed statistically significant difference in the experimental group than the control group. There was significant decrease in the average number of symptom days (11 Vs. 4 days/ month) and hospital visits (5 to 1 per month) in the experimental group when compared to the control group. Conclusion: The educational package was found to be effective in improving the skill of mothers in drug administration in all the techniques, especially with using the metered dose inhaler with spacer.Keywords: childhood asthma, drug administration, mothers of children, inhaler
Procedia PDF Downloads 4237886 Theoretical Study of the Structural and Elastic Properties of Semiconducting Rare Earth Chalcogenide Sm1-XEuXS under Pressure
Authors: R. Dubey, M. Sarwan, S. Singh
Abstract:
We have investigated the phase transition pressure and associated volume collapse in Sm1– X EuX S alloy (0≤x≤1) which shows transition from discontinuous to continuous as x is reduced. The calculated results from present approach are in good agreement with experimental data available for the end point members (x=0 and x=1). The results for the alloy counter parts are also in fair agreement with experimental data generated from the vegard’s law. An improved interaction potential model has been developed which includes coulomb, three body interaction, polarizability effect and overlap repulsive interaction operative up to second neighbor ions. It is found that the inclusion of polarizability effect has improved our results.Keywords: elastic constants, high pressure, phase transition, rare earth compound
Procedia PDF Downloads 4207885 Experimental Squeeze Flow of Bitumen: Rheological Properties
Abstract:
The squeeze flow tests were studied by many authors to measure the rheological properties of fluid. Experimental squeezing flow test with constant area between two parallel disks of bitumen is investigated in the present work. The effect of the temperature, the process of preparing the sample and the gap between the discs were discussed. The obtained results were compared with the theoretical models. The behavior of bitumen depends on the viscosity and the yield stress. Thus, the bitumen was presented as a power law for a small power law exponent and as a biviscous fluid when the viscosity ratio was smaller than one. Also, the influence of the ambient temperature is required for the compression test. Therefore, for a high temperature the yield stress decrease.Keywords: bitumen, biviscous fluid, squeeze flow, viscosity, yield stress
Procedia PDF Downloads 1407884 Multi-Sensory Coding as Intervention Therapy for ESL Spellers with Auditory Processing Delays: A South African Case-Study
Authors: A. Van Staden, N. Purcell
Abstract:
Spelling development is complex and multifaceted and relies on several cognitive-linguistic processes. This paper explored the spelling difficulties of English second language learners with auditory processing delays. This empirical study aims to address these issues by means of an intervention design. Specifically, the objectives are: (a) to develop and implement a multi-sensory spelling program for second language learners with auditory processing difficulties (APD) for a period of 6 months; (b) to assess the efficacy of the multi-sensory spelling program and whether this intervention could significantly improve experimental learners' spelling, phonological awareness, and processing (PA), rapid automatized naming (RAN), working memory (WM), word reading and reading comprehension; and (c) to determine the relationship (or interplay) between these cognitive and linguistic skills (mentioned above), and how they influence spelling development. Forty-four English, second language learners with APD were sampled from one primary school in the Free State province. The learners were randomly assigned to either an experimental (n=22) or control group (n=22). During the implementation of the spelling program, several visual, tactile and kinesthetic exercises, including the utilization of fingerspelling were introduced to support the experimental learners’ (N = 22) spelling development. Post-test results showed the efficacy of the multi-sensory spelling program, with the experimental group who were trained in utilising multi-sensory coding and fingerspelling outperforming learners from the control group on the cognitive-linguistic, spelling and reading measures. The results and efficacy of this multi-sensory spelling program and the utilisation of fingerspelling for hearing second language learners with APD open up innovative perspectives for the prevention and targeted remediation of spelling difficulties.Keywords: English second language spellers, auditory processing delays, spelling difficulties, multi-sensory intervention program
Procedia PDF Downloads 1367883 Experimental Investigation on Strengthening of Timber Beam Using Glass Fibers and Steel Plates
Authors: Sisaynew Tesfaw Admassu
Abstract:
The strengthening of timber beams can be necessary for several reasons including the increase of live loads (possible in a historical building for a change of destination of use or upgrading to meet new requirements), the reduction of the resistant cross-sections following deterioration (attacks of biological agents such as fungi, and insects) or traumatic events (fires) and the excess of deflection in the members. The main purpose of strengthening an element is not merely to repair it, but also to prevent and minimize the appearance of future problems. This study did an experimental investigation on the behavior of reference and strengthened solid timber beams. The strengthening materials used in this study were CSM-450 glass fiber and steel materials for both flexural and shear strengthening techniques. Twenty-two solid timber beams of Juniperus procera (TID) species with the dimensions of 60 x 90 x 780 mm were used in the present study. The binding material to bond the strengthening materials with timber was general-purpose resin with Luperox® K10 MEKP catalyst. Three beams were used as control beams (unstrengthen beams) while the remaining nineteen beams were strengthened using the strengthening materials for flexure and shear. All the beams were tested for three points loading to failure by using a Universal Testing Machine, UTM-600kN machine. The experimental results showed that the strengthened beams performed better than the unstrengthen beams. The experimental result of flexural strengthened beams showed that the load-bearing capacity of strengthened beams increased between 16.34 – 42.55%. Four layers of Glass Fiber Reinforced polymer on the tension side of the beams was shown to be the most effective way to enhance load-bearing capacity. The strengthened beams also have an enhancement in their flexural stiffness. The stiffness of flexural strengthened beams was increased between 1.18 – 65.53% as compared to the control beams. The highest increment in stiffness has occurred on beams strengthened using 2x60 mm steel plates. The shear-strengthened beams showed a relatively small amount of performance as compared to flexural-strengthened beams; the reason is that the beams are sufficient for shear. The polyester resin used in the experimental work showed good performance in bonding agents between materials. The resin showed more effectiveness in GFRP materials than steel materials.Keywords: heritage structures, strengthening, stiffness, adhesive, polyester resin, steel plates
Procedia PDF Downloads 747882 Experimental and Numerical Investigation of Heat Transfer in THTL Test Loop Shell and Tube Heat Exchanger
Authors: M. Moody, R. Mahmoodi, A. R. Zolfaghari, A. Aminottojari
Abstract:
In this study, flow inside the shell side of a shell-and-tube heat exchanger is simulated numerically for laminar and turbulent flows in both steady state and transient mode. Governing equations of fluid flow are discrete using finite volume method and central difference scheme and solved with simple algorithm which is staggered grid by using MATLAB programming language. The heat transfer coefficient is obtained using velocity field from equation Dittus-Bolter. In comparison with, heat exchanger is simulated with ANSYS CFX software and experimental data measured in the THTL test loop. Numerical results obtained from the study show good agreement with experimental data and ANSYS CFX results. In addition, by deliberation the effect of the baffle spacing and the baffle cut on the heat transfer rate for turbulent flow, it is illustrated that the heat transfer rate depends on the baffle spacing and the baffle cut directly. In other word in spied of large turbulence, if these two parameters are not selected properly in the heat exchanger, the heat transfer rate can reduce.Keywords: shell-and-tube heat exchanger, flow and heat transfer, laminar and turbulence flow, turbulence model, baffle spacing, baffle cut
Procedia PDF Downloads 5377881 Experimental and Finite Element Analysis of Large Deformation Characteristics of Magnetic Responsive Hydrogel Nanocomposites Membranes
Authors: Mallikarjunachari Gangapuram
Abstract:
Stimuli-responsive hydrogel nanocomposite membranes are gaining significant attention these days due to their potential applications in various engineering fields. For example, sensors, soft actuators, drug delivery, remote controlled therapy, water treatment, shape morphing, and magnetic refrigeration are few advanced applications of hydrogel nanocomposite membranes. In this work, hydrogel nanocomposite membranes are synthesized by embedding nanometer-sized (diameter - 300 nm) Fe₃O₄ magnetic particles into the polyvinyl alcohol (PVA) polymer. To understand the large deformation characteristics of these membranes, a well-known experimental method ball indentation technique is used. Different designing parameters such as membrane thickness, the concentration of magnetic particles and ball diameter on the viscoelastic properties are studied. All the experiments are carried out without and with a static magnetic field. Finite element simulations are carried out to validate the experimental results. It is observed, the creep response decreases and Young’s modulus increases as the thickness and concentration of magnetic particles increases. Image analysis revealed the hydrogel membranes are undergone global deformation for ball diameter 18 mm and local deformation when the diameter decreases from 18 mm to 0.5 mm.Keywords: ball indentation, hydrogel membranes, nanocomposites, Young's modulus
Procedia PDF Downloads 1287880 Modeling and Optimization of a Microfluidic Electrochemical Cell for the Electro-Reduction of CO₂ to CH₃OH
Authors: Barzin Rajabloo, Martin Desilets
Abstract:
First, an electrochemical model for the reduction of CO₂ into CH₃OH is developed in which mass and charge transfer, reactions at the surface of the electrodes and fluid flow of the electrolyte are considered. This mathematical model is developed in COMSOL Multiphysics® where both secondary and tertiary current distribution interfaces are coupled to consider concentrations and potentials inside different parts of the cell. Constant reaction rates are assumed as the fitted parameters to minimize the error between experimental data and modeling results. The model is validated through a comparison with experimental data in terms of faradaic efficiency for production of CH₃OH, the current density in different applied cathode potentials as well as current density in different electrolyte flow rates. The comparison between model outputs and experimental measurements shows a good agreement. The model indicates the higher hydrogen evolution in comparison with CH₃OH production as well as mass transfer limitation caused by CO₂ concentration, which are consistent with findings in the literature. After validating the model, in the second part of the study, some design parameters of the cell, such as cathode geometry and catholyte/anolyte channel widths, are modified to reach better performance and higher faradaic efficiency of methanol production.Keywords: carbon dioxide, electrochemical reduction, methanol, modeling
Procedia PDF Downloads 1097879 Implementing Search-Based Activities in Mathematics Instruction, Grounded in Intuitive Reasoning
Authors: Zhanna Dedovets
Abstract:
Fostering a mathematical style of thinking is crucial for cultivating intellectual personalities capable of thriving in modern society. Intuitive thinking stands as a cornerstone among the components of mathematical cognition, playing a pivotal role in grasping mathematical truths across various disciplines. This article delves into the exploration of leveraging search activities rooted in students' intuitive thinking, particularly when tackling geometric problems. Emphasizing both student engagement with the task and their active involvement in the search process, the study underscores the importance of heuristic procedures and the freedom for students to chart their own problem-solving paths. Spanning several years (2019-2023) at the Physics and Mathematics Lyceum of Dushanbe, the research engaged 17 teachers and 78 high school students. After assessing the initial levels of intuitive thinking in both control and experimental groups, the experimental group underwent training following the authors' methodology. Subsequent analysis revealed a significant advancement in thinking levels among the experimental group students. The methodological approaches and teaching materials developed through this process offer valuable resources for mathematics educators seeking to enhance their students' learning experiences effectively.Keywords: teaching of mathematics, intuitive thinking, heuristic procedures, geometric problem, students.
Procedia PDF Downloads 467878 Experimental Investigation with Different Inclination Angles on Copper Oscillating Heat Pipes Performance Using Fe2O3 / Kerosene under Magnetic Field
Authors: H. R. Goshayeshi, M. Mansori, M. Ahmady, M. Zhaloyi
Abstract:
This paper presents the result of an experimental investigation regarding the use of Fe2O3 nanoparticles added to Kerosene as a working fluid, under magnetic field for Copper Oscillating Heat pipe with inclination angle of 0°(horizontal), 15°, 30°, 45°, 60°, 75°, and 90° (vertical). The following were examined; measure the temperature distribution and heat transfer rate on Oscillating Heat Pipe (OHP), with magnetic field under different angles. Results showed that the addition of Fe2O3 nanoparticles under magnetic field improved thermal performance of OHP especially in 75°.Keywords: copper oscillating heat pipe, Fe2O3, magnetic field, inclination angles
Procedia PDF Downloads 3657877 Maintaining Experimental Consistency in Geomechanical Studies of Methane Hydrate Bearing Soils
Authors: Lior Rake, Shmulik Pinkert
Abstract:
Methane hydrate has been found in significant quantities in soils offshore within continental margins and in permafrost within arctic regions where low temperature and high pressure are present. The mechanical parameters for geotechnical engineering are commonly evaluated in geomechanical laboratories adapted to simulate the environmental conditions of methane hydrate-bearing sediments (MHBS). Due to the complexity and high cost of natural MHBS sampling, most laboratory investigations are conducted on artificially formed samples. MHBS artificial samples can be formed using different hydrate formation methods in the laboratory, where methane gas and water are supplied into the soil pore space under the methane hydrate phase conditions. The most commonly used formation method is the excess gas method which is considered a relatively simple, time-saving, and repeatable testing method. However, there are several differences in the procedures and techniques used to produce the hydrate using the excess gas method. As a result of the difference between the test facilities and the experimental approaches that were carried out in previous studies, different measurement criteria and analyses were proposed for MHBS geomechanics. The lack of uniformity among the various experimental investigations may adversely impact the reliability of integrating different data sets for unified mechanical model development. In this work, we address some fundamental aspects relevant to reliable MHBS geomechanical investigations, such as hydrate homogeneity in the sample, the hydrate formation duration criterion, the hydrate-saturation evaluation method, and the effect of temperature measurement accuracy. Finally, a set of recommendations for repeatable and reliable MHBS formation will be suggested for future standardization of MHBS geomechanical investigation.Keywords: experimental study, laboratory investigation, excess gas, hydrate formation, standardization, methane hydrate-bearing sediment
Procedia PDF Downloads 587876 Modelling of Pervaporation Separation of Butanol from Aqueous Solutions Using Polydimethylsiloxane Mixed Matrix Membranes
Authors: Arian Ebneyamini, Hoda Azimi, Jules Thibaults, F. Handan Tezel
Abstract:
In this study, a modification of Hennepe model for pervaporation separation of butanol from aqueous solutions using Polydimethylsiloxane (PDMS) mixed matrix membranes has been introduced and validated by experimental data. The model was compared to the original Hennepe model and few other models which are applicable for membrane gas separation processes such as Maxwell, Lewis Nielson and Pal. Theoretical modifications for non-ideal interface morphology have been offered to predict the permeability in case of interface void, interface rigidification and pore-blockage. The model was in a good agreement with experimental data.Keywords: butanol, PDMS, modeling, pervaporation, mixed matrix membranes
Procedia PDF Downloads 2217875 The Effect of Relaxing Exercises in Water on Endorphin Hormone for the Beginner in Swimming
Authors: Yasmin Hussein Embaby
Abstract:
Introduction: Athletic Training has its essentials, rules, and methods that help individual in reaching the maximum possible athletic level during the exercised physical activity, therefore; it is important for those working in athletic field to recognize and understand what is going on inside our bodies. This will show the close relationship between physiology and athletic training as the science that explains the various changes that happen to respond to the practice of physical activities. Swimming is one of the water sports that play a major role in influencing the full compatibility of body parts and its systems during the practice of different swimming methods, which uses aqueous to move. It is the initial nucleus in swimming learning and through which the beginner gain a sense of security, safety and the ability to move in aqueous by learning basic skills. Research Methodology: The researcher used the experimental methodology by using pre and post measurement on two equal groups (experimental – control) because it is appropriate for the research. Conclusions: Through the results and information found by the researcher, and in light of the related studies, theoretical readings and the statistical treatments of data; the researcher reached the following conclusions: 1. Muscle relaxation exercises have a positive effect on performance level in crawl swimming and on endorphin hormone as it helps in increasing its normal rater in body, the improvement percentage for experimental group in the relaxation ability, level of endorphin hormone exceeds those of control group. 2. The validity of muscle relaxation exercises proposed for the application, which achieved its objectives, namely increasing the level of endorphin hormone in the body; where research results showed a statistically significant difference in the level of endorphin hormone in favor of the experimental sample.Keywords: beginners, endorphin hormone, relaxing exercises, swimming
Procedia PDF Downloads 2127874 Experimental Evaluation of Stand Alone Solar Driven Membrane Distillation System
Authors: Mejbri Sami, Zhani Khalifa, Zarzoum Kamel, Ben Bacha Habib, Koschikowski Joachim, Pfeifle Daniel
Abstract:
Many places worldwide, especially arid and semi-arid remote regions, are suffering from the lack of drinkable water and the situation will be aggravated in the near future. Furthermore, remote areas are characterised by lack of conventional energy sources, skilled personnel and maintenance facilities. Therefore, the development of small to medium size, stand-alone and robust solar desalination systems is needed to provide independent fresh water supply in remote areas. This paper is focused on experimental studies on compact membrane distillation (MD) solar desalination prototype located at the Mechanical Engineering Department site, Kairouan University, Kairouan, Tunisia. The pilot system is designed and manufactured as a part of a research and development project funded by the MESRS/BMBF. The pilot system is totally autonomous. The electrical energy required to operate the unit is generated through a field of 4 m² of photovoltaic panels, and the heating of feed water is provided by a field of 6 m² of solar collectors. The Kairouan plant performance of the first few months of operation is presented. The highest freshwater production of 150 L/d is obtained on a sunny day in July of 633 W/m²d.Keywords: experimental, membrane distillation, solar desalination, Permeat gap
Procedia PDF Downloads 1367873 Decades of Educational Excellence: Case Studies of Successful Family-Owned Higher Educational Institutions
Authors: Maria Luz Macasinag
Abstract:
This study aims to determine and to examine critically successful family-owned higher educational institutions towards identifying the attributes and practices that may likely have led to their success. This research is confined to private, non-sectarian, family-owned higher institutions of learning that have been operating for more than fifty years, had only one founder and had at least two transitions in terms of generation. The criteria for selecting family-owned universities to be part of the cases under investigation include institutions (1) with increasing enrollment over the past five years, with level III accreditation status, (3) with good performance in the Board examinations in most of its programs and (4) with high employability of graduates. The study uses the multiple case study method. A model based on the cross-case analysis of the attributes and practices of all the case studies of successful family- owned higher institutions of learning is the output. The paper provides insights to current and future school owners and administrators in the management of their institutions for competitiveness, sustainability and advancement. This research encourages the evaluation of how the ideas that may lead to the success of schools owned by families in developing a sense of community, a reciprocal relationship among colleagues, the students and other stakeholders will result to the attainment of the vision and mission of the school. The study is beneficial to entrepreneurs and to business students whose know-how may provide insights that would be helpful in guiding prospective school owners. The commission on higher education and the Department of Education stand to benefit from this academic paper for the guidance that they provide to family-owned educational institutions. Banks and other financial institutions may find valuable ideas from this academic paper for the purpose of providing financial assistance to colleges and universities that are family-owned. Researchers in the field of educational management and administration may be able to extract from this study related topics for future research.Keywords: administration practices, attributes, family-owned schools, success factors
Procedia PDF Downloads 2747872 Numerical Simulation of the Heat Transfer Process in a Double Pipe Heat Exchanger
Authors: J. I. Corcoles, J. D. Moya-Rico, A. Molina, J. F. Belmonte, J. A. Almendros-Ibanez
Abstract:
One of the most common heat exchangers technology in engineering processes is the use of double-pipe heat exchangers (DPHx), mainly in the food industry. To improve the heat transfer performance, several passive geometrical devices can be used, such as the wall corrugation of tubes, which increases the wet perimeter maintaining a constant cross-section area, increasing consequently the convective surface area. It contributes to enhance heat transfer in forced convection, promoting secondary recirculating flows. One of the most extended tools to analyse heat exchangers' efficiency is the use of computational fluid dynamic techniques (CFD), a complementary activity to the experimental studies as well as a previous step for the design of heat exchangers. In this study, a double pipe heat exchanger behaviour with two different inner tubes, smooth and spirally corrugated tube, have been analysed. Hence, experimental analysis and steady 3-D numerical simulations using the commercial code ANSYS Workbench v. 17.0 are carried out to analyse the influence of geometrical parameters for spirally corrugated tubes at turbulent flow. To validate the numerical results, an experimental setup has been used. To heat up or cool down the cold fluid as it passes through the heat exchanger, the installation includes heating and cooling loops served by an electric boiler with a heating capacity of 72 kW and a chiller, with a cooling capacity of 48 kW. Two tests have been carried out for the smooth tube and for the corrugated one. In all the tests, the hot fluid has a constant flowrate of 50 l/min and inlet temperature of 59.5°C. For the cold fluid, the flowrate range from 25 l/min (Test 1) and 30 l/min (Test 2) with an inlet temperature of 22.1°C. The heat exchanger is made of stainless steel, with an external diameter of 35 mm and wall thickness of 1.5 mm. Both inner tubes have an external diameter of 24 mm and 1 mm thickness of stainless steel with a length of 2.8 m. The corrugated tube has a corrugation height (H) of 1.1 mm and helical pitch (P) of 25 mm. It is characterized using three non-dimensional parameters, the ratio of the corrugation shape and the diameter (H/D), the helical pitch (P/D) and the severity index (SI = H²/P x D). The results showed good agreement between the numerical and the experimental results. Hence, the lowest differences were shown for the fluid temperatures. In all the analysed tests and for both analysed tubes, the temperature obtained numerically was slightly higher than the experimental results, with values ranged between 0.1% and 0.7%. Regarding the pressure drop, the maximum differences between the values obtained numerically, and the experimental values were close to 16%. Based on the experimental and the numerical results, for the corrugated tube, it can be highlighted that the temperature difference between the inlet and the outlet of the cold fluid is 42%, higher than the smooth tube.Keywords: corrugated tube, heat exchanger, heat transfer, numerical simulation
Procedia PDF Downloads 1477871 Use of Smartphones in 6th and 7th Grade (Elementary Schools) in Istria: Pilot Study
Authors: Maja Ruzic-Baf, Vedrana Keteles, Andrea Debeljuh
Abstract:
Younger and younger children are now using a smartphone, a device which has become ‘a must have’ and the life of children would be almost ‘unthinkable’ without one. Devices are becoming lighter and lighter but offering an array of options and applications as well as the unavoidable access to the Internet, without which it would be almost unusable. Numerous features such as taking of photographs, listening to music, information search on the Internet, access to social networks, usage of some of the chatting and messaging services, are only some of the numerous features offered by ‘smart’ devices. They have replaced the alarm clock, home phone, camera, tablet and other devices. Their use and possession have become a part of the everyday image of young people. Apart from the positive aspects, the use of smartphones has also some downsides. For instance, free time was usually spent in nature, playing, doing sports or other activities enabling children an adequate psychophysiological growth and development. The greater usage of smartphones during classes to check statuses on social networks, message your friends, play online games, are just some of the possible negative aspects of their application. Considering that the age of the population using smartphones is decreasing and that smartphones are no longer ‘foreign’ to children of pre-school age (smartphones are used at home or in coffee shops or shopping centers while waiting for their parents, playing video games often inappropriate to their age), particular attention must be paid to a very sensitive group, the teenagers who almost never separate from their ‘pets’. This paper is divided into two sections, theoretical and empirical ones. The theoretical section gives an overview of the pros and cons of the usage of smartphones, while the empirical section presents the results of a research conducted in three elementary schools regarding the usage of smartphones and, specifically, their usage during classes, during breaks and to search information on the Internet, check status updates and 'likes’ on the Facebook social network.Keywords: education, smartphone, social networks, teenagers
Procedia PDF Downloads 4537870 Review of Literature: Using Technology to Help Language Learners at Improving Their Language Skills
Authors: Eyup Bayram Guzel, Osman Tunc
Abstract:
People have been fairly interested in what technology offers to them around a scope of human necessities and it has become a part of human life. In this study, experimental studies were reviewed for the purpose of how technology helps language learners improve their phonemic awareness, reading comprehension and vocabulary development skills. As a conclusion, experimental studies demonstrated that students showed significant improvements up to 70% in phonological awareness, while they demonstrated up to 76% of improvements in reading comprehension and up to 77% in vocabulary development. The use of computer-assisted technologies and its positive outcomes were encouraged to be used more widely in order to meet the diverse needs of students.Keywords: technology, phonemic awareness, reading comprehension, vocabulary development
Procedia PDF Downloads 3007869 Classroom Interaction Patterns as Correlates of Senior Secondary School Achievement in Chemistry in Awka Education Zone
Authors: Emmanuel Nkemakolam Okwuduba, Fransica Chinelo Offiah
Abstract:
The technique of teaching chemistry to students is one of the determining factors towards their achievement. Thus, the study investigated the relationship between classroom interaction patterns and students’ achievement in Chemistry. The purpose of this study was to identify patterns of interaction in an observed chemistry classroom, determine the amount of teacher talk, student talk and period of silence and to find out the relationship between them and the mean achievement scores of students. Five research questions and three hypotheses guided the study. The study was a correlational survey. The sample consisted of 450 (212males and 238 females) senior secondary one students and 12 (5males and 7 females) chemistry teachers drawn from 12 selected secondary schools in Awka Education Zone of Anambra state. In each of the 12 selected schools, an intact class was used. Science Interaction Category (SIC) and Chemistry Achievement Test (CAT) were developed, validated and used for data collection. Each teacher was observed three times and the interaction patterns coded using a coding sheet containing the Science Interaction Category. At the end of the observational period, the Chemistry Achievement Test (for collection of data on students’ achievement in chemistry) was administered on the students. Frequencies, percentage, mean, standard deviation and Pearson product moment correlation were used for data analysis. The result showed that the percentages of teacher talk, student talk and silence were 59.6%, 37.6% and 2.8% respectively. The Pearson correlation coefficient(r) for teacher talk, student talk and silence were -0.61, 0.76 and-0.18 respectively. The result showed negative and significant relationship between teacher talk and mean achievement scores of students; positive and significant relationship between student talk and mean achievement scores of students but there is no relationship between period of silence and mean achievement scores of students at 0.05 significant levels. The following recommendations were made based on the findings: teachers should establish high level of student talk through initiation and response as it promotes involvement and enhances achievement.Keywords: academic achievement, chemistry, classroom, interactions patterns
Procedia PDF Downloads 3097868 Density Measurement of Underexpanded Jet Using Stripe Patterned Background Oriented Schlieren Method
Authors: Shinsuke Udagawa, Masato Yamagishi, Masanori Ota
Abstract:
The Schlieren method, which has been conventionally used to visualize high-speed flows, has disadvantages such as the complexity of the experimental setup and the inability to quantitatively analyze the amount of refraction of light. The Background Oriented Schlieren (BOS) method proposed by Meier is one of the measurement methods that solves the problems, as mentioned above. The refraction of light is used for BOS method same as the Schlieren method. The BOS method is characterized using a digital camera to capture the images of the background behind the observation area. The images are later analyzed by a computer to quantitatively detect the amount of shift of the background image. The experimental setup for BOS does not require concave mirrors, pinholes, or color filters, which are necessary in the conventional Schlieren method, thus simplifying the experimental setup. However, the defocusing of the observation results is caused in case of using BOS method. Since the focus of camera on the background image leads to defocusing of the observed object. The defocusing of object becomes greater with increasing the distance between the background and the object. On the other hand, the higher sensitivity can be obtained. Therefore, it is necessary to adjust the distance between the background and the object to be appropriate for the experiment, considering the relation between the defocus and the sensitivity. The purpose of this study is to experimentally clarify the effect of defocus on density field reconstruction. In this study, the visualization experiment of underexpanded jet using BOS measurement system with ronchi ruling as the background that we constructed, have been performed. The reservoir pressure of the jet and the distance between camera and axis of jet is fixed, and the distance between background and axis of jet has been changed as the parameter. The images have been later analyzed by using personal computer to quantitatively detect the amount of shift of the background image from the comparison between the background pattern and the captured image of underexpanded jet. The quantitatively measured amount of shift have been reconstructed into a density flow field using the Abel transformation and the Gradstone-Dale equation. From the experimental results, it is found that the reconstructed density image becomes blurring, and noise becomes decreasing with increasing the distance between background and axis of underexpanded jet. Consequently, it is cralified that the sensitivity constant should be greater than 20, and the circle of confusion diameter should be less than 2.7mm at least in this experimental setup.Keywords: BOS method, underexpanded jet, abel transformation, density field visualization
Procedia PDF Downloads 78