Search results for: multijunction solar cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4829

Search results for: multijunction solar cell

3569 Direct Oxidation Synthesis for a Dual-Layer Silver/Silver Orthophosphate with Controllable Tetrahedral Structure as an Active Photoanode for Solar-Driven Photoelectrochemical Water Splitting

Authors: Wen Cai Ng, Saman Ilankoon, Meng Nan Chong

Abstract:

The vast increase in global energy demand, coupled with the growing concerns on environmental issues, has triggered the search for cleaner alternative energy sources. In view of this, the photoelectrochemical (PEC) water splitting offers a sustainable hydrogen (H2) production route that only requires solar energy, water, and PEC system operating in an ambient environment. However, the current advancement of PEC water splitting technologies is still far from the commercialization benchmark indicated by the solar-to-H2 (STH) efficiency of at least 10 %. This is largely due to the shortcomings of photoelectrodes used in the PEC system, such as the rapid recombination of photogenerated charge carriers and limited photo-responsiveness in the visible-light spectrum. Silver orthophosphate (Ag3PO4) possesses many desirable intrinsic properties for the fabrication into photoanode used in PEC systems, such as narrow bandgap of 2.4 eV and low valence band (VB) position. Hence, in this study, a highly efficient Ag3PO4-based photoanode was synthesized and characterized. The surface of the Ag foil substrate was directly oxidized to fabricate a top layer composed of {111}-bound Ag3PO4 tetrahedrons layer with a porous structure, forming the dual-layer Ag/Ag3PO4 photoanode. Furthermore, the key synthesis parameters were systematically investigated by varying the concentration ratio of capping agent-to-precursor (R), the volume ratio of hydrogen peroxide (H2O2)-to-water, and reaction period. Results showed that the optimized dual-layer Ag/Ag3PO4 photoanode achieved a photocurrent density as high as 4.19 mA/cm2 at 1 V vs. Ag/AgCl for the R-value of 4, the volume ratio of H2O2-to-water of 3:5 and 20 h reaction period. The current work provides a solid foundation for further nanoarchitecture modification strategies on Ag3PO4-based photoanodes for more efficient PEC water splitting applications. This piece of information needs to be backed up by evidence; therefore, you need to provide a reference. As the abstract should be self-contained, all information requiring a reference should be removed. This is a fact known to the area of research, and not necessarily required a reference to support.

Keywords: solar-to-hydrogen fuel, photoelectrochemical water splitting, photoelectrode, silver orthophosphate

Procedia PDF Downloads 104
3568 Effect of Neem (Aziradicta Indica) Leaf Meal on Growth Performance, Haematology and Serum Biochemistry Indices of Broilers Not Administered Vaccines and Antibiotics

Authors: Ugwuowo Leonard Chidi, Oparaji Chetachukwu Jecinta., Ogidi Chibuzor Agafenachukwu, Onuoha Rebecca Obianuju

Abstract:

This experiment was conducted to investigate the growth performance, haematology and serum biochemistry indices of broiler birds fed diets containing Neem leaf meal. A total of 96 unsexed day-old broiler birds were allocated to four treatments of T1, T2, T3 and T4 and replicated three times with eight birds per replicate in a Completely Randomized Design. The treatments were diets containing 2.0, 4.0, 6.0 and 8.0% Neem leaf meal respectively. Growth performances, packed cell volume, red blood cell count, haemoglobin, white blood cell count, lymphocytes, mean corpuscular volume, mean corpuscular haemoglobin concentration, platelet count, aspartate amino transaminase, alanine amino transaminase, alkaline phosphate, cholesterol, albumin, globulin, urea, glucose, total protein and creatinine were evaluated. Results showed that there were no significant differences (P>0.05) in all the growth performance parameters among the treatments. The results of the experiment showed that there were significant differences (P<0.05) in all the heamatological and serum biochemistry parameters at finisher phases. Mean corpuscular volume, white blood cell count, lymphocytes, red blood cell count, haemoglobin, platelet count, creatinine and triglyceride increased and were highest in treatment two while treatment four had the least values in mean corpuscular volume, urea, white blood cell, haemoglobin and triglyceride. This implies that the levels of inclusion of Neem leaf meal in this experiment did not affect the growth performance of the broiler chicks but the haematological and serum biochemistry indices were affected. Treatment two with a 4% inclusion level of Neem leaf meal has shown the capacity to replace vaccines and antibiotics in broilers due to the positive effects it had on both the haematological and serum biochemistry.

Keywords: leaf meal, broiler, Aziradicta indica, serum biochemistry, haematology

Procedia PDF Downloads 52
3567 A Theoretical and Experimental Evaluation of a Solar-Powered Off-Grid Air Conditioning System for Residential Buildings

Authors: Adam Y. Sulaiman, Gerard I.Obasi, Roma Chang, Hussein Sayed Moghaieb, Ming J. Huang, Neil J. Hewitt

Abstract:

Residential air-conditioning units are essential for quality indoor comfort in hot climate countries. Nevertheless, because of their non-renewable energy sources and the contribution of ecologically unfriendly working fluids, these units are a major source of CO2 emissions in these countries. The utilisation of sustainable technologies nowadays is essential to reduce the adverse effects of CO2 emissions by replacing conventional technologies. This paper investigates the feasibility of running an off-grid solar-powered air-conditioning bed unit using three low GWP refrigerants (R32, R290, and R600a) to supersede conventional refrigerants.A prototype air conditioning unit was built to supply cold air to a canopy that was connected to it. The assembled unit was designed to distribute cold air to a canopy connected to it. This system is powered by two 400 W photovoltaic panels, with battery storage supplying power to the unit at night-time. Engineering Equation Solver (EES) software is used to mathematically model the vapor compression cycle (VCC) and predict the unit's energetic and exergetic performance. The TRNSYS software was used to simulate the electricity storage performance of the batteries, whereas the IES-VE was used to determine the amount of solar energy required to power the unit. The article provides an analytical design guideline, as well as a comprehensible process system. Combining a renewable energy source to power an AC based-VCC provides an excellent solution to the real problems of high-energy consumption in warm-climate countries.

Keywords: air-conditioning, refrigerants, PV panel, energy storages, VCC, exergy

Procedia PDF Downloads 160
3566 A One Dimensional Particle in Cell Model for Excimer Lamps

Authors: W. Benstaali, A. Belasri

Abstract:

In this work we study a planar lamp filled with neon-xenon gas. We use a one-dimensional particle in a cell with Monte Carlo simulation (PIC-MCC) to investigate the effect xenon concentration on the energy deposited on excitation, ionization and ions. A Xe-Ne discharge is studied for a gas pressure of 400 torr. The results show an efficient Xe20-Ne mixture with an applied voltage of 1.2KV; the xenon excitation energy represents 65% form total energy dissipated in the discharge. We have also studied electrical properties and the energy balance a discharge for Xe50-Ne which needs a voltage of 2kv; the xenon energy is than more important.

Keywords: dielectric barrier discharge, efficiency, excitation, lamps

Procedia PDF Downloads 143
3565 Anti-Oxidant and Anti-Cancer Activity of Helix aspersa Aqueous Extract

Authors: Ibtissem El Ouar, Cornelia Braicu, Dalila Naimi, Alexendru Irimie, Ioana Berindan-Neagoe

Abstract:

Helix aspersa, 'the garden snail' is a big land snail widely found in the Mediterranean countries, it is one of the most consumed species in the west of Algeria. It is commonly used in zootherapy to purify blood and to treat cardiovascular diseases and liver problems. The aim of our study is to investigate, the antitumor activity of an aqueous extract from Helix aspersa prepared by the traditional method on Hs578T; a triple negative breast cancer cell line. Firstly, the free radical scavenging activity of H. aspersa extract was assessed by measuring its capability for scavenging the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH), as well as its ability to reduce ferric ion by the FRAP assay (ferric reducing ability). The cytotoxic effect of H. aspersa extract against Hs578T cells was evaluated by the MTT test (3-(4,5- dimethylthiazl-2-yl)-2,5- diphenyltetrazolium bromide)) while the mode of cell death induced by the extract has been determined by fluorescence microscopy using acredine orange/ethidium bromide (AO/EB) probe. The level of TNFα has also measured in cell medium by ELISA method. The results suggest that H. aspersa extract has an antioxidant activity, especially at high concentrations, it can reduce DPPH radical and ferric ion. The MTT test shows that H. aspersa extract has a great cytotoxic effect against breast cancer cells, the IC50 value correspond of the dilution 1% of the crude extract. Moreover, the AO/EB staining shows that TNFα induced necrosis is the main form of cell death induced by the extract. In conclusion, the present study may open new perspectives in the search for new natural anticancer drugs.

Keywords: breast cancer, Helix aspersa, Hs578t cell line, necrosis

Procedia PDF Downloads 401
3564 Design and Integration of a Renewable Energy Based Polygeneration System with Desalination for an Industrial Plant

Authors: Lucero Luciano, Cesar Celis, Jose Ramos

Abstract:

Polygeneration improves energy efficiency and reduce both energy consumption and pollutant emissions compared to conventional generation technologies. A polygeneration system is a variation of a cogeneration one, in which more than two outputs, i.e., heat, power, cooling, water, energy or fuels, are accounted for. In particular, polygeneration systems integrating solar energy and water desalination represent promising technologies for energy production and water supply. They are therefore interesting options for coastal regions with a high solar potential, such as those located in southern Peru and northern Chile. Notice that most of the Peruvian and Chilean mining industry operations intensive in electricity and water consumption are located in these particular regions. Accordingly, this work focus on the design and integration of a polygeneration system producing industrial heating, cooling, electrical power and water for an industrial plant. The design procedure followed in this work involves integer linear programming modeling (MILP), operational planning and dynamic operating conditions. The technical and economic feasibility of integrating renewable energy technologies (photovoltaic and solar thermal, PV+CPS), thermal energy store, power and thermal exchange, absorption chillers, cogeneration heat engines and desalination technologies is particularly assessed. The polygeneration system integration carried out seek to minimize the system total annual cost subject to CO2 emissions restrictions. Particular economic aspects accounted for include investment, maintenance and operating costs.

Keywords: desalination, design and integration, polygeneration systems, renewable energy

Procedia PDF Downloads 109
3563 High-Frequency Modulation of Light-Emitting Diodes for New Ultraviolet Communications

Authors: Meng-Chyi Wu, Bonn Lin, Jyun-Hao Liao, Chein-Ju Chen, Yu-Cheng Jhuang, Mau-Phon Houng, Fang-Hsing Wang, Min-Chu Liu, Cheng-Fu Yang, Cheng-Shong Hong

Abstract:

Since the use of wireless communications has become critical nowadays, the available RF spectrum has become limited. Ultraviolet (UV) communication system can alleviate the spectrum constraint making UV communication system a potential alternative to future communication demands. Also, UV links can provide faster communication rate and can be used in combination with existing RF communication links, providing new communications diversity with higher user capacity. The UV region of electromagnetic spectrum has been of interest to detector, imaging and communication technologies because the stratospheric ozone layer effectively absorbs some solar UV radiation from reaching the earth surface. The wavebands where most of UV radiation is absorbed by the ozone are commonly known as the solar blind region. By operating in UV-C band (200-280 nm) the communication system can minimize the transmission power consumption since it will have less radiation noise. UV communication uses the UV ray as the medium. Electric signal is carried on this band after being modulated and then be transmitted within the atmosphere as channel. Though the background noise of UV-C communication is very low owing to the solar-blind feature, it leads to a large propagation loss. The 370 nm UV provides a much lower propagation loss than that the UV-C does and the recent device technology for UV source on this band is more mature. The fabricated 370 nm AlGaN light-emitting diodes (LEDs) with an aperture size of 45 m exhibit a modulation bandwidth of 165 MHz at 30 mA and a high power of 7 W/cm2 at 230 A/cm2. In order to solve the problem of low power in single UV LED, a UV LED array is presented in.

Keywords: ultraviolet (UV) communication, light-emitting diodes (LEDs), modulation bandwidth, LED array, 370 nm

Procedia PDF Downloads 393
3562 Microbial Fuel Cells in Waste Water Treatment and Electricity Generation

Authors: Rajalaxmi N., Padma Bhat, Pooja Garag, Pooja N. M., V. S. Hombalimath

Abstract:

Microbial fuel cell (MFC) is the advancement of science that aims at utilizing the oxidizing potential of bacteria for wastewater treatment and production of bio-hydrogen and bio-electricity. Salt-bridge is the economic alternative to highly priced proton-exchange membrane in the construction of a microbial fuel cell. This paper studies the electricity generating capacity of E.coli and Clostridium sporogenes in microbial fuel cells (MFCs). Unlike most of MFC research, this targets the long term goals of renewable energy production and wastewater treatment. In present study the feasibility and potential of bioelectricity production from different wastewater was observed. Different wastewater was primarily treated which were confirmed by the COD tests which showed reduction of COD. We observe that the electricity production of MFCs decreases almost linearly after 120 hrs. The sewage wastewater containing Clostridium sporogenes showed bioelectricity production up to 188mV with COD removal of 60.52%. Sewage wastewater efficiently produces bioelectricity and this also helpful to reduce wastewater pollution load.

Keywords: microbial fuel cell, bioelectricity, wastewater, salt bridge, COD

Procedia PDF Downloads 507
3561 Impact of Climate Change on Some Physiological Parameters of Cyclic Female Egyptian Buffalo

Authors: Nabil Abu-Heakal, Ismail Abo-Ghanema, Basma Hamed Merghani

Abstract:

The aim of this investigation is to study the effect of seasonal variations in Egypt on hematological parameters, reproductive and metabolic hormones of Egyptian buffalo-cows. This study lasted one year extending from December 2009 to November 2010 and was conducted on sixty buffalo-cows. Group of 5 buffalo-cows at estrus phase were selected monthly. Then, after blood sampling through tail vein puncture in the 2nd day after natural service, they were divided in two samples: one with anticoagulant for hematological analysis and the other without anticoagulant for serum separation. Results of this investigation revealed that the highest atmospheric temperature was in hot summer 32.61±1.12°C versus 26.18±1.67°C in spring and 19.92±0.70°C in winter season, while the highest relative humidity % was in winter season 43.50±1.60% versus 32.50±2.29% in summer season. The rise in temperature-humidity index from 63.73±1.29 in winter to 78.53±1.58 in summer indicates severe heat stress which is associated with significant reduction in total red blood cell count (3.20±0.15×106), hemoglobin concentration (8.83±0.43 g/dl), packed cell volume (30.73±0.12%), lymphocytes % (40.66±2.33 %), serum progesterone hormone concentration (0.56±0.03 ng/mll), estradiol17-B concentration (16.8±0.64 ng/ml), triiodothyronin (T3) concentration (2.33±0.33 ng/ml) and thyroxin hormone (T4) concentration (21.66±1.66 ng/ml), while hot summer resulted in significant increase in mean cell volume (96.55±2.25 fl), mean cell hemoglobin (30.81±1.33 pg), total white blood cell count (10.63±0.97×103), neutrophils % (49.66±2.33%), serum prolactin hormone (PRL) concentration (23.45±1.72 ng/ml) and cortisol hormone concentration (4.47±0.33 ng/ml) compared to winter season. There was no significant seasonal variation in mean cell hemoglobin concentration (MCHC). It was concluded that in Egypt there was a seasonal variation in atmospheric temperature, relative humidity, temperature humidity index (THI) and the rise in THI above the upper critical level (72 units), which, for lactating buffalo-cows in Egypt is the major constraint on buffalo-cows' hematological parameters and hormonal secretion that affects animal reproduction. Hence, we should improve climatic conditions inside the dairy farm to eliminate or reduce summer infertility.

Keywords: buffalo, climate change, Egypt, physiological parameters

Procedia PDF Downloads 637
3560 The Effect of Combined Fluid Shear Stress and Cyclic Stretch on Endothelial Cells

Authors: Daphne Meza, Louie Abejar, David A. Rubenstein, Wei Yin

Abstract:

Endothelial cell (ECs) morphology and function is highly impacted by the mechanical stresses these cells experience in vivo. Any change in the mechanical environment can trigger pathological EC responses. A detailed understanding of EC morphological response and function upon subjection to individual and simultaneous mechanical stimuli is needed for advancement in mechanobiology and preventive medicine. To investigate this, a programmable device capable of simultaneously applying physiological fluid shear stress (FSS) and cyclic strain (CS) has been developed, characterized and validated. Its validation was performed both experimentally, through tracer tracking, and theoretically, through the use of a computational fluid dynamics model. The effectiveness of the device was evaluated through EC morphology changes under mechanical loading conditions. Changes in cell morphology were evaluated through: cell and nucleus elongation, cell alignment and junctional actin production. The results demonstrated that the combined FSS-CS stimulation induced visible changes in EC morphology. Upon simultaneous fluid shear stress and biaxial tensile strain stimulation, cells were elongated and generally aligned with the flow direction, with stress fibers highlighted along the cell junctions. The concurrent stimulation from shear stress and biaxial cyclic stretch led to a significant increase in cell elongation compared to untreated cells. This, however, was significantly lower than that induced by shear stress alone, indicating that the biaxial tensile strain may counteract the elongating effect of shear stress to maintain the shape of ECs. A similar trend was seen in alignment, where the alignment induced by the concurrent application of shear stress and cyclic stretch fell in between that induced by shear stress and tensile stretch alone, indicating the opposite role shear stress and tensile strain may play in cell alignment. Junctional actin accumulation was increased upon shear stress alone or simultaneously with tensile stretch. Tensile stretch alone did not change junctional actin accumulation, indicating the dominant role of shear stress in damaging EC junctions. These results demonstrate that the shearing-stretching device is capable of applying well characterized dynamic shear stress and tensile strain to cultured ECs. Using this device, EC response to altered mechanical environment in vivo can be characterized in vitro.

Keywords: cyclic stretch, endothelial cells, fluid shear stress, vascular biology

Procedia PDF Downloads 360
3559 Photoelectrochemical Water Splitting from Earth-Abundant CuO Thin Film Photocathode: Enhancing Performance and Photo-Stability through Deposition of Overlayers

Authors: Wilman Septina, Rajiv R. Prabhakar, Thomas Moehl, David Tilley

Abstract:

Cupric oxide (CuO) is a promising absorber material for the fabrication of scalable, low cost solar energy conversion devices, due to the high abundance and low toxicity of copper. It is a p-type semiconductor with a band gap of around 1.5 eV, absorbing a significant portion of the solar spectrum. One of the main challenges in using CuO as solar absorber in an aqueous system is its tendency towards photocorrosion, generating Cu2O and metallic Cu. Although there have been several reports of CuO as a photocathode for hydrogen production, it is unclear how much of the observed current actually corresponds to H2 evolution, as the inevitability of photocorrosion is usually not addressed. In this research, we investigated the effect of the deposition of overlayers onto CuO thin films for the purpose of enhancing its photostability as well as performance for water splitting applications. CuO thin film was fabricated by galvanic electrodeposition of metallic copper onto gold-coated FTO substrates, followed by annealing in air at 600 °C. Photoelectrochemical measurement of the bare CuO film using 1 M phosphate buffer (pH 6.9) under simulated AM 1.5 sunlight showed a current density of ca. 1.5 mA cm-2 (at 0.4 VRHE), which photocorroded to Cu metal upon prolonged illumination. This photocorrosion could be suppressed by deposition of 50 nm-thick TiO2, deposited by atomic layer deposition. In addition, we found that insertion of an n-type CdS layer, deposited by chemical bath deposition, between the CuO and TiO2 layers was able to enhance significantly the photocurrent compared to without the CdS layer. A photocurrent of over 2 mA cm-2 (at 0 VRHE) was observed using the photocathode stack FTO/Au/CuO/CdS/TiO2/Pt. Structural, electrochemical, and photostability characterizations of the photocathode as well as results on various overlayers will be presented.

Keywords: CuO, hydrogen, photoelectrochemical, photostability, water splitting

Procedia PDF Downloads 201
3558 The Cell Viability Study of Extracts of Bark, Flowers, Leaves and Seeds of Indian Dhak Tree, Flame of Forest

Authors: Madhavi S. Apte, Milind Bhitre

Abstract:

In pharmaceutical research and new drug development, medicinal plants have important roles. Similarly, Indian dhak tree belonging to family Fabaceae has been widely used in the traditional Indian medical system of ‘Ayurveda’ for the treatment of a variety of ailments. Hence the cell viability study was undertaken to evaluate and compare the activity of extracts of various parts like flower, bark, leaf, seed by conducting MTT assay method along with other pharmacognostical studies. The methanolic extracts of bark, flowers, leaves, and seeds were used for the study. The cell viability MTT assay was performed using the standard operating procedures. The extracts were dissolved in DMSO and serially diluted with complete medium to get the concentrations range of test concentration. DMSO concentration was kept < 0.1% in all the samples. HUVEC cells maintained in appropriate conditions were seeded in 96 well plates and treated with different concentrations of the test samples and incubated at 37°C, 5% CO₂ for 96 hours. MTT reagent was added to the wells and incubated for 4 hours; the dark blue formazan product formed by the cells was dissolved in DMSO under a safety cabinet and read at 550nm. Percentage inhibitions were calculated and plotted with the concentrations used to calculate the IC50 values. The bark, flower, leaves and seed extracts have shown the cytotoxicity activity and can be further studied for antiangiogenesis activity.

Keywords: pharmacognosy, Cell viability, MTT assay, anti-angiogenesis

Procedia PDF Downloads 274
3557 Effect of CuO, Al₂O₃ and ZnO Nanoparticles on the Response Time for Natural Convection

Authors: Mefteh Bouhalleb

Abstract:

With the recent progress in nanotechnology, nanofluids have excellent potentiality in many modern engineering processes, particularly for solar systems such as concentrated solar power plants (CSP). In this context, a numerical simulation is performed to investigate laminar natural convection nanofluids in an inclined rectangular enclosure. Mass conservation, momentum, and energy equations are numerically solved by the finite volume element method using the SIMPLER algorithm for pressure-velocity coupling. In this work, we tested the acting factors on the system response time, such as the particle volume fraction of nanoparticles, particle material, particle size, an inclination angle of enclosure and Rayleigh number. The results show that the diameter of solid particles and Rayleigh number plays an important role in the system response time. The orientation angle of the cavity affects the system response time. A phenomenon of hysteresis appears when the system does not return to its initial state.

Keywords: nanofluid, nanoparticles, heat transfer, time response

Procedia PDF Downloads 81
3556 High-Dimensional Single-Cell Imaging Maps Inflammatory Cell Types in Pulmonary Arterial Hypertension

Authors: Selena Ferrian, Erin Mccaffrey, Toshie Saito, Aiqin Cao, Noah Greenwald, Mark Robert Nicolls, Trevor Bruce, Roham T. Zamanian, Patricia Del Rosario, Marlene Rabinovitch, Michael Angelo

Abstract:

Recent experimental and clinical observations are advancing immunotherapies to clinical trials in pulmonary arterial hypertension (PAH). However, comprehensive mapping of the immune landscape in pulmonary arteries (PAs) is necessary to understand how immune cell subsets interact to induce pulmonary vascular pathology. We used multiplexed ion beam imaging by time-of-flight (MIBI-TOF) to interrogate the immune landscape in PAs from idiopathic (IPAH) and hereditary (HPAH) PAH patients. Massive immune infiltration in I/HPAH was observed with intramural infiltration linked to PA occlusive changes. The spatial context of CD11c+DCs expressing SAMHD1, TIM-3 and IDO-1 within immune-enriched microenvironments and neutrophils were associated with greater immune activation in HPAH. Furthermore, CD11c-DC3s (mo-DC-like cells) within a smooth muscle cell (SMC) enriched microenvironment were linked to vessel score, proliferating SMCs, and inflamed endothelial cells. Experimental data in cultured cells reinforced a causal relationship between neutrophils and mo-DCs in mediating pulmonary arterial SMC proliferation. These findings merit consideration in developing effective immunotherapies for PAH.

Keywords: pulmonary arterial hypertension, vascular remodeling, indoleamine 2-3-dioxygenase 1 (IDO-1), neutrophils, monocyte-derived dendritic cells, BMPR2 mutation, interferon gamma (IFN-γ)

Procedia PDF Downloads 156
3555 Prediction of the Transmittance of Various Bended Angles Lightpipe by Using Neural Network under Different Sky Clearness Condition

Authors: Li Zhang, Yuehong Su

Abstract:

Lightpipe as a mature solar light tube technique has been employed worldwide. Accurately assessing the performance of lightpipe and evaluate daylighting available has been a challenging topic. Previous research had used regression model and computational simulation methods to estimate the performance of lightpipe. However, due to the nonlinear nature of solar light transferring in lightpipe, the methods mentioned above express inaccurate and time-costing issues. In the present study, a neural network model as an alternative method is investigated to predict the transmittance of lightpipe. Four types of commercial lightpipe with bended angle 0°, 30°, 45° and 60° are discussed under clear, intermediate and overcast sky conditions respectively. The neural network is generated in MATLAB by using the outcomes of an optical software Photopia simulations as targets for networks training and testing. The coefficient of determination (R²) for each model is higher than 0.98, and the mean square error (MSE) is less than 0.0019, which indicate the neural network strong predictive ability and the use of the neural network method could be an efficient technique for determining the performance of lightpipe.

Keywords: neural network, bended lightpipe, transmittance, Photopia

Procedia PDF Downloads 135
3554 Assessing the Bioactivity and Cell Viability of Apatite-Wollastonite Glass Ceramics Prepared via Spray Pyrolysis

Authors: Andualem Workie

Abstract:

In this study, we examined the sinterability and bioactivity of MgO-SiO₂-P₂O₅-CaO-CaF₂ glass compositions created through spray pyrolysis. We evaluated the bioactivity of the materials by immersing them for varying periods of time in simulated bodily fluid (SBF) and found that bioactivity was related to the sintering temperature and soaking time. The material's pH value during immersion in SBF was within the range of 7.4-8.2, which is below 8.5 and improves compatibility and reduces toxicity in biological applications. We used X-ray diffraction and scanning electron microscopy to determine the phase compositions and morphologies of the samples and found that the 1100°C sintered A-W GC sample exhibited the highest bioactivity after soaking in SBF. This sample was dominated by fluorapatite, wollastonite, and whitlockite crystals scattered throughout the glass matrix. The crystallinity (%) of the A-W GC increased as its bioactivity improved, making it more suitable for use in pharmaceutical applications. We also conducted a cytotoxicity test on A-W GC samples sintered at different temperatures and found that the glass-ceramics were non-toxic to MC3T3-E1 cells at all extraction concentrations, except for those sintered at 700°C at concentrations of 250, 200, and 150 mg/ml where cell viability (%) was below the threshold of 70%.

Keywords: apatite wollastonite glass ceramics, bioactivity, calcination, cell viability

Procedia PDF Downloads 77
3553 Evaluation of Naringenin Role in Inhibiton of Lung Tumor Progression in Mice

Authors: Vishnu Varthan Vaithiyalingamjagannathan, M. N. Sathishkumar, K. S. Lakhsmi, D. Satheeshkumar, Srividyaammayappanrajam

Abstract:

Background:Naringenin, aglycone flavonoid possess certain activities like anti-oxidant, anti-estrogenic, anti-diabetic, cardioprotective, anti-obesity,anti-inflammatory, hepatoprotective and also have anti-cancer characteristics like carcinogenic inactivation, cell cycle arrest, anti-proliferation, apoptosis, anti-angiogenesis and enhances anti-oxidant activity. Methodology:The inhibitory effect of Naringenin in lung tumor progression estimated with adenocarcinoma (A549) cell lines (in vitro) and C57BL/6 mice injected with 5 X 106A549 cell lines (in vivo) in a tri-dose manner (Naringenin 100mg/kg,150mg/kg, and 200mg/kg) compared with standard chemotherapy drug cisplatin (7mg/kg). Results:The results of the present study revealed a dose-dependent activity in Naringenin and combination with cisplatin at a higher dose which showed decreased tumor progression in mice. In vitro studies carried out for estimation of cell survival and Nitric Oxide (NO) level, shows dose dependent action of Naringenin with IC50 value of 42µg/ml. In vivo studies were carried out in C57BL/6 mice. Naringenin satisfied the condition of an anti-cancer molecule with its characteristics in fragmentation assay, Zymography assay, anti-oxidant, and myeloperoxidase studies, than cisplatin which failed in anti-oxidant and myeloperoxidase effect. Both in vitro and in vivo establishes dose dependent decrease in NO levels. But whereas, Naringenin showed adverse results in Matrix Metalloproteinase (MMP) enzymatic levels with increase in dose levels. Conclusion:From the present study, Naringenin could suppress the lung tumor progression when given individually and also in combinatorial with standard chemotherapy drug.

Keywords: naringenin, in vitro, cell line, anticancer

Procedia PDF Downloads 420
3552 Natural Bio-Active Product from Marine Resources

Authors: S. Ahmed John

Abstract:

Marine forms-bacteria, actinobacteria, cynobacteria, fungi, microalgae, seaweeds mangroves and other halophytes an extremely important oceanic resources and constituting over 90% of the oceanic biomass. The marine natural products have lead to the discovery of many compounds considered worthy for clinical applications. The marine sources have the highest probability of yielding natural products. Natural derivatives play an important role to prevent the cancer incidences as synthetic drug transformation in mangrove. 28.12% of anticancer compound extracted from the mangroves. Exchocaria agollocha has the anti cancer compounds. The present investigation reveals the potential of the Exchocaria agollocha with biotechnological applications for anti cancer, antimicrobial drug discovery, environmental remediation, and developing new resources for the industrial process. The anti-cancer activity of Exchocaria agollocha was screened from 3.906 to 1000 µg/ml of concentration with the dilution leads to 1:1 to 1:128 following methanol and chloroform extracts. The cell viability in the Exchocaria agollocha was maximum at the lower concentration where as low at the higher concentration of methanol and chloroform extracts when compare to control. At 3.906 concentration, 85.32 and 81.96 of cell viability was found at 1:128 dilution of methanol and chloroform extracts respectively. At the concentration of 31.25 following 1:16 dilution, the cell viability was 65.55 in methanol and 45.55 in chloroform extracts. However, at the higher concentration, the cell viability 22.35 and 8.12 was recorded in the extracts of methanol and chloroform. The cell viability was more in methanol when compare to chloroform extracts at lower concentration. The present findings gives current trends in screening and the activity analysis of metabolites from mangrove resources and to expose the models to bring a new sustain for tackling cancer. Bioactive compounds of Exchocaria agollocha have extensive use in treatment of many diseases and serve as a compound and templates for synthetic modification.

Keywords: bio-active product, compounds, natural products and microalgae

Procedia PDF Downloads 231
3551 A Comparison Between the Internal Combustion Engine and Electric Motor in the Automobile

Authors: Jack Mason, Ahmad Pourmovhed

Abstract:

This paper will discuss the advantages and disadvantages of the internal combustion engine when compared to different types of electric vehicles. The Internal Combustion Engine (ICE)'s overall cost, environmental impact, and usability will all be compared to different types of Electric Vehicles (EVs) including Battery Electric Vehicles (BEVs) and Hydrogen Fuel Cell Electric Vehicles (FCEVs). Also, the ways to solve the issues of the problems each vehicle presents will be discussed.

Keywords: interal combustion engine, battery electric vehicle, fuel cell electric vehicle, emissions

Procedia PDF Downloads 159
3550 Comparative and Combined Toxicity of NiO and Mn₃O₄ Nanoparticles as Assessed in vitro and in vivo

Authors: Ilzira A. Minigalieva, Tatiana V. Bushueva, Eleonore Frohlich, Vladimir Panov, Ekaterina Shishkina, Boris A. Katsnelson

Abstract:

Background: The overwhelming majority of the experimental studies in the field of metal nanotoxicology have been performed on cultures of established cell lines, with very few researchers focusing on animal experiments, while a juxtaposition of conclusions inferred from these two types of research is blatantly lacking. The least studied aspect of this problem relates to characterizing and predicting the combined toxicity of metallic nanoparticles. Methods: Comparative and combined toxic effects of purposefully prepared spherical NiO and Mn₃O₄ nanoparticles (mean diameters 16.7 ± 8.2 nm and 18.4 ± 5.4 nm respectively) were estimated on cultures of human cell lines: MRC-5 fibroblasts, THP-1 monocytes, SY-SY5Y neuroblastoma cells, as well as on the latter two lines differentiated to macrophages and neurons, respectively. The combined cytotoxicity was mathematically modeled using the response surface methodology. Results: The comparative assessment of the studied NPs unspecific toxicity previously obtained in vivo was satisfactorily reproduced by the present in vitro tests. However, with respect to manganese-specific brain damage which had been demonstrated by us in animal experiment with the same NPs, the testing on neuronall cell culture showed only a certain enhancing effect of Mn₃O₄-NPs on the toxic action of NiO-NPs, while the role of the latter prevailed. Conclusion: From the point of view of the preventive toxicology, the experimental modeling of metallic NPs combined toxicity on cell cultures can give non-reliable predictions of the in vivo action’s effects.

Keywords: manganese oxide, nickel oxide, nanoparticles, in vitro toxicity

Procedia PDF Downloads 282
3549 A Stokes Optimal Control Model of Determining Cellular Interaction Forces during Gastrulation

Authors: Yuanhao Gao, Ping Lin, Kees Weijer

Abstract:

An optimal control system model is proposed for the cell flow in the process of chick embryo gastrulation in this paper. The target is to determine the cellular interaction forces which are hard to measure. This paper will take an approach to investigate the forces with the idea of the inverse problem. By choosing the forces as the control variable and regarding the cell flow as Stokes fluid, an objective functional will be established to match the numerical result of cell velocity with the experimental data. So that the forces could be determined by minimizing the objective functional. The Lagrange multiplier method is utilized to derive the state and adjoint equations consisting the optimal control system, which specifies the first-order necessary conditions. Finite element method is used to discretize and approximate equations. A conjugate gradient algorithm is given for solving the minimum solution of the system and determine the forces.

Keywords: optimal control model, Stokes equation, conjugate gradient method, finite element method, chick embryo gastrulation

Procedia PDF Downloads 238
3548 Five-Phase Induction Motor Drive System Driven by Five-Phase Packed U Cell Inverter: Its Modeling and Performance Evaluation

Authors: Mohd Tariq

Abstract:

The three phase system drives produce the problem of more torque pulsations and harmonics. This issue prevents the smooth operation of the drives and it also induces the amount of heat generated thus resulting in an increase in power loss. Higher phase system offers smooth operation of the machines with greater power capacity. Five phase variable-speed induction motor drives are commonly used in various industrial and commercial applications like tractions, electrical vehicles, ship propulsions and conveyor belt drive system. In this work, a comparative analysis of the different modulation schemes applied on the five-level five-phase Packed U Cell (PUC) inverter fed induction motor drives is presented. The performance of the inverter is greatly affected with the modulation schemes applied. The system is modeled, designed, and implemented in MATLAB®/Simulink environment. Experimental validation is done for the prototype of single phase, whereas five phase experimental validation is proposed in the future works.

Keywords: Packed U-Cell (PUC) inverter, five-phase system, pulse width modulation (PWM), induction motor (IM)

Procedia PDF Downloads 166
3547 Development and Characterisation of a Microbioreactor 'Cassette' for Cell Culture Applications

Authors: Nelson Barrientos, Matthew J. Davies, Marco C. Marques, Darren N. Nesbeth, Gary J. Lye, Nicolas Szita

Abstract:

Microbioreactor technology is making important advances towards its application in cell culture and bioprocess development. In particular, the technology promises flexible and controllable devices capable to perform parallelised experimentation at low cost. Currently, state of the art methods (e.g. optical sensors) allow the accurate monitoring of the microbioreactor operation. In addition, the laminar flow regime encountered in these devices allows more predictive fluid dynamics modelling, improving the control over the soluble, physical and mechanical environment of the cells. This work describes the development and characterisation of a novel microbioreactor cassette system (microbioreactor volume is 150 μL. The volumetric oxygen transfer coefficient (KLa) and mixing time have been characterised to be between 25 to 113 h-1 and 0.5 and 0.1 s, respectively. In addition, the Residence time distribution (RTD) analysis confirms that the reactor operates at well mixed conditions. Finally, Staphylococcus carnosus TM300 growth is demonstrated via batch culture experiments. Future work consists in expanding the optics of the microbioreactor design to include the monitoring of variables such as fluorescent protein expression, among others.

Keywords: microbioreactor, cell-culture, fermentation, microfluidics

Procedia PDF Downloads 391
3546 Role of Interleukin 6 on Cell Differentiations in Stem Cells Isolated from Human Exfoliated Deciduous Teeth

Authors: Nunthawan Nowwarote, Waleerat Sukarawan, Prasit Pavasant, Thanaphum Osathanon

Abstract:

Interleukin 6 (IL-6) is a multifunctional cytokine, regulating various biological responses in several tissues. A Recent study shows that IL-6 plays a role in stemness maintenance in stem cells isolated from human exfoliated deciduous teeth (SHEDs). However, the role of IL-6 on cell differentiation in SHEDs remains unknown. The present study investigated the effect of IL-6 on SHEDs differentiation. Cells were isolated from dental pulp tissues of human deciduous teeth. Flow cytometry was used to determined mesenchymal stem cell marker expression, and the multipotential differentiation (osteogenic, adipogenic and neurogenic lineage ) was also determined. The mRNA was determined using real-time quantitative polymerase chain reaction, and the phenotypes were confirmed by chemical and immunofluorescence staining. Results demonstrated that SHEDs expressed CD44, CD73, CD90, CD105 but not CD45. Further, the up-regulation of osteogenic, adipogenic and neurogenic marker genes was observed upon maintaining cells in osteogenic, adipogenic and neurogenic induction medium, respectively. The addition of IL-6 induced osteogenic by up-regulated osteogenic marker gene also increased in vitro mineralization. Under neurogenic medium supplement with IL-6, up-regulated neurogenic marker. Whereas, an addition of IL-6 attenuated adipogenic differentiation by SHEDs. In conclusion, this evidence implies that IL-6 may participate in cells differentiation ability of SHEDs.

Keywords: SHEDs, IL-6, cell differentiations, dental pulp

Procedia PDF Downloads 157
3545 A Green Optically Active Hydrogen and Oxygen Generation System Employing Terrestrial and Extra-Terrestrial Ultraviolet Solar Irradiance

Authors: H. Shahid

Abstract:

Due to Ozone layer depletion on earth, the incoming ultraviolet (UV) radiation is recorded at its high index levels such as 25 in South Peru (13.5° S, 3360 m a.s.l.) Also, the planning of human inhabitation on Mars is under discussion where UV radiations are quite high. The exposure to UV is health hazardous and is avoided by UV filters. On the other hand, artificial UV sources are in use for water thermolysis to generate Hydrogen and Oxygen, which are later used as fuels. This paper presents the utility of employing UVA (315-400nm) and UVB (280-315nm) electromagnetic radiation from the solar spectrum to design and implement an optically active, Hydrogen and Oxygen generation system via thermolysis of desalinated seawater. The proposed system finds its utility on earth and can be deployed in the future on Mars (UVB). In this system, by using Fresnel lens arrays as an optical filter and via active tracking, the ultraviolet light from the sun is concentrated and then allowed to fall on two sub-systems of the proposed system. The first sub-system generates electrical energy by using UV based tandem photovoltaic cells such as GaAs/GaInP/GaInAs/GaInAsP and the second elevates temperature of water to lower the electric potential required to electrolyze the water. An empirical analysis is performed at 30 atm and an electrical potential is observed to be the main controlling factor for the rate of production of Hydrogen and Oxygen and hence the operating point (Q-Point) of the proposed system. The hydrogen production rate in the case of the commercial system in static mode (650ᵒC, 0.6V) is taken as a reference. The silicon oxide electrolyzer cell (SOEC) is used in the proposed (UV) system for the Hydrogen and Oxygen production. To achieve the same amount of Hydrogen as in the case of the reference system, with minimum chamber operating temperature of 850ᵒC in static mode, the corresponding required electrical potential is calculated as 0.3V. However, practically, the Hydrogen production rate is observed to be low in comparison to the reference system at 850ᵒC at 0.3V. However, it has been shown empirically that the Hydrogen production can be enhanced and by raising the electrical potential to 0.45V. It increases the production rate to the same level as is of the reference system. Therefore, 850ᵒC and 0.45V are assigned as the Q-point of the proposed system which is actively stabilized via proportional integral derivative controllers which adjust the axial position of the lens arrays for both subsystems. The functionality of the controllers is based on maintaining the chamber fixed at 850ᵒC (minimum operating temperature) and 0.45V; Q-Point to realize the same Hydrogen production rate as-is for the reference system.

Keywords: hydrogen, oxygen, thermolysis, ultraviolet

Procedia PDF Downloads 111
3544 TNF Modulation of Cancer Stem Cells in Renal Clear Cell Carcinoma

Authors: Rafia S. Al-lamki, Jun Wang, Simon Pacey, Jordan Pober, John R. Bradley

Abstract:

Tumor necrosis factor alpha (TNF), signaling through TNFR2, may act an autocrine growth factor for renal tubular epithelial cells. Clear cell renal carcinomas (ccRCC) contain cancer stem cells (CSCs) that give rise to progeny which form the bulk of the tumor. CSCs are rarely in cell cycle and, as non-proliferating cells, resist most chemotherapeutic agents. Thus, recurrence after chemotherapy may result from the survival of CSCs. Therapeutic targeting of both CSCs and the more differentiated bulk tumor populations may provide a more effective strategy for treatment of RCC. In this study, we hypothesized that TNFR2 signaling will induce CSCs in ccRCC to enter cell cycle so that treatment with ligands that engage TNFR2 will render CSCs susceptible to chemotherapy. To test this hypothesis, we have utilized wild-type TNF (wtTNF) or specific muteins selective for TNFR1 (R1TNF) or TNFR2 (R2TNF) to treat either short-term organ cultures of ccRCC and adjacent normal kidney (NK) tissue or cultures of CD133+ cells isolated from ccRCC and adjacent NK, hereafter referred to as stem cell-like cells (SCLCs). The effect of cyclophosphamide (CP), currently an effective anticancer agent, was tested on CD133+SCLCs from ccRCC and NK before and after R2TNF treatment. Responses to TNF were assessed by flow cytometry (FACS), immunofluorescence, and quantitative real-time PCR, TUNEL, and cell viability assays. Cytotoxic effect of CP was analyzed by Annexin V and propidium iodide staining with FACS. In addition, we assessed the effect of TNF on isolated SCLCs differentiation using a three-dimensional (3D) culture system. Clinical samples of ccRCC contain a greater number SCLCs compared to NK and the number of SCSC increases with higher tumor grade. Isolated SCLCs show expression of stemness markers (oct4, Nanog, Sox2, Lin28) but not differentiation markers (cytokeratin, CD31, CD45, and EpCAM). In ccRCC organ cultures, wtTNF and R2TNF increase CD133 and TNFR2 expression and promote cell cycle entry whereas wtTNF and R1TNF increase TNFR1 expression and promote cell death of SCLCs. Similar findings are observed in SCLCs isolated from NK but the effect was greater in SCLCs isolated from ccRCC. Application of CP distinctly triggered apoptotic and necrotic cell death in SLCSs pre-treatment with R2TNF as compared to CP treatment alone, with SCLCs from ccRCC more sensitive to CP compared to SLCS from NK. Furthermore, TNF promotes differentiation of SCLCs to an epithelial phenotype in 3D cultures, confirmed by cytokeratin expression and loss of stemness markers Nanog and Sox2. The differentiated cells show positive expression of TNF and TNFR2. These findings provide evidence that selective engagement of TNFR2 drive CSCs to cell proliferation/differentiation, and targeting of cycling cells with TNFR2 agonist in combination with anti-cancer agents may be a potential therapy for RCC.

Keywords: cancer stem cells, ccRCC, cell cycle, cell death, TNF, TNFR1, TNFR2, CD133

Procedia PDF Downloads 248
3543 Constitutive Flo1p Expression on Strains Bearing Deletions in Genes Involved in Cell Wall Biogenesis

Authors: Lethukuthula Ngobese, Abin Gupthar, Patrick Govender

Abstract:

The ability of yeast cell wall-derived mannoproteins (glycoproteins) to positively contribute to oenological properties has been a key factor that stimulates research initiatives into these industrially important glycoproteins. In addition, and from a fundamental research perspective, yeast cell wall glycoproteins are involved in a wide range of biological interactions. To date, and to the best of our knowledge, our understanding of the fine molecular structure of these mannoproteins is fairly limited. Generally, the amino acid sequences of their protein moieties have been established from structural and functional analysis of the genomic sequence of these yeasts whilst far less information is available on the glycosyl moieties of these mannoproteins. A novel strategy was devised in this study that entails the genetic engineering of yeast strains that over-express and release cell wall-associated glycoproteins into the liquid growth medium. To this end, the Flo1p mannoprotein was overexpressed in Saccharomyces cerevisiae laboratory strains bearing a specific deletion in KNR4 and GPI7 genes involved in cell wall biosynthesis that have been previously shown to extracellularly hyper-secrete cell wall-associated glycoproteins. A polymerase chain reaction (PCR) -based cloning strategy was employed to generate transgenic yeast strains in which the native cell wall FLO1 glycoprotein-encoding gene is brought under transcriptional control of the constitutive PGK1 promoter. The modified Helm’s flocculation assay was employed to assess flocculation intensities of a Flo1p over-expressing wild type and deletion mutant as an indirect measure of their abilities to release the desired mannoprotein. The flocculation intensities of the transformed strains were assessed and all the strains showed similar intensities (>98% flocculation). To assess if mannoproteins were released into the growth medium, the supernatant of each strain was subjected to the BCA protein assay and the transformed Δknr4 strain showed a considerable increase in protein levels. This study has the potential to produce mannoproteins in sufficient quantities that may be employed in future investigations to understand their molecular structures and mechanisms of interaction to the benefit of both fundamental and industrial applications.

Keywords: glycoproteins, genetic engineering, flocculation, over-expression

Procedia PDF Downloads 397
3542 Optimizing Cell Culture Performance in an Ambr15 Microbioreactor Using Dynamic Flux Balance and Computational Fluid Dynamic Modelling

Authors: William Kelly, Sorelle Veigne, Xianhua Li, Zuyi Huang, Shyamsundar Subramanian, Eugene Schaefer

Abstract:

The ambr15™ bioreactor is a single-use microbioreactor for cell line development and process optimization. The ambr system offers fully automatic liquid handling with the possibility of fed-batch operation and automatic control of pH and oxygen delivery. With operating conditions for large scale biopharmaceutical production properly scaled down, micro bioreactors such as the ambr15™ can potentially be used to predict the effect of process changes such as modified media or different cell lines. In this study, gassing rates and dilution rates were varied for a semi-continuous cell culture system in the ambr15™ bioreactor. The corresponding changes to metabolite production and consumption, as well as cell growth rate and therapeutic protein production were measured. Conditions were identified in the ambr15™ bioreactor that produced metabolic shifts and specific metabolic and protein production rates also seen in the corresponding larger (5 liter) scale perfusion process. A Dynamic Flux Balance model was employed to understand and predict the metabolic changes observed. The DFB model-predicted trends observed experimentally, including lower specific glucose consumption when CO₂ was maintained at higher levels (i.e. 100 mm Hg) in the broth. A Computational Fluid Dynamic (CFD) model of the ambr15™ was also developed, to understand transfer of O₂ and CO₂ to the liquid. This CFD model predicted gas-liquid flow in the bioreactor using the ANSYS software. The two-phase flow equations were solved via an Eulerian method, with population balance equations tracking the size of the gas bubbles resulting from breakage and coalescence. Reasonable results were obtained in that the Carbon Dioxide mass transfer coefficient (kLa) and the air hold up increased with higher gas flow rate. Volume-averaged kLa values at 500 RPM increased as the gas flow rate was doubled and matched experimentally determined values. These results form a solid basis for optimizing the ambr15™, using both CFD and FBA modelling approaches together, for use in microscale simulations of larger scale cell culture processes.

Keywords: cell culture, computational fluid dynamics, dynamic flux balance analysis, microbioreactor

Procedia PDF Downloads 260
3541 Maximum Power Point Tracking Based on Estimated Power for PV Energy Conversion System

Authors: Zainab Almukhtar, Adel Merabet

Abstract:

In this paper, a method for maximum power point tracking of a photovoltaic energy conversion system is presented. This method is based on using the difference between the power from the solar panel and an estimated power value to control the DC-DC converter of the photovoltaic system. The difference is continuously compared with a preset error permitted value. If the power difference is more than the error, the estimated power is multiplied by a factor and the operation is repeated until the difference is less or equal to the threshold error. The difference in power will be used to trigger a DC-DC boost converter in order to raise the voltage to where the maximum power point is achieved. The proposed method was experimentally verified through a PV energy conversion system driven by the OPAL-RT real time controller. The method was tested on varying radiation conditions and load requirements, and the Photovoltaic Panel was operated at its maximum power in different conditions of irradiation.

Keywords: control system, error, solar panel, MPPT tracking

Procedia PDF Downloads 255
3540 Electricity Production Enhancement in a Constructed Microbial Fuel Cell MFC Using Iron Nanoparticles

Authors: Khaoula Bensaida, Osama Eljamal

Abstract:

The electrical energy generation through Microbial Fuel Cells (MFCs) using microorganisms is a renewable and sustainable approach. It creates truly an efficient technology for power production and wastewater treatment. MFC is an electrochemical device which turns wastewater into electricity. The most important part of MFC is microbes. Nano zero-valent Iron NZVI technique was successfully applied in degrading the chemical pollutants and cleaning wastewater. However, the use of NZVI for enhancing the current production is still not confirmed yet. This study aims to confirm the effect of these particles on the current generation by using MFC. A constructed microbial fuel cell, which utilizes domestic wastewater, has been considered for wastewater treatment and bio-electricity generation. The two electrodes were connected to an external resistor (200 ohms). Experiments were conducted in two steps. First, the MFC was constructed without adding NZVI particles (Control) while at a second step, nanoparticles were added with a concentration of 50mg/L. After 20 hours, the measured voltage increased to 5 and 8mV, respectively. To conclude, the use of zero-valent iron in an MFC system can increase electricity generation.

Keywords: bacterial growth, electricity generation, microbial fuel cell MFC, nano zero-valent iron NZVI.

Procedia PDF Downloads 130