Search results for: conventional extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5310

Search results for: conventional extraction

4050 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine

Authors: Djamila Benhaddouche, Abdelkader Benyettou

Abstract:

In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.

Keywords: biomedical data, learning, classifier, algorithms decision tree, knowledge extraction

Procedia PDF Downloads 536
4049 Isolation and Synthesis of 1’-S-1’-Acetoxycavicol Acetate as Potent Antidandruff Agent

Authors: M. Vijaya Bhaskar Reddy

Abstract:

The air-dried and powdered methanol solvent extraction of the rhizomes of Alpinia galangal is subjected to bio-assay guided fractionation and isolation yielded a known compound namely, 1'-S-1'-Acetoxychavicol acetate (1). The isolated known compound has been identified based on the physical, spectral data (IR, ¹H, ¹³C, NMR and mass spectroscopy) and comparison with an authentic sample. Finally isolated 1'-S-1'-Acetoxychavicol acetate (1) was confirmed by synthesis. The crude methanol extract and identified known compound (1) were tested for antidandruff property against Malassezia furfur showed with MIC 1000 µg/mL and 7.81 µg/mL, respectively.

Keywords: Alpinia galanga, isolation, 1'-S-1'-Acetoxychavicol acetate, antidandruff activity, Malassezia furfur

Procedia PDF Downloads 156
4048 Identification of Coauthors in Scientific Database

Authors: Thiago M. R Dias, Gray F. Moita

Abstract:

The analysis of scientific collaboration networks has contributed significantly to improving the understanding of how does the process of collaboration between researchers and also to understand how the evolution of scientific production of researchers or research groups occurs. However, the identification of collaborations in large scientific databases is not a trivial task given the high computational cost of the methods commonly used. This paper proposes a method for identifying collaboration in large data base of curriculum researchers. The proposed method has low computational cost with satisfactory results, proving to be an interesting alternative for the modeling and characterization of large scientific collaboration networks.

Keywords: extraction, data integration, information retrieval, scientific collaboration

Procedia PDF Downloads 379
4047 FPGA Implementation of the BB84 Protocol

Authors: Jaouadi Ikram, Machhout Mohsen

Abstract:

The development of a quantum key distribution (QKD) system on a field-programmable gate array (FPGA) platform is the subject of this paper. A quantum cryptographic protocol is designed based on the properties of quantum information and the characteristics of FPGAs. The proposed protocol performs key extraction, reconciliation, error correction, and privacy amplification tasks to generate a perfectly secret final key. We modeled the presence of the spy in our system with a strategy to reveal some of the exchanged information without being noticed. Using an FPGA card with a 100 MHz clock frequency, we have demonstrated the evolution of the error rate as well as the amounts of mutual information (between the two interlocutors and that of the spy) passing from one step to another in the key generation process.

Keywords: QKD, BB84, protocol, cryptography, FPGA, key, security, communication

Procedia PDF Downloads 167
4046 Lipase-Catalyzed Synthesis of Novel Nutraceutical Structured Lipids in Non-Conventional Media

Authors: Selim Kermasha

Abstract:

A process for the synthesis of structured lipids (SLs) by the lipase-catalyzed interesterification of selected endogenous edible oils such as flaxseed oil (FO) and medium-chain triacylglyceols such as tricaprylin (TC) in non-conventional media (NCM), including organic solvent media (OSM) and solvent-free medium (SFM), was developed. The bioconversion yield of the medium-long-medium-type SLs (MLM-SLs were monitored as the responses with use of selected commercial lipases. In order to optimize the interesterification reaction and to establish a model system, a wide range of reaction parameters, including TC to FO molar ratio, reaction temperature, enzyme concentration, reaction time, agitation speed and initial water activity, were investigated to establish the a model system. The model system was monitored with the use of multiple response surface methodology (RSM) was used to obtain significant models for the responses and to optimize the interesterification reaction, on the basis of selected levels and variable fractional factorial design (FFD) with centre points. Based on the objective of each response, the appropriate level combination of the process parameters and the solutions that met the defined criteria were also provided by means of desirability function. The synthesized novel molecules were structurally characterized, using silver-ion reversed-phase high-performance liquid chromatography (RP-HPLC) atmospheric pressure chemical ionization-mass spectrophotometry (APCI-MS) analyses. The overall experimental findings confirmed the formation of dicaprylyl-linolenyl glycerol, dicaprylyl-oleyl glycerol and dicaprylyl-linoleyl glycerol resulted from the lipase-catalyzed interesterification of FO and TC.

Keywords: enzymatic interesterification, non-conventinal media, nutraceuticals, structured lipids

Procedia PDF Downloads 283
4045 Study of Ageing in the Marine Environment of Bonded Composite Structures by Ultrasonic Guided Waves. Comparison of the Case of a Conventional Carbon-epoxy Composite and a Recyclable Resin-Based Composite

Authors: Hamza Hafidi Alaoui, Damien Leduc, Mounsif Ech Cherif El Kettani

Abstract:

This study is dedicated to the evaluation of the ageing of turbine blades in sea conditions, based on ultrasonic Non Destructive Testing (NDT) methods. This study is being developed within the framework of the European Interreg TIGER project. The Tidal Stream Industry Energiser Project, known as TIGER, is the biggest ever Interreg project driving collaboration and cost reductionthrough tidal turbine installations in the UK and France. The TIGER project will drive the growth of tidal stream energy to become a greater part of the energy mix, with significant benefits for coastal communities. In the bay of Paimpol-Bréhat (Brittany), different samples of composite material and bonded composite/composite structures have been immersed at the same time near a turbine. The studied samples are either conventional carbon-epoxy composite samples or composite samples based on a recyclable resin (called recyclamine). One of the objectives of the study is to compare the ageing of the two types of structure. A sample of each structure is picked up every 3 to 6 months and analyzed using ultrasonic guided waves and bulk waves and compared to reference samples. In order to classify the damage level as a function of time spent under the sea, the measure have been compared to a rheological model based on the Finite Elements Method (FEM). Ageing of the composite material, as well as that of the adhesive, is identified. The aim is to improve the quality of the turbine blade structure in terms of longevity and reduced maintenance needs.

Keywords: non-destructive testing, ultrasound, composites, guides waves

Procedia PDF Downloads 207
4044 A Simulation Study of Direct Injection Compressed Natural Gas Spark Ignition Engine Performance Utilizing Turbulent Jet Ignition with Controlled Air Charge

Authors: Siyamak Ziyaei, Siti Khalijah Mazlan, Petros Lappas

Abstract:

Compressed Natural Gas (CNG) mainly consists of Methane CH₄ and has a low carbon to hydrogen ratio relative to other hydrocarbons. As a result, it has the potential to reduce CO₂ emissions by more than 20% relative to conventional fuels like diesel or gasoline Although Natural Gas (NG) has environmental advantages compared to other hydrocarbon fuels whether they are gaseous or liquid, its main component, CH₄, burns at a slower rate than conventional fuels A higher pressure and a leaner cylinder environment will overemphasize slow burn characteristic of CH₄. Lean combustion and high compression ratios are well-known methods for increasing the efficiency of internal combustion engines. In order to achieve successful CNG lean combustion in Spark Ignition (SI) engines, a strong ignition system is essential to avoid engine misfires, especially in ultra-lean conditions. Turbulent Jet Ignition (TJI) is an ignition system that employs a pre-combustion chamber to ignite the lean fuel mixture in the main combustion chamber using a fraction of the total fuel per cycle. TJI enables ultra-lean combustion by providing distributed ignition sites through orifices. The fast burn rate provided by TJI enables the ordinary SI engine to be comparable to other combustion systems such as Homogeneous Charge Compression Ignition (HCCI) or Controlled Auto-Ignition (CAI) in terms of thermal efficiency, through the increased levels of dilution without the need of sophisticated control systems. Due to the physical geometry of TJIs, which contain small orifices that connect the prechamber to the main chamber, scavenging is one of the main factors that reduce TJI performance. Specifically, providing the right mixture of fuel and air has been identified as a key challenge. The reason for this is the insufficient amount of air that is pushed into the pre-chamber during each compression stroke. There is also the problem that combustion residual gases such as CO₂, CO and NOx from the previous combustion cycle dilute the pre- chamber fuel-air mixture preventing rapid combustion in the pre-chamber. An air-controlled active TJI is presented in this paper in order to address these issues. By applying air to the pre-chamber at a sufficient pressure, residual gases are exhausted, and the air-fuel ratio is controlled within the pre-chamber, thereby improving the quality of combustion. This paper investigates the 3D-simulated combustion characteristics of a Direct Injected (DI-CNG) fuelled SI en- gine with a pre-chamber equipped with an air channel by using AVL FIRE software. Experiments and simulations were performed at the Worldwide Mapping Point (WWMP) at 1500 Revolutions Per Minute (RPM), 3.3 bar Indicated Mean Effective Pressure (IMEP), using only conventional spark plugs as the baseline. After validating simulation data, baseline engine conditions were set for all simulation scenarios at λ=1. Following that, the pre-chambers with and without an auxiliary fuel supply were simulated. In the simulated (DI-CNG) SI engine, active TJI was observed to perform better than passive TJI and spark plug. In conclusion, the active pre-chamber with an air channel demon-strated an improved thermal efficiency (ηth) over other counterparts and conventional spark ignition systems.

Keywords: turbulent jet ignition, active air control turbulent jet ignition, pre-chamber ignition system, active and passive pre-chamber, thermal efficiency, methane combustion, internal combustion engine combustion emissions

Procedia PDF Downloads 74
4043 Diagnostic and Prognostic Use of Kinetics of Microrna and Cardiac Biomarker in Acute Myocardial Infarction

Authors: V. Kuzhandai Velu, R. Ramesh

Abstract:

Background and objectives: Acute myocardial infarction (AMI) is the most common cause of mortality and morbidity. Over the last decade, microRNAs (miRs) have emerged as a potential marker for detecting AMI. The current study evaluates the kinetics and importance of miRs in the differential diagnosis of ST-segment elevated MI (STEMI) and non-STEMI (NSTEMI) and its correlation to conventional biomarkers and to predict the immediate outcome of AMI for arrhythmias and left ventricular (LV) dysfunction. Materials and Method: A total of 100 AMI patients were recruited for the study. Routine cardiac biomarker and miRNA levels were measured during diagnosis and serially at admission, 6, 12, 24, and 72hrs. The baseline biochemical parameters were analyzed. The expression of miRs was compared between STEMI and NSTEMI at different time intervals. Diagnostic utility of miR-1, miR-133, miR-208, and miR-499 levels were analyzed by using RT-PCR and with various diagnostics statistical tools like ROC, odds ratio, and likelihood ratio. Results: The miR-1, miR-133, and miR-499 showed peak concentration at 6 hours, whereas miR-208 showed high significant differences at all time intervals. miR-133 demonstrated the maximum area under the curve at different time intervals in the differential diagnosis of STEMI and NSTEMI which was followed by miR-499 and miR-208. Evaluation of miRs for predicting arrhythmia and LV dysfunction using admission sample demonstrated that miR-1 (OR = 8.64; LR = 1.76) and miR-208 (OR = 26.25; LR = 5.96) showed maximum odds ratio and likelihood respectively. Conclusion: Circulating miRNA showed a highly significant difference between STEMI and NSTEMI in AMI patients. The peak was much earlier than the conventional biomarkers. miR-133, miR-208, and miR-499 can be used in the differential diagnosis of STEMI and NSTEMI, whereas miR-1 and miR-208 could be used in the prediction of arrhythmia and LV dysfunction, respectively.

Keywords: myocardial infarction, cardiac biomarkers, microRNA, arrhythmia, left ventricular dysfunction

Procedia PDF Downloads 112
4042 Time-Domain Expressions for Bridge Self-Excited Aerodynamic Forces by Modified Particle Swarm Optimizer

Authors: Hao-Su Liu, Jun-Qing Lei

Abstract:

This study introduces the theory of modified particle swarm optimizer and its application in time-domain expressions for bridge self-excited aerodynamic forces. Based on the indicial function expression and the rational function expression in time-domain expression for bridge self-excited aerodynamic forces, the characteristics of the two methods, i.e. the modified particle swarm optimizer and conventional search method, are compared in flutter derivatives’ fitting process. Theoretical analysis and numerical results indicate that adopting whether the indicial function expression or the rational function expression, the fitting flutter derivatives obtained by modified particle swarm optimizer have better goodness of fit with ones obtained from experiment. As to the flutter derivatives which have higher nonlinearity, the self-excited aerodynamic forces, using the flutter derivatives obtained through modified particle swarm optimizer fitting process, are much closer to the ones simulated by the experimental. The modified particle swarm optimizer was used to recognize the parameters of time-domain expressions for flutter derivatives of an actual long-span highway-railway truss bridge with double decks at the wind attack angle of 0°, -3° and +3°. It was found that this method could solve the bounded problems of attenuation coefficient effectively in conventional search method, and had the ability of searching in unboundedly area. Accordingly, this study provides a method for engineering industry to frequently and efficiently obtain the time-domain expressions for bridge self-excited aerodynamic forces.

Keywords: time-domain expressions, bridge self-excited aerodynamic forces, modified particle swarm optimizer, long-span highway-railway truss bridge

Procedia PDF Downloads 303
4041 Application of a Universal Distortion Correction Method in Stereo-Based Digital Image Correlation Measurement

Authors: Hu Zhenxing, Gao Jianxin

Abstract:

Stereo-based digital image correlation (also referred to as three-dimensional (3D) digital image correlation (DIC)) is a technique for both 3D shape and surface deformation measurement of a component, which has found increasing applications in academia and industries. The accuracy of the reconstructed coordinate depends on many factors such as configuration of the setup, stereo-matching, distortion, etc. Most of these factors have been investigated in literature. For instance, the configuration of a binocular vision system determines the systematic errors. The stereo-matching errors depend on the speckle quality and the matching algorithm, which can only be controlled in a limited range. And the distortion is non-linear particularly in a complex imaging acquisition system. Thus, the distortion correction should be carefully considered. Moreover, the distortion function is difficult to formulate in a complex imaging acquisition system using conventional models in such cases where microscopes and other complex lenses are involved. The errors of the distortion correction will propagate to the reconstructed 3D coordinates. To address the problem, an accurate mapping method based on 2D B-spline functions is proposed in this study. The mapping functions are used to convert the distorted coordinates into an ideal plane without distortions. This approach is suitable for any image acquisition distortion models. It is used as a prior process to convert the distorted coordinate to an ideal position, which enables the camera to conform to the pin-hole model. A procedure of this approach is presented for stereo-based DIC. Using 3D speckle image generation, numerical simulations were carried out to compare the accuracy of both the conventional method and the proposed approach.

Keywords: distortion, stereo-based digital image correlation, b-spline, 3D, 2D

Procedia PDF Downloads 484
4040 Advanced Technology for Natural Gas Liquids (NGL) Recovery Using Residue Gas Split

Authors: Riddhiman Sherlekar, Umang Paladia, Rachit Desai, Yash Patel

Abstract:

The competitive scenario of the oil and gas market is a challenge for today’s plant designers to achieve designs that meet client expectations with shrinking budgets, safety requirements, and operating flexibility. Natural Gas Liquids have three main industrial uses. They can be used as fuels, or as petrochemical feedstock or as refinery blends that can be further processed and sold as straight run cuts, such as naphtha, kerosene and gas oil. NGL extraction is not a chemical reaction. It involves the separation of heavier hydrocarbons from the main gas stream through pressure as temperature reduction, which depending upon the degree of NGL extraction may involve cryogenic process. Previous technologies i.e. short cycle dry desiccant absorption, Joule-Thompson or Low temperature refrigeration, lean oil absorption have been giving results of only 40 to 45% ethane recoveries, which were unsatisfying depending upon the current scenario of down turn market. Here new technology has been suggested for boosting up the recoveries of ethane+ up to 95% and up to 99% for propane+ components. Cryogenic plants provide reboiling to demethanizers by using part of inlet feed gas, or inlet feed split. If the two stream temperatures are not similar, there is lost work in the mixing operation unless the designer has access to some proprietary design. The concept introduced in this process consists of reboiling the demethanizer with the residue gas, or residue gas split. The innovation of this process is that it does not use the typical inlet gas feed split type of flow arrangement to reboil the demethanizer or deethanizer column, but instead uses an open heat pump scheme to that effect. The residue gas compressor provides the heat pump effect. The heat pump stream is then further cooled and entered in the top section of the column as a cold reflux. Because of the nature of this design, this process offers the opportunity to operate at full ethane rejection or recovery. The scheme is also very adaptable to revamp existing facilities. This advancement can be proven not only in enhancing the results but also provides operational flexibility, optimize heat exchange, introduces equipment cost reduction, opens a future for the innovative designs while keeping execution costs low.

Keywords: deethanizer, demethanizer, residue gas, NGL

Procedia PDF Downloads 249
4039 Bulk Transport in Strongly Correlated Topological Insulator Samarium Hexaboride Using Hall Effect and Inverted Resistance Methods

Authors: Alexa Rakoski, Yun Suk Eo, Cagliyan Kurdak, Priscila F. S. Rosa, Zachary Fisk, Monica Ciomaga Hatnean, Geetha Balakrishnan, Boyoun Kang, Myungsuk Song, Byungki Cho

Abstract:

Samarium hexaboride (SmB6) is a strongly correlated mixed valence material and Kondo insulator. In the resistance-temperature curve, SmB6 exhibits activated behavior from 4-40 K after the Kondo gap forms. However, below 4 K, the resistivity is temperature independent or weakly temperature dependent due to the appearance of a topologically protected surface state. Current research suggests that the surface of SmB6 is conductive while the bulk is truly insulating, different from conventional 3D TIs (Topological Insulators) like Bi₂Se₃ which are plagued by bulk conduction due to impurities. To better understand why the bulk of SmB6 is so different from conventional TIs, this study employed a new method, called inverted resistance, to explore the lowest temperatures, as well as standard Hall measurements for the rest of the temperature range. In the inverted resistance method, current flows from an inner contact to an outer ring, and voltage is measured outside of this outer ring. This geometry confines the surface current and allows for measurement of the bulk resistivity even when the conductive surface dominates transport (below 4 K). The results confirm that the bulk of SmB6 is truly insulating down to 2 K. Hall measurements on a number of samples show consistent bulk behavior from 4-40 K, but widely varying behavior among samples above 40 K. This is attributed to a combination of the growth process and purity of the starting material, and the relationship between the high and low temperature behaviors is still being explored.

Keywords: bulk transport, Hall effect, inverted resistance, Kondo insulator, samarium hexaboride, topological insulator

Procedia PDF Downloads 146
4038 Evaluation of Efficiency of Naturally Available Disinfectants and Filter Media in Conventional Gravity Filters

Authors: Abhinav Mane, Kedar Karvande, Shubham Patel, Abhayraj Lodha

Abstract:

Gravity filters are one of the most commonly used, economically viable and moderately efficient water purification systems. Their efficiency is mainly based on the type of filter media installed and its location within the filter mass. Several researchers provide valuable input in decision of the type of filter media. However, the choice is mainly restricted to the chemical combinations of different substances. This makes it very much dependent on the factory made filter media, and no cheap alternatives could be found and used. This paper presents the use of disinfectants and filter medias either available naturally or could be prepared using natural resources in conventional mechanism of gravity filter. A small scale laboratory investigation was made with variation in filter media thickness and its location from the top surface of the filter. A rigid steel frame based custom fabricated test setup was used to facilitate placement of filter media at different height within the filter mass. Finely grinded sun dried Neem (Azadirachta indica) extracts and porous burnt clay pads were used as two distinct filter media and placed in isolation as well as in combination with each other. Ground water available in Marathwada region of Maharashtra, India which mainly consists of harmful materials like Arsenic, Chlorides, Iron, Magnesium and Manganese, etc. was treated in the filters fabricated in the present study. The evaluation was made mainly in terms of the input/output water quality assessment through laboratory tests. The present paper should give a cheap and eco-friendly solution to prepare gravity filter at the merit of household skills and availability.

Keywords: fliter media, gravity filters, natural disinfectants, porous clay pads

Procedia PDF Downloads 242
4037 Detection of Powdery Mildew Disease in Strawberry Using Image Texture and Supervised Classifiers

Authors: Sultan Mahmud, Qamar Zaman, Travis Esau, Young Chang

Abstract:

Strawberry powdery mildew (PM) is a serious disease that has a significant impact on strawberry production. Field scouting is still a major way to find PM disease, which is not only labor intensive but also almost impossible to monitor disease severity. To reduce the loss caused by PM disease and achieve faster automatic detection of the disease, this paper proposes an approach for detection of the disease, based on image texture and classified with support vector machines (SVMs) and k-nearest neighbors (kNNs). The methodology of the proposed study is based on image processing which is composed of five main steps including image acquisition, pre-processing, segmentation, features extraction and classification. Two strawberry fields were used in this study. Images of healthy leaves and leaves infected with PM (Sphaerotheca macularis) disease under artificial cloud lighting condition. Colour thresholding was utilized to segment all images before textural analysis. Colour co-occurrence matrix (CCM) was introduced for extraction of textural features. Forty textural features, related to a physiological parameter of leaves were extracted from CCM of National television system committee (NTSC) luminance, hue, saturation and intensity (HSI) images. The normalized feature data were utilized for training and validation, respectively, using developed classifiers. The classifiers have experimented with internal, external and cross-validations. The best classifier was selected based on their performance and accuracy. Experimental results suggested that SVMs classifier showed 98.33%, 85.33%, 87.33%, 93.33% and 95.0% of accuracy on internal, external-I, external-II, 4-fold cross and 5-fold cross-validation, respectively. Whereas, kNNs results represented 90.0%, 72.00%, 74.66%, 89.33% and 90.3% of classification accuracy, respectively. The outcome of this study demonstrated that SVMs classified PM disease with a highest overall accuracy of 91.86% and 1.1211 seconds of processing time. Therefore, overall results concluded that the proposed study can significantly support an accurate and automatic identification and recognition of strawberry PM disease with SVMs classifier.

Keywords: powdery mildew, image processing, textural analysis, color co-occurrence matrix, support vector machines, k-nearest neighbors

Procedia PDF Downloads 109
4036 Management Effects on Different Sustainable Agricultural with Diverse Topography

Authors: Kusay Wheib, Alexandra Krvchenko

Abstract:

Crop yields are influenced by many factors, including natural ones, such as soil and environmental characteristics of the agricultural land, as well as manmade ones, such as management applications. One of the factors that frequently affect crop yields in undulating Midwest landscapes is topography, which controls the movement of water and nutrients necessary for plant life. The main objective of this study is to examine how field topography influences performance of different management practices in undulated terrain of southwest Michigan. A total of 26 agricultural fields, ranging in size from 1.1 to 7.4 ha, from the Scale-Up at Kellogg Biological Station were included in the study. The two studied factors were crop species with three levels, i.e., corn (Zea mays L.) soybean (Glycine max L.), and wheat (Triticum aestivum L.), and management practice with three levels, i.e., conventional, low input, and organic managements. They were compared under three contrasting topographical settings, namely, summit (includes summits and shoulders), slope (includes backslopes), and depression (includes footslope and toeslope). Yield data of years 2007 through 2012 was processed, cleaned, and filtered, average yield then was calculated for each field, topographic setting, and year. Topography parameters, including terrain, slope, curvature, flow direction and wetness index were computed under ArcGIS environment for each topographic class of each field to seek their effects on yield. Results showed that topographical depressions produced greatest yields in most studied fields, while managements with chemical inputs, both low input and conventional, resulted in higher yields than the organic management.

Keywords: sustainable agriculture, precision agriculture, topography, yield

Procedia PDF Downloads 99
4035 West Meets Islam in Contemporary World, Leadership Perspective

Authors: Muhamad Rosdi Senam, Khairuddin Abdul Rashid, Azila Ahmad Sarkawi, Rapiah Mohd Zaini

Abstract:

Islam is a way of life than merely a religion that covers all facets of Muslim affairs and lifes. It provides the most comprehensive values, principles and guidance that are based on divine sources to all mankind in all spheres including leadership. Islamic leadership is all encompassing and holistic model of leadership that offers the tauhidic paradigm, spiritual and ethical (akhlaq) dimensions that are absent in the modern conventional leadership theories. Islamic leadership has a glorious history of great success from the era of the Prophet S.A.W. and the following caliphs that had conquered almost one third of the world territory during that time, as their leadership was paragon of excellence that followed to the spirits and teachings of the Qur’an and the Sunnah. As the modern civilisation designed by the West takes place, the modern leadership theories has been dominating the world and literature including those in the Muslim countries. However, it is clear that values and principles derived from Islam and the West are distinct, as the Islamic ones are based on divine, the non-Islamics are not indeed as there are based on human rational and judgement. Recent development in business organisations and literature have seen the tendency towards moral, ethical, even spiritual and positive form of leadership such as servant leadership, ethical leadership, authentic leadership and spiritual leadership that found its root in the Islamic model of leadership.This development has surfaced after series of serious ethical dilemma, corporate scandals and leadership crisis in the West. This paper aims to draw a comparative discussions and analysis between the modern conventional leadership theories with the Islamic leadership by highlighting the key dimensions that distinguish the two. It is suggested in this paper that the core dimensions of Islamic leadership are spiritual dimension, moral and ethical dimension and physical dimension which is also paralleled with the roles of khalifah of Allah on earth; relationship with Allah, relationship with human beings and relationship with the environment respectively. Islam is a way of life than merely a religion that covers all facets of Muslim affairs and lifes. It provides the most comprehensive values, principles and guidance that are based on divine sources to all mankind in all spheres including leadership. Islamic leadership is all encompassing and holistic model of leadership that offers the tauhidic paradigm, spiritual and ethical (akhlaq) dimensions that are absent in the modern conventional leadership theories. Islamic leadership has a glorious history of great success from the era of the Prophet S.A.W. and the following caliphs that had conquered almost one third of the world territory during that time, as their leadership was paragon of excellence that followed to the spirits and teachings of the Qur’an and the Sunnah. As the modern civilisation designed by the West takes place, the modern leadership theories has been dominating the world and literature including those in the Muslim countries. However, it is clear that values and principles derived from Islam and the West are distinct, as the Islamic ones are based on divine, the non-Islamics are not indeed as there are based on human rational and judgement. Recent development in business organisations and literature have seen the tendency towards moral, ethical, even spiritual and positive form of leadership such as servant leadership, ethical leadership, authentic leadership and spiritual leadership that found its root in the Islamic model of leadership.This development has surfaced after series of serious ethical dilemma, corporate scandals and leadership crisis in the West. This paper aims to draw a comparative discussions and analysis between the modern conventional leadership theories with the Islamic leadership by highlighting the key dimensions that distinguish the two. It is suggested in this paper that the core dimensions of Islamic leadership are spiritual dimension, moral and ethical dimension and physical dimension which is also paralleled with the roles of khalifah of Allah on earth; relationship with Allah, relationship with human beings and relationship with the environment respectively.

Keywords: conventional leadership, Islamic leadership, comparative, dimensions

Procedia PDF Downloads 510
4034 An Overview of Informal Settlement Upgrading Strategies in Kabul City and the Need for an Integrated Multi-Sector Upgrading Model

Authors: Bashir Ahmad Amiri, Nsenda Lukumwena

Abstract:

The developing economies are experiencing an unprecedented rate of urbanization, mainly the urbanization of poverty which is leading to sprawling of slums and informal settlement. Kabul, being the capital and primate city of Afghanistan is grossly encountered to the informal settlement where the majority of the people consider to be informal. Despite all efforts to upgrade and minimize the growth of these settlements, they are growing rapidly. Various interventions have been taken by the government and some international organizations from physical upgrading to urban renewal, but none of them have succeeded to solve the issue of informal settlement. The magnitude of the urbanization and the complexity of informal settlement in Kabul city, and the institutional and capital constraint of the government calls for integration and optimization of currently practiced strategies. This paper provides an overview of informal settlement formation and the conventional upgrading strategies in Kabul city to identify the dominant/successful practices and rationalize the conventional upgrading modes. For this purpose, Hothkhel has been selected as the case study, since it represents the same situation of major informal settlements of the city. Considering the existing potential and features of the Hothkhel and proposed land use by master plan this paper intends to find a suitable upgrading mode for the study area and finally to scale up the model for the city level upgrading. The result highlights that the informal settlements of Kabul city have high (re)development capacity for accepting the additional room without converting the available agricultural area to built-up. The result also indicates that the integrated multi-sector upgrading has the scale-up potential to increase the reach of beneficiaries and to ensure an inclusive and efficient urbanization.

Keywords: informal settlement, upgrading strategies, Kabul city, urban expansion, integrated multi-sector, scale-up

Procedia PDF Downloads 157
4033 Unlocking the Potential of Neglected Cereal Resources Waste: Exploring Functional Properties of Algerian Pearl Millet Starch via Wet Milling and Ultrasound Techniques

Authors: Sarra Bouhallel, Sara Legbedj, Rima Messaoud, Sofia Saffarbatti

Abstract:

In the context of global waste management and sustainable resource utilization, millets emerge as a vital yet underutilized cereal resource. Despite their exceptional nutritional profile and resilience to harsh environmental conditions, their potential remains largely untapped. This study aims to contribute to the valorization of seven Algerian pearl millet landraces (Pennisetum glaucum (L.) R. Br) from the southern region by focusing on the characterization of their starches. Utilizing both conventional wet milling, incorporating sodium azide as a microbial growth inhibitor, and a novel green technology—Ultrasound-assisted isolation, we explore avenues for enhancing the functional properties of these starches. Analysis of key functional properties such as swelling power and water solubility index reveals significant enhancements, particularly during heat treatment near the gelatinization temperature [70 - 80 °C]. Furthermore, our investigation into the influence of pre-treatment methods on isolated starches highlights the potential of Ultrasound-assisted isolation in reducing absorbency and water solubility compared to conventional methods. Through rigorous data analysis using SPSS software (Version 23), we ascertain the efficiency of Ultrasound-assisted isolation, underscoring its promising role in the valorization of pearl millet waste. This research not only sheds light on the functional properties of pearl millet starch but also underscores the imperative of sustainable waste management in harnessing the full potential of underutilized cereal resources.

Keywords: isolation, solubility, starch, swelling, ultrasound

Procedia PDF Downloads 35
4032 Physico-Chemical Characterization of the Essential Oil of Daucus carota

Authors: Nassima Behidj-Benyounes, Thoraya Dahmene, Khaled Benyounes Nadjiba Chebouti1and F/Zohra Bissaad

Abstract:

Essential oils have a significant antimicrobial activity. These oils can successfully replace the antibiotics. So, the microorganisms show their inefficiencies resistant for the antibiotics. For this reason, we study the physicochemical analysis and antimicrobial activity of the essential oil of Daucus carota. The extraction is done by steam distillation of water which brought us a very significant return of 4.65%. The analysis of the essential oil is performed by GC/MS and has allowed us to identify 32 compounds in the oil of D. carota flowering tops of Bouira. Three of which are in the majority are the α-pinene (22.3%), the carotol (21.7%) and the limonene (15.8%).

Keywords: Daucus carota, essential oil, α-pinene, carotol, limonene

Procedia PDF Downloads 378
4031 Lateral Torsional Buckling Resistance of Trapezoidally Corrugated Web Girders

Authors: Annamária Käferné Rácz, Bence Jáger, Balázs Kövesdi, László Dunai

Abstract:

Due to the numerous advantages of steel corrugated web girders, its application field is growing for bridges as well as for buildings. The global stability behavior of such girders is significantly larger than those of conventional I-girders with flat web, thus the application of the structural steel material can be significantly reduced. Design codes and specifications do not provide clear and complete rules or recommendations for the determination of the lateral torsional buckling (LTB) resistance of corrugated web girders. Therefore, the authors made a thorough investigation regarding the LTB resistance of the corrugated web girders. Finite element (FE) simulations have been performed to develop new design formulas for the determination of the LTB resistance of trapezoidally corrugated web girders. FE model is developed considering geometrical and material nonlinear analysis using equivalent geometric imperfections (GMNI analysis). The equivalent geometric imperfections involve the initial geometric imperfections and residual stresses coming from rolling, welding and flame cutting. Imperfection sensitivity analysis was performed to determine the necessary magnitudes regarding only the first eigenmodes shape imperfections. By the help of the validated FE model, an extended parametric study is carried out to investigate the LTB resistance for different trapezoidal corrugation profiles. First, the critical moment of a specific girder was calculated by FE model. The critical moments from the FE calculations are compared to the previous analytical calculation proposals. Then, nonlinear analysis was carried out to determine the ultimate resistance. Due to the numerical investigations, new proposals are developed for the determination of the LTB resistance of trapezoidally corrugated web girders through a modification factor on the design method related to the conventional flat web girders.

Keywords: corrugated web, lateral torsional buckling, critical moment, FE modeling

Procedia PDF Downloads 271
4030 Analysis of Non-Conventional Roundabout Performance in Mixed Traffic Conditions

Authors: Guneet Saini, Shahrukh, Sunil Sharma

Abstract:

Traffic congestion is the most critical issue faced by those in the transportation profession today. Over the past few years, roundabouts have been recognized as a measure to promote efficiency at intersections globally. In developing countries like India, this type of intersection still faces a lot of issues, such as bottleneck situations, long queues and increased waiting times, due to increasing traffic which in turn affect the performance of the entire urban network. This research is a case study of a non-conventional roundabout, in terms of geometric design, in a small town in India. These types of roundabouts should be analyzed for their functionality in mixed traffic conditions, prevalent in many developing countries. Microscopic traffic simulation is an effective tool to analyze traffic conditions and estimate various measures of operational performance of intersections such as capacity, vehicle delay, queue length and Level of Service (LOS) of urban roadway network. This study involves analyzation of an unsymmetrical non-circular 6-legged roundabout known as “Kala Aam Chauraha” in a small town Bulandshahr in Uttar Pradesh, India using VISSIM simulation package which is the most widely used software for microscopic traffic simulation. For coding in VISSIM, data are collected from the site during morning and evening peak hours of a weekday and then analyzed for base model building. The model is calibrated on driving behavior and vehicle parameters and an optimal set of calibrated parameters is obtained followed by validation of the model to obtain the base model which can replicate the real field conditions. This calibrated and validated model is then used to analyze the prevailing operational traffic performance of the roundabout which is then compared with a proposed alternative to improve efficiency of roundabout network and to accommodate pedestrians in the geometry. The study results show that the alternative proposed is an advantage over the present roundabout as it considerably reduces congestion, vehicle delay and queue length and hence, successfully improves roundabout performance without compromising on pedestrian safety. The study proposes similar designs for modification of existing non-conventional roundabouts experiencing excessive delays and queues in order to improve their efficiency especially in the case of developing countries. From this study, it can be concluded that there is a need to improve the current geometry of such roundabouts to ensure better traffic performance and safety of drivers and pedestrians negotiating the intersection and hence this proposal may be considered as a best fit.

Keywords: operational performance, roundabout, simulation, VISSIM

Procedia PDF Downloads 126
4029 Sustainability in Retaining Wall Construction with Geosynthetics

Authors: Sateesh Kumar Pisini, Swetha Priya Darshini, Sanjay Kumar Shukla

Abstract:

This paper seeks to present a research study on sustainability in construction of retaining wall using geosynthetics. Sustainable construction is a way for the building and infrastructure industry to move towards achieving sustainable development, taking into account environmental, socioeconomic and cultural issues. Geotechnical engineering, being very resource intensive, warrants an environmental sustainability study, but a quantitative framework for assessing the sustainability of geotechnical practices, particularly at the planning and design stages, does not exist. In geotechnical projects, major economic issues to be addressed are in the design and construction of stable slopes and retaining structures within space constraints. In this paper, quantitative indicators for assessing the environmental sustainability of retaining wall with geosynthetics are compared with conventional concrete retaining wall through life cycle assessment (LCA). Geosynthetics can make a real difference in sustainable construction techniques and contribute to development in developing countries in particular. Their imaginative application can result in considerable cost savings over the use of conventional designs and materials. The acceptance of geosynthetics in reinforced retaining wall construction has been triggered by a number of factors, including aesthetics, reliability, simple construction techniques, good seismic performance, and the ability to tolerate large deformations without structural distress. Reinforced retaining wall with geosynthetics is the best cost-effective and eco-friendly solution as compared with traditional concrete retaining wall construction. This paper presents an analysis of the theme of sustainability applied to the design and construction of traditional concrete retaining wall and presenting a cost-effective and environmental solution using geosynthetics.

Keywords: sustainability, retaining wall, geosynthetics, life cycle assessment

Procedia PDF Downloads 2042
4028 Study on the Geometric Similarity in Computational Fluid Dynamics Calculation and the Requirement of Surface Mesh Quality

Authors: Qian Yi Ooi

Abstract:

At present, airfoil parameters are still designed and optimized according to the scale of conventional aircraft, and there are still some slight deviations in terms of scale differences. However, insufficient parameters or poor surface mesh quality is likely to occur if these small deviations are embedded in a future civil aircraft with a size that is quite different from conventional aircraft, such as a blended-wing-body (BWB) aircraft with future potential, resulting in large deviations in geometric similarity in computational fluid dynamics (CFD) simulations. To avoid this situation, the study on the CFD calculation on the geometric similarity of airfoil parameters and the quality of the surface mesh is conducted to obtain the ability of different parameterization methods applied on different airfoil scales. The research objects are three airfoil scales, including the wing root and wingtip of conventional civil aircraft and the wing root of the giant hybrid wing, used by three parameterization methods to compare the calculation differences between different sizes of airfoils. In this study, the constants including NACA 0012, a Reynolds number of 10 million, an angle of attack of zero, a C-grid for meshing, and the k-epsilon (k-ε) turbulence model are used. The experimental variables include three airfoil parameterization methods: point cloud method, B-spline curve method, and class function/shape function transformation (CST) method. The airfoil dimensions are set to 3.98 meters, 17.67 meters, and 48 meters, respectively. In addition, this study also uses different numbers of edge meshing and the same bias factor in the CFD simulation. Studies have shown that with the change of airfoil scales, different parameterization methods, the number of control points, and the meshing number of divisions should be used to improve the accuracy of the aerodynamic performance of the wing. When the airfoil ratio increases, the most basic point cloud parameterization method will require more and larger data to support the accuracy of the airfoil’s aerodynamic performance, which will face the severe test of insufficient computer capacity. On the other hand, when using the B-spline curve method, average number of control points and meshing number of divisions should be set appropriately to obtain higher accuracy; however, the quantitative balance cannot be directly defined, but the decisions should be made repeatedly by adding and subtracting. Lastly, when using the CST method, it is found that limited control points are enough to accurately parameterize the larger-sized wing; a higher degree of accuracy and stability can be obtained by using a lower-performance computer.

Keywords: airfoil, computational fluid dynamics, geometric similarity, surface mesh quality

Procedia PDF Downloads 205
4027 Implementation of Invisible Digital Watermarking

Authors: V. Monisha, D. Sindhuja, M. Sowmiya

Abstract:

Over the decade, the applications about multimedia have been developed rapidly. The advancement in the communication field at the faster pace, it is necessary to protect the data during transmission. Thus, security of multimedia contents becomes a vital issue, and it is a need for protecting the digital content against malfunctions. Digital watermarking becomes the solution for the copyright protection and authentication of data in the network. In multimedia applications, embedded watermarks should be robust, and imperceptible. For improving robustness, the discrete wavelet transform is used. Both encoding and extraction algorithm can be done using MATLAB R2012a. In this Discrete wavelet transform (DWT) domain of digital image, watermarking algorithm is used, and hardware implementation can be done on Xilinx based FPGA.

Keywords: digital watermarking, DWT, robustness, FPGA

Procedia PDF Downloads 397
4026 Microorganism and Laurus nobilis from Mascara - Algeria

Authors: Karima Oldyerou, B. Meddah, A. Tirtouil

Abstract:

Laurusnobilis is an aromatic plant, common in Algeria and widely used by local people as a source of spice and for medicinal purposes. The essential oil of this plant is the subject of this work in a physicochemical and microbiological study. The extraction of the essential oil was carried by steam distillation and the highest yield (1.5%) was determined in May. The organoleptic and physico-chemical characters are consistent with those obtained in the literature with some differences that can be attributed to certain factors. Evaluation of antibacterial activity showed a sensitivity of Salmonella spp. with an MIC of 2,5 mg.ml-1, and other bacteria of the intestinal flora of Wistar rats: E. coli and Lactobacillus sp. have a high potential for resistance with MICs respectively equal to 10 and 20 mg.ml-1.

Keywords: laurus nobilis, essential oil, physicochemical character, MIC, intestinal flora, antibacterial activity

Procedia PDF Downloads 312
4025 Reliability Qualification Test Plan Derivation Method for Weibull Distributed Products

Authors: Ping Jiang, Yunyan Xing, Dian Zhang, Bo Guo

Abstract:

The reliability qualification test (RQT) is widely used in product development to qualify whether the product meets predetermined reliability requirements, which are mainly described in terms of reliability indices, for example, MTBF (Mean Time Between Failures). It is widely exercised in product development. In engineering practices, RQT plans are mandatorily referred to standards, such as MIL-STD-781 or GJB899A-2009. But these conventional RQT plans in standards are not preferred, as the test plans often require long test times or have high risks for both producer and consumer due to the fact that the methods in the standards only use the test data of the product itself. And the standards usually assume that the product is exponentially distributed, which is not suitable for a complex product other than electronics. So it is desirable to develop an RQT plan derivation method that safely shortens test time while keeping the two risks under control. To meet this end, for the product whose lifetime follows Weibull distribution, an RQT plan derivation method is developed. The merit of the method is that expert judgment is taken into account. This is implemented by applying the Bayesian method, which translates the expert judgment into prior information on product reliability. Then producer’s risk and the consumer’s risk are calculated accordingly. The procedures to derive RQT plans are also proposed in this paper. As extra information and expert judgment are added to the derivation, the derived test plans have the potential to shorten the required test time and have satisfactory low risks for both producer and consumer, compared with conventional test plans. A case study is provided to prove that when using expert judgment in deriving product test plans, the proposed method is capable of finding ideal test plans that not only reduce the two risks but also shorten the required test time as well.

Keywords: expert judgment, reliability qualification test, test plan derivation, producer’s risk, consumer’s risk

Procedia PDF Downloads 118
4024 Biodsorption as an Efficient Technology for the Removal of Phosphate, Nitrate and Sulphate Anions in Industrial Wastewater

Authors: Angel Villabona-Ortíz, Candelaria Tejada-Tovar, Andrea Viera-Devoz

Abstract:

Wastewater treatment is an issue of vital importance in these times where the impacts of human activities are most evident, which have become essential tasks for the normal functioning of society. However, they put entire ecosystems at risk by time destroying the possibility of sustainable development. Various conventional technologies are used to remove pollutants from water. Agroindustrial waste is the product with the potential to be used as a renewable raw material for the production of energy and chemical products, and their use is beneficial since products with added value are generated from materials that were not used before. Considering the benefits that the use of residual biomass brings, this project proposes the use of agro-industrial residues from corn crops for the production of natural adsorbents whose purpose is aimed at the remediation of contaminated water bodies with large loads of nutrients. The adsorption capacity of two biomaterials obtained from the processing of corn stalks was evaluated by batch system tests. Biochar impregnated with sulfuric acid and thermally activated was synthesized. On the other hand, the cellulose was extracted from the corn stalks and chemically modified with cetyltrimethylammonium chloride in order to quaternize the surface of the adsorbent. The adsorbents obtained were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), infrared spectrometry with Fourier Transform (FTIR), analysis by Brunauer, Emmett and Teller method (BET) and X-ray Diffraction analysis ( XRD), which showed favorable characteristics for the cellulose extraction process. Higher adsorption capacities of the nutrients were obtained with the use of biochar, with phosphate being the anion with the best removal percentages. The effect of the initial adsorbate concentration was evaluated, with which it was shown that the Freundlich isotherm better describes the adsorption process in most systems. The adsorbent-phosphate / nitrate systems fit better to the Pseudo Primer Order kinetic model, while the adsorbent-sulfate systems showed a better fit to the Pseudo second-order model, which indicates that there are both physical and chemical interactions in the process. Multicomponent adsorption tests revealed that phosphate anions have a higher affinity for both adsorbents. On the other hand, the thermodynamic parameters standard enthalpy (ΔH °) and standard entropy (ΔS °) with negative results indicate the exothermic nature of the process, whereas the ascending values of standard Gibbs free energy (ΔG °). The adsorption process of anions with biocarbon and modified cellulose is spontaneous and exothermic. The use of the evaluated biomateriles is recommended for the treatment of industrial effluents contaminated with sulfate, nitrate and phosphate anions.

Keywords: adsorption, biochar, modified cellulose, corn stalks

Procedia PDF Downloads 165
4023 Fabrication of 3D Scaffold Consisting of Spiral-Like Micro-Sized PCL Struts and Selectively Deposited Nanofibers as a Tissue Regenerative Material

Authors: Gi-Hoon Yang, JongHan Ha, MyungGu Yeo, JaeYoon Lee, SeungHyun Ahn, Hyeongjin Lee, HoJun Jeon, YongBok Kim, Minseong Kim, GeunHyung Kim

Abstract:

Tissue engineering scaffolds must be biocompatible and biodegradable, provide adequate mechanical strength and cell attachment site for proliferation and differentiation. Furthermore, the scaffold morphology (such as pore size, porosity and pore interconnectivity) plays an important role. The electrospinning process has been widely used to fabricate micro/nano-sized fibres. Electrospinning allows for the fabrication of non-woven meshes containing micro- to nano-sized fibers providing high surface-to-volume area for cell attachment. Due to its advantageous characteristics, electrospinning is a useful method for skin, cartilage, bone, and nerve regeneration. In this study, we fabricated PCL scaffolds (SP) consisting of spiral-like struts using 3D melt-plotting system and micro/nanofibers using direct electrospinning writing. By altering the conditions of the conventional melt-plotting method, spiral-like struts were generated. Then, micro/nanofibers were deposited selectively. The control scaffold composed of perpendicular PCL struts was fabricated using the conventional melt-plotting method to compare the cellular activities. The effect on the attached cells (osteoblast-like cells (MG63)) was evaluated depending on the bending instability of the struts. The SP scaffolds showed enhanced biological properties such as initial cell attachment, proliferation and osteogenic differentiation. These results suggest that the SP scaffolds has potential as a bioengineered substitute for soft and hard tissue regeneration.

Keywords: cell attachment, electrospinning, mechanical strength, melt-plotting

Procedia PDF Downloads 305
4022 “SockGEL/PLUG” Injectable Smart/Intelligent and Bio-Inspired Sol-Gel Nanomaterials for Simple and Complex Oro-Dental and Cranio-Maxillo-Facial Interventional Applications

Authors: Ziyad S. Haidar

Abstract:

Millions of teeth are removed annually, and dental extraction is one of the most commonly performed surgical procedures globally. Whether due to caries, periodontal disease or trauma, exodontia and the ensuing wound healing and bone remodeling processes of the resultant socket (hole in the jaw bone) usually result in serious deformities of the residual alveolar osseous ridge and surrounding soft tissues (reduced height/width). Such voluminous changes render the placement of a proper conventional bridge, denture or even an implant-supported prosthesis extremely challenging. Further, most extractions continue to be performed with no regard for preventing the onset of alveolar osteitis (also known as dry socket, a painful and difficult-to-treat/-manage condition post-exodontia). Hence, such serious resorptive morphological changes often result in significant facial deformities and a negative impact on the overall Quality of Life (QoL) of patients (and oral health-related QoL), alarming, particularly for the geriatric with compromised healing and in light of the thriving longevity statistics. Opportunity: Despite advances in tissue/wound grafting, serious limitations continue to exist, including efficacy and clinical outcome predictability, cost, treatment time, expertise and risk of immune reactions. For cases of dry sockets, specifically, the commercially-available and often-prescribed home remedies are highly lacking. Indeed, most are not recommended for use anymore. Alveogyl is a fine example. Hence, there is a great market demand and need for alternative solutions. Solution: Herein, SockGEL/PLUG (patent pending), an all-natural, drug-free and injectable stimuli-responsive hydrogel, was designed, formulated, characterized and evaluated as an osteogenic, angiogenic, anti-microbial and pain-soothing suture-free intra-alveolar dressing, safe and efficacious for use in several oro-dental and cranio-maxillo-facial interventional applications; for example: in fresh dental extraction sockets, immediately post-exodontia. It is composed of FDA-approved, biocompatible and biodegradable polymers, self-assembled electro-statically to formulate a scaffolding matrix to (a) prevent the onset of alveolar osteitis via securing the fibrin-clot in situ and protecting/sealing the socket from contamination/infection; and (b) endogenously promote/accelerate wound healing and bone remodeling to preserve the volume of the alveolus. Findings: The intrinsic properties of the SockGEL/PLUG hydrogel were evaluated physico-chemico-mechanically for safety (cell viability), viscosity, rheology, bio-distribution and essentially, capacity to induce wound healing and osteogenesis (small defect, in vivo) without any signaling cues from exogenous cells, growth factors or drugs. The performed animal model of cranial critical-sized and non-vascularized bone defects shall provide vitally critical insights into the role and mechanism of the employed natural bio-polymer blend and gel product in endogenous reparative regeneration of soft tissues and bone morphogenesis. Alongside, the fine-tuning of our modified formulation method will further tackle appropriateness, reproducibility, scalability, ease and speed in producing stable, biodegradable and sterilizable stimuli (thermo-sensitive and photo-responsive) matrices (3-dimensional interpenetrating yet porous polymeric network) suitable for an intra-socket application, and beyond. Conclusions and Perspective: Findings are anticipated to provide sufficient evidence to translate into pilot clinical trials and validate the bionanomaterial before engaging the market for feasibility, acceptance and cost-effectiveness studies. The SockGEL/PLUG platform is patent pending: SockGEL is a bio-inspired drug-free hydrogel; SockPLUG is a drug-loaded hydrogel designed for complex indications.

Keywords: hydrogel, injectable, dentistry, craniomaxillofacial complex, bioinspired, nanobiotechnology, biopolymer, sol-gel, stimuli-responsive, matrix, tissue engineering, regenerative medicine

Procedia PDF Downloads 54
4021 Encapsulated Bioflavonoids: Nanotechnology Driven Food Waste Utilization

Authors: Niharika Kaushal, Minni Singh

Abstract:

Citrus fruits fall into the category of those commercially grown fruits that constitute an excellent repository of phytochemicals with health-promoting properties. Fruits belonging to the citrus family, when processed by industries, produce tons of agriculture by-products in the form of peels, pulp, and seeds, which normally have no further usage and are commonly discarded. In spite of this, such residues are of paramount importance due to their richness in valuable compounds; therefore, agro-waste is considered a valuable bioresource for various purposes in the food sector. A range of biological properties, including anti-oxidative, anti-cancerous, anti-inflammatory, anti-allergenicity, and anti-aging activity, have been reported for these bioactive compounds. Taking advantage of these inexpensive residual sources requires special attention to extract bioactive compounds. Mandarin (Citrus nobilis X Citrus deliciosa) is a potential source of bioflavonoids with antioxidant properties, and it is increasingly regarded as a functional food. Despite these benefits, flavonoids suffer from a barrier of pre-systemic metabolism in gastric fluid, which impedes their effectiveness. Therefore, colloidal delivery systems can completely overcome the barrier in question. This study involved the extraction and identification of key flavonoids from mandarin biomass. Using a green chemistry approach, supercritical fluid extraction at 330 bar, temperature 40C, and co-solvent 10% ethanol was employed for extraction, and the identification of flavonoids was made by mass spectrometry. As flavonoids are concerned with a limitation, the obtained extract was encapsulated in polylactic-co-glycolic acid (PLGA) matrix using a solvent evaporation method. Additionally, the antioxidant potential was evaluated by the 2,2-diphenylpicrylhydrazyl (DPPH) assay. A release pattern of flavonoids was observed over time using simulated gastrointestinal fluids. From the results, it was observed that the total flavonoids extracted from the mandarin biomass were estimated to be 47.3 ±1.06 mg/ml rutin equivalents as total flavonoids. In the extract, significantly, polymethoxyflavones (PMFs), tangeretin and nobiletin were identified, followed by hesperetin and naringin. The designed flavonoid-PLGA nanoparticles exhibited a particle size between 200-250nm. In addition, the bioengineered nanoparticles had a high entrapment efficiency of nearly 80.0% and maintained stability for more than a year. Flavonoid nanoparticles showed excellent antioxidant activity with an IC50 of 0.55μg/ml. Morphological studies revealed the smooth and spherical shape of nanoparticles as visualized by Field emission scanning electron microscopy (FE-SEM). Simulated gastrointestinal studies of free extract and nanoencapsulation revealed the degradation of nearly half of the flavonoids under harsh acidic conditions in the case of free extract. After encapsulation, flavonoids exhibited sustained release properties, suggesting that polymeric encapsulates are efficient carriers of flavonoids. Thus, such technology-driven and biomass-derived products form the basis for their use in the development of functional foods with improved therapeutic potential and antioxidant properties. As a result, citrus processing waste can be considered a new resource that has high value and can be used for promoting its utilization.

Keywords: citrus, agrowaste, flavonoids, nanoparticles

Procedia PDF Downloads 107