Search results for: accuracy assessment.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9152

Search results for: accuracy assessment.

7892 The Relationship between Human Pose and Intention to Fire a Handgun

Authors: Joshua van Staden, Dane Brown, Karen Bradshaw

Abstract:

Gun violence is a significant problem in modern-day society. Early detection of carried handguns through closed-circuit television (CCTV) can aid in preventing potential gun violence. However, CCTV operators have a limited attention span. Machine learning approaches to automating the detection of dangerous gun carriers provide a way to aid CCTV operators in identifying these individuals. This study provides insight into the relationship between human key points extracted using human pose estimation (HPE) and their intention to fire a weapon. We examine the feature importance of each keypoint and their correlations. We use principal component analysis (PCA) to reduce the feature space and optimize detection. Finally, we run a set of classifiers to determine what form of classifier performs well on this data. We find that hips, shoulders, and knees tend to be crucial aspects of the human pose when making these predictions. Furthermore, the horizontal position plays a larger role than the vertical position. Of the 66 key points, nine principal components could be used to make nonlinear classifications with 86% accuracy. Furthermore, linear classifications could be done with 85% accuracy, showing that there is a degree of linearity in the data.

Keywords: feature engineering, human pose, machine learning, security

Procedia PDF Downloads 91
7891 Electron Impact Ionization Cross-Sections for e-C₅H₅N₅ Scattering

Authors: Manoj Kumar

Abstract:

Ionization cross sections of molecules due to electron impact play an important role in chemical processes in various branches of applied physics, such as radiation chemistry, gas discharges, plasmas etching in semiconductors, planetary upper atmospheric physics, mass spectrometry, etc. In the present work, we have calculated the total ionization cross sections for Adenine (C₅H₅N₅), a biologically important molecule, by electron impact in the incident electron energy range from ionization threshold to 2 keV employing a well-known Jain-Khare semiempirical formulation based on Bethe and Möllor cross sections. In the non-availability of the experimental results, the present results are in good agreement qualitatively as well as quantitatively with available theoretical results. The present results drive our confidence for further investigation of complex bio-molecule with better accuracy. Notwithstanding, the present method can deduce reliable cross-sectional data for complex targets with adequate accuracy and may facilitate the acclimatization of calculated cross-sections into atomic molecular cross-section data sets for modeling codes and other applications.

Keywords: electron impact ionization cross-sections, oscillator strength, jain-khare semiempirical approach

Procedia PDF Downloads 110
7890 Optimizing Perennial Plants Image Classification by Fine-Tuning Deep Neural Networks

Authors: Khairani Binti Supyan, Fatimah Khalid, Mas Rina Mustaffa, Azreen Bin Azman, Amirul Azuani Romle

Abstract:

Perennial plant classification plays a significant role in various agricultural and environmental applications, assisting in plant identification, disease detection, and biodiversity monitoring. Nevertheless, attaining high accuracy in perennial plant image classification remains challenging due to the complex variations in plant appearance, the diverse range of environmental conditions under which images are captured, and the inherent variability in image quality stemming from various factors such as lighting conditions, camera settings, and focus. This paper proposes an adaptation approach to optimize perennial plant image classification by fine-tuning the pre-trained DNNs model. This paper explores the efficacy of fine-tuning prevalent architectures, namely VGG16, ResNet50, and InceptionV3, leveraging transfer learning to tailor the models to the specific characteristics of perennial plant datasets. A subset of the MYLPHerbs dataset consisted of 6 perennial plant species of 13481 images under various environmental conditions that were used in the experiments. Different strategies for fine-tuning, including adjusting learning rates, training set sizes, data augmentation, and architectural modifications, were investigated. The experimental outcomes underscore the effectiveness of fine-tuning deep neural networks for perennial plant image classification, with ResNet50 showcasing the highest accuracy of 99.78%. Despite ResNet50's superior performance, both VGG16 and InceptionV3 achieved commendable accuracy of 99.67% and 99.37%, respectively. The overall outcomes reaffirm the robustness of the fine-tuning approach across different deep neural network architectures, offering insights into strategies for optimizing model performance in the domain of perennial plant image classification.

Keywords: perennial plants, image classification, deep neural networks, fine-tuning, transfer learning, VGG16, ResNet50, InceptionV3

Procedia PDF Downloads 63
7889 An Empirical Study to Predict Myocardial Infarction Using K-Means and Hierarchical Clustering

Authors: Md. Minhazul Islam, Shah Ashisul Abed Nipun, Majharul Islam, Md. Abdur Rakib Rahat, Jonayet Miah, Salsavil Kayyum, Anwar Shadaab, Faiz Al Faisal

Abstract:

The target of this research is to predict Myocardial Infarction using unsupervised Machine Learning algorithms. Myocardial Infarction Prediction related to heart disease is a challenging factor faced by doctors & hospitals. In this prediction, accuracy of the heart disease plays a vital role. From this concern, the authors have analyzed on a myocardial dataset to predict myocardial infarction using some popular Machine Learning algorithms K-Means and Hierarchical Clustering. This research includes a collection of data and the classification of data using Machine Learning Algorithms. The authors collected 345 instances along with 26 attributes from different hospitals in Bangladesh. This data have been collected from patients suffering from myocardial infarction along with other symptoms. This model would be able to find and mine hidden facts from historical Myocardial Infarction cases. The aim of this study is to analyze the accuracy level to predict Myocardial Infarction by using Machine Learning techniques.

Keywords: Machine Learning, K-means, Hierarchical Clustering, Myocardial Infarction, Heart Disease

Procedia PDF Downloads 201
7888 Development of a Rating Scale for Elementary EFL Writing

Authors: Mohammed S. Assiri

Abstract:

In EFL programs, rating scales used in writing assessment are often constructed by intuition. Intuition-based scales tend to provide inaccurate and divisive ratings of learners’ writing performance. Hence, following an empirical approach, this study attempted to develop a rating scale for elementary-level writing at an EFL program in Saudi Arabia. Towards this goal, 98 students’ essays were scored and then coded using comprehensive taxonomy of writing constructs and their measures. An automatic linear modeling was run to find out which measures would best predict essay scores. A nonparametric ANOVA, the Kruskal-Wallis test, was then used to determine which measures could best differentiate among scoring levels. Findings indicated that there were certain measures that could serve as either good predictors of essay scores or differentiators among scoring levels, or both. The main conclusion was that a rating scale can be empirically developed using predictive and discriminative statistical tests.

Keywords: analytic scoring, rating scales, writing assessment, writing constructs, writing performance

Procedia PDF Downloads 461
7887 Evaluation of Competency Training Effectiveness in Chosen Sales Departments

Authors: L. Pigon, S. Kot, J. K. Grabara

Abstract:

Nowadays, with organizations facing the challenges of increasing competitiveness, human capital accumulated by the organization is one of the elements that strongly differentiate between companies. Efficient management in the competition area requires to manage the competencies of their employees to be suitable to the market fluctuations. The aim of the paper was to determine how employee training to improve their competencies is verified. The survey was conducted among 37 respondents involved in selection of training providers and training programs in their enterprises. The results showed that all organizations use training survey as a basic method for evaluation of training effectiveness. Depending on the training contents and organization, the questionnaires contain various questions. Most of these surveys are composed of the three basic blocks: the trainer's assessment, the evaluation of the training contents, the assessment of the materials and the place of the organisation. None of the organization surveys conducted regular job-related observations or examined the attitudes of the training participants.

Keywords: human capital, competencies, training effectiveness, sale department

Procedia PDF Downloads 172
7886 Early Education Assessment Methods

Authors: Anantdeep Kaur, Sharanjeet Singh

Abstract:

Early childhood education and assessment of children is a very essential tool that helps them in their growth and development. Techniques should be developed, and tools should be created in this field as it is a very important learning phase of life. Some information and sources are included for student assessment to provide a record of growth in all developmental areas cognitive, physical, Language, social-emotional, and approaches to learning. As an early childhood educator, it is very important to identify children who need special support and counseling to improve them because they are not mentally mature to discuss with the teacher their problems and needs. It is the duty and responsibility of the educator to assess children from their body language, behavior, and their routine actions about their skills that can be improved and which can take them forward in their future life. And also, children should be assessed with their weaker points because this is the right time to correct them, and they be improved with certain methods and tools by working on them constantly. Observing children regularly with all their facets of development, including intellectual, linguistic, social-emotional, and physical development. Every day, a physical education class should be regulated to check their physical growth activities, which can help to assess their physical activeness and motor abilities. When they are outside on the playgrounds, it is very important to instill environmental understanding among them so that they should know that they are very part of this nature, and it will help them to be one with the universe rather than feeling themselves individually. This technique assists them in living their childhood full of energy all the time. All types of assessments have unique purposes. It is important first to determine what should be measured, then find the program that best assesses those.

Keywords: special needs, motor ability, environmental understanding, physical development

Procedia PDF Downloads 92
7885 Identification of Landslide Features Using Back-Propagation Neural Network on LiDAR Digital Elevation Model

Authors: Chia-Hao Chang, Geng-Gui Wang, Jee-Cheng Wu

Abstract:

The prediction of a landslide is a difficult task because it requires a detailed study of past activities using a complete range of investigative methods to determine the changing condition. In this research, first step, LiDAR 1-meter by 1-meter resolution of digital elevation model (DEM) was used to generate six environmental factors of landslide. Then, back-propagation neural networks (BPNN) was adopted to identify scarp, landslide areas and non-landslide areas. The BPNN uses 6 environmental factors in input layer and 1 output layer. Moreover, 6 landslide areas are used as training areas and 4 landslide areas as test areas in the BPNN. The hidden layer is set to be 1 and 2; the hidden layer neurons are set to be 4, 5, 6, 7 and 8; the learning rates are set to be 0.01, 0.1 and 0.5. When using 1 hidden layer with 7 neurons and the learning rate sets to be 0.5, the result of Network training root mean square error is 0.001388. Finally, evaluation of BPNN classification accuracy by the confusion matrix shows that the overall accuracy can reach 94.4%, and the Kappa value is 0.7464.

Keywords: digital elevation model, DEM, environmental factors, back-propagation neural network, BPNN, LiDAR

Procedia PDF Downloads 143
7884 Residue and Ecological Risk Assessment of Polybrominated Diphenyl Ethers (PBDEs) in Sediment from CauBay River, Vietnam

Authors: Toan Vu Duc, Son Ha Viet

Abstract:

This research presents the first comprehensive survey of congener profiles (7 indicator congeners) of polybrominated diphenyl ethers (PBDEs) in sediment samples covering ten sites in CauBay River, Vietnam. Chemical analyses were carried out in gas chromatography–mass spectrometry (GC–MS) for tri- to hepta- brominated congeners. Results pointed out a non-homogenous contamination of the sediment with ∑7 PBDE values ranging from 8.93 to 25.64ng g−1, reflecting moderate to low contamination closely in conformity to other Asian aquatic environments. The general order of decreasing congener contribution to the total load was: BDE 47 > 99 > 100 > 154, similar to the distribution pattern worldwide. PBDEs had rare risks in the sediment of studied area. However, due to the propensity of PBDEs to accumulate in various compartments of wildlife and human food webs, evaluation of biological tissues should be undertaken as a high priority.

Keywords: residue, risk assessment, PBDEs, sediment

Procedia PDF Downloads 295
7883 Hyperspectral Band Selection for Oil Spill Detection Using Deep Neural Network

Authors: Asmau Mukhtar Ahmed, Olga Duran

Abstract:

Hydrocarbon (HC) spills constitute a significant problem that causes great concern to the environment. With the latest technology (hyperspectral images) and state of the earth techniques (image processing tools), hydrocarbon spills can easily be detected at an early stage to mitigate the effects caused by such menace. In this study; a controlled laboratory experiment was used, and clay soil was mixed and homogenized with different hydrocarbon types (diesel, bio-diesel, and petrol). The different mixtures were scanned with HYSPEX hyperspectral camera under constant illumination to generate the hypersectral datasets used for this experiment. So far, the Short Wave Infrared Region (SWIR) has been exploited in detecting HC spills with excellent accuracy. However, the Near-Infrared Region (NIR) is somewhat unexplored with regards to HC contamination and how it affects the spectrum of soils. In this study, Deep Neural Network (DNN) was applied to the controlled datasets to detect and quantify the amount of HC spills in soils in the Near-Infrared Region. The initial results are extremely encouraging because it indicates that the DNN was able to identify features of HC in the Near-Infrared Region with a good level of accuracy.

Keywords: hydrocarbon, Deep Neural Network, short wave infrared region, near-infrared region, hyperspectral image

Procedia PDF Downloads 108
7882 An Integrated Planning Framework for Sustainable Tourism: Case Study of Tunisia

Authors: S. Halioui, I. Arikan, M. Schmidt

Abstract:

Tourism sector in Tunisia faces several problems that range from economic challenges to environmental degradation and social instability. These problems have been intensified because of the increased competition in the tourism market, the political instability, financial crises, and recently terrorism problems have aggravated the situation. As a consequence, a new framework that promotes sustainable tourism in the country and increases its competitiveness is urgently needed. Planning for sustainable tourism sector requires the integration of complex interactions between economic, social and environmental aspects. Sustainable tourism principles can be implemented with the help of Strategic Environmental Assessment (SEA) process, which ensures the full integration of economic, social and environmental considerations while planning for the tourism sector in Tunisia. Results of the paper have broad implications for policy makers and tourism professionals.

Keywords: sustainable tourism, strategic environmental assessment, tourism planning, policy

Procedia PDF Downloads 486
7881 Emotion Recognition Using Artificial Intelligence

Authors: Rahul Mohite, Lahcen Ouarbya

Abstract:

This paper focuses on the interplay between humans and computer systems and the ability of these systems to understand and respond to human emotions, including non-verbal communication. Current emotion recognition systems are based solely on either facial or verbal expressions. The limitation of these systems is that it requires large training data sets. The paper proposes a system for recognizing human emotions that combines both speech and emotion recognition. The system utilizes advanced techniques such as deep learning and image recognition to identify facial expressions and comprehend emotions. The results show that the proposed system, based on the combination of facial expression and speech, outperforms existing ones, which are based solely either on facial or verbal expressions. The proposed system detects human emotion with an accuracy of 86%, whereas the existing systems have an accuracy of 70% using verbal expression only and 76% using facial expression only. In this paper, the increasing significance and demand for facial recognition technology in emotion recognition are also discussed.

Keywords: facial reputation, expression reputation, deep gaining knowledge of, photo reputation, facial technology, sign processing, photo type

Procedia PDF Downloads 117
7880 Fatigue Crack Behaviour in a Residual Stress Field at Fillet Welds in Ship Structures

Authors: Anurag Niranjan, Michael Fitzpatrick, Yin Jin Janin, Jazeel Chukkan, Niall Smyth

Abstract:

Fillet welds are used in joining longitudinal stiffeners in ship structures. Welding residual stresses in fillet welds are generally distributed in a non-uniform manner, as shown in previous research the residual stress redistribution occurs under the cyclic loading that is experienced by such joints during service, and the combination of the initial residual stress, local constraints, and loading can alter the stress field in ways that are extremely difficult to predict. As the residual stress influences the crack propagation originating from the toe of the fillet welds, full understanding of the residual stress field and how it evolves is very important for structural integrity calculations. Knowledge of the residual stress redistribution in the presence of a flaw is therefore required for better fatigue life prediction. Moreover, defect assessment procedures such as BS7910 offer very limited guidance for flaw acceptance and the associated residual stress redistribution in the assessment of fillet welds. Therefore the objective of this work is to study a surface-breaking flaw at the weld toe region in a fillet weld under cyclic load, in conjunction with residual stress measurement at pre-defined crack depths. This work will provide details of residual stress redistribution under cyclic load in the presence of a crack. The outcome of this project will inform integrity assessment with respect to the treatment of residual stress in fillet welds. Knowledge of the residual stress evolution for this weld geometry will be greatly beneficial for flaw tolerance assessments (BS 7910, API 591).

Keywords: fillet weld, fatigue, residual stress, structure integrity

Procedia PDF Downloads 140
7879 A Case Study on Post-Occupancy Evaluation of User Satisfaction in Higher Educational Buildings

Authors: Yuanhong Zhao, Qingping Yang, Andrew Fox, Tao Zhang

Abstract:

Post-occupancy evaluation (POE) is a systematic approach to assess the actual building performance after the building has been occupied for some time. In this paper, a structured POE assessment was conducted using the building use survey (BUS) methodology in two higher educational buildings in the United Kingdom. This study aims to help close the building performance gap, provide optimized building operation suggestions, and to improve occupants’ satisfaction level. In this research, the questionnaire survey investigated the influences of environmental factors on user satisfaction from the main aspects of building overall design, thermal comfort, perceived control, indoor environment quality for noise, lighting, ventilation, and other non-environmental factors, such as the background information about age, sex, time in buildings, workgroup size, and so on. The results indicate that the occupant satisfaction level with the main aspects of building overall design, indoor environment quality, and thermal comfort in summer and winter on both two buildings, which is lower than the benchmark data. The feedback of this POE assessment has been reported to the building management team to allow managers to develop high-performance building operation plans. Finally, this research provided improvement suggestions to the building operation system to narrow down the performance gap and improve the user work experience satisfaction and productivity level.

Keywords: building performance assessment systems, higher educational buildings, post-occupancy evaluation, user satisfaction

Procedia PDF Downloads 149
7878 Bioanalytical Method Development and Validation of Aminophylline in Rat Plasma Using Reverse Phase High Performance Liquid Chromatography: An Application to Preclinical Pharmacokinetics

Authors: S. G. Vasantharaju, Viswanath Guptha, Raghavendra Shetty

Abstract:

Introduction: Aminophylline is a methylxanthine derivative belonging to the class bronchodilator. From the literature survey, reported methods reveals the solid phase extraction and liquid liquid extraction which is highly variable, time consuming, costly and laborious analysis. Present work aims to develop a simple, highly sensitive, precise and accurate high-performance liquid chromatography method for the quantification of Aminophylline in rat plasma samples which can be utilized for preclinical studies. Method: Reverse Phase high-performance liquid chromatography method. Results: Selectivity: Aminophylline and the internal standard were well separated from the co-eluted components and there was no interference from the endogenous material at the retention time of analyte and the internal standard. The LLOQ measurable with acceptable accuracy and precision for the analyte was 0.5 µg/mL. Linearity: The developed and validated method is linear over the range of 0.5-40.0 µg/mL. The coefficient of determination was found to be greater than 0.9967, indicating the linearity of this method. Accuracy and precision: The accuracy and precision values for intra and inter day studies at low, medium and high quality control samples concentrations of aminophylline in the plasma were within the acceptable limits Extraction recovery: The method produced consistent extraction recovery at all 3 QC levels. The mean extraction recovery of aminophylline was 93.57 ± 1.28% while that of internal standard was 90.70 ± 1.30%. Stability: The results show that aminophylline is stable in rat plasma under the studied stability conditions and that it is also stable for about 30 days when stored at -80˚C. Pharmacokinetic studies: The method was successfully applied to the quantitative estimation of aminophylline rat plasma following its oral administration to rats. Discussion: Preclinical studies require a rapid and sensitive method for estimating the drug concentration in the rat plasma. The method described in our article includes a simple protein precipitation extraction technique with ultraviolet detection for quantification. The present method is simple and robust for fast high-throughput sample analysis with less analysis cost for analyzing aminophylline in biological samples. In this proposed method, no interfering peaks were observed at the elution times of aminophylline and the internal standard. The method also had sufficient selectivity, specificity, precision and accuracy over the concentration range of 0.5 - 40.0 µg/mL. An isocratic separation technique was used underlining the simplicity of the presented method.

Keywords: Aminophyllin, preclinical pharmacokinetics, rat plasma, RPHPLC

Procedia PDF Downloads 219
7877 Assessment of Soil Erosion Risk Using Soil and Water Assessment Tools Model: Case of Siliana Watershed, Northwest Tunisia

Authors: Sana Dridi, Jalel Aouissi, Rafla Attia, Taoufik Hermassi, Thouraya Sahli

Abstract:

Soil erosion is an increasing issue in Mediterranean countries. In Tunisia, the capacity of dam reservoirs continues to decrease as a consequence of soil erosion. This study aims to predict sediment yield to enrich soil management practices using Soil and Water Assessment Tools model (SWAT) in the Siliana watershed (1041.6 km²), located in the northwest of Tunisia. A database was constructed using remote sensing and Geographical Information System. Climatic and flow data were collected from water resources directorates in Tunisia. The SWAT model was built to simulate hydrological processes and sediment transport. A sensitivity analysis, calibration, and validation were performed using SWAT-CUP software. The model calibration of stream flow simulations shows a good performance with NSE and R² values of 0.77 and 0.79, respectively. The model validation shows a very good performance with values of NSE and R² for 0.8 and 0.88, respectively. After calibration and validation of stream flow simulation, the model was used to simulate the soil erosion and sediment load transport. The spatial distributions of soil loss rate for determining the critical sediment source areas show that 63 % of the study area has a low soil loss rate less than 7 t ha⁻¹y⁻¹. The annual average soil loss rate simulated with the SWAT model in the Siliana watershed is 4.62 t ha⁻¹y⁻¹.

Keywords: water erosion, SWAT model, streamflow, SWATCUP, sediment yield

Procedia PDF Downloads 99
7876 Assessment of Sustainability Initiatives at Applied Science University in Bahrain

Authors: Bayan Ahmed Alsaffar

Abstract:

The aim of this study is to assess the sustainability initiatives at Applied Sciences University (ASU) in Bahrain using a mixed-methods approach based on students, staff, and faculty perceptions. The study involves a literature review, interviews with faculty members and students, and a survey of ASU's level of sustainability in education, research, operations, administration, and finance that depended on the Sustainability Tracking, Assessment & Rating System (STARS). STARS is a tool used to evaluate the sustainability performance of higher education institutions. The study concludes that a mixed-methods approach can provide a powerful tool for assessing sustainability initiatives at ASU and ultimately lead to insights that can inform effective strategies for improving sustainability efforts. The current study contributes to the field of sustainability in universities and highlights the importance of user engagement and awareness for achieving sustainability goals.

Keywords: environment, initiatives, society, sustainability, STARS, university

Procedia PDF Downloads 91
7875 Obstacle Classification Method Based on 2D LIDAR Database

Authors: Moohyun Lee, Soojung Hur, Yongwan Park

Abstract:

In this paper is proposed a method uses only LIDAR system to classification an obstacle and determine its type by establishing database for classifying obstacles based on LIDAR. The existing LIDAR system, in determining the recognition of obstruction in an autonomous vehicle, has an advantage in terms of accuracy and shorter recognition time. However, it was difficult to determine the type of obstacle and therefore accurate path planning based on the type of obstacle was not possible. In order to overcome this problem, a method of classifying obstacle type based on existing LIDAR and using the width of obstacle materials was proposed. However, width measurement was not sufficient to improve accuracy. In this research, the width data was used to do the first classification; database for LIDAR intensity data by four major obstacle materials on the road were created; comparison is made to the LIDAR intensity data of actual obstacle materials; and determine the obstacle type by finding the one with highest similarity values. An experiment using an actual autonomous vehicle under real environment shows that data declined in quality in comparison to 3D LIDAR and it was possible to classify obstacle materials using 2D LIDAR.

Keywords: obstacle, classification, database, LIDAR, segmentation, intensity

Procedia PDF Downloads 346
7874 An Occupational Health Risk Assessment for Exposure to Benzene, Toluene, Ethylbenzene and Xylenes: A Case Study of Informal Traders in a Metro Centre (Taxi Rank) in South Africa

Authors: Makhosazana Dubazana

Abstract:

Many South Africans commuters use minibus taxis daily and are connected to the informal transport network through metro centres informally known as Taxi Ranks. Taxi ranks form part of an economic nexus for many informal traders, connecting them to commuters, their prime clientele. They work along designated areas along the periphery of the taxi rank and in between taxi lanes. Informal traders are therefore at risk of adverse health effects associated with the inhalation of exhaust fumes from minibus taxis. Of the exhaust emissions, benzene, toluene, ethylbenzene and xylenes (BTEX) have high toxicity. Purpose: The purpose of this study was to conduct a Human Health Risk Assessment for informal traders, looking at their exposure to BTEX compounds. Methods: The study was conducted in a subsection of a taxi rank which is representative of the entire taxi rank. This subsection has a daily average of 400 minibus taxi moving through it and an average of 60 informal traders working in it. In the health risk assessment, a questionnaire was conducted to understand the occupational behaviour of the informal traders. This was used to deduce the exposure scenarios and sampling locations. Three sampling campaigns were run for an average of 10 hours each covering the average working hours of traders. A gas chronographer was used for collecting continues ambient air samples at 15 min intervals. Results: Over the three sampling days, the average concentrations were, 8.46ppb, 0.63 ppb, 1.27ppb and 1.0ppb for benzene, toluene, ethylbenzene, and xylene respectively. The average cancer risk is 9.46E-03. In several cases, they were incidences of unacceptable risk for the cumulative exposure of all four BTEX compounds. Conclusion: This study adds to the body of knowledge on the Human Health Risk effects of urban BTEX pollution, furthermore focusing on the impact of urban BTEX on high risk personal such as informal traders, in Southern Africa.

Keywords: human health risk assessment, informal traders, occupational risk, urban BTEX

Procedia PDF Downloads 229
7873 Learning, Teaching and Assessing Students’ ESP Skills via Exe and Hot Potatoes Software Programs

Authors: Naira Poghosyan

Abstract:

In knowledge society the content of the studies, the methods used and the requirements for an educator’s professionalism regularly undergo certain changes. It follows that in knowledge society the aim of education is not only to educate professionals for a certain field but also to help students to be aware of cultural values, form human mutual relationship, collaborate, be open, adapt to the new situation, creatively express their ideas, accept responsibility and challenge. In this viewpoint, the development of communicative language competence requires a through coordinated approach to ensure proper comprehension and memorization of subject-specific words starting from high school level. On the other hand, ESP (English for Specific Purposes) teachers and practitioners are increasingly faced with the task of developing and exploiting new ways of assessing their learners’ literacy while learning and teaching ESP. The presentation will highlight the latest achievements in this field. The author will present some practical methodological issues and principles associated with learning, teaching and assessing ESP skills of the learners, using the two software programs of EXE 2.0 and Hot Potatoes 6. On the one hand the author will display the advantages of the two programs as self-learning and self-assessment interactive tools in the course of academic study and professional development of the CLIL learners, on the other hand, she will comprehensively shed light upon some methodological aspects of working out appropriate ways of selection, introduction, consolidation of subject specific materials via EXE 2.0 and Hot Potatoes 6. Then the author will go further to distinguish ESP courses by the general nature of the learners’ specialty identifying three large categories of EST (English for Science and Technology), EBE (English for Business and Economics) and ESS (English for the Social Sciences). The cornerstone of the presentation will be the introduction of the subject titled “The methodology of teaching ESP in non-linguistic institutions”, where a unique case of teaching ESP on Architecture and Construction via EXE 2.0 and Hot Potatoes 6 will be introduced, exemplifying how the introduction, consolidation and assessment can be used as a basis for feedback to the ESP learners in a particular professional field.

Keywords: ESP competences, ESP skill assessment/ self-assessment tool, eXe 2.0 / HotPotatoes software program, ESP teaching strategies and techniques

Procedia PDF Downloads 377
7872 A Numerical Study of the Tidal Currents in the Persian Gulf and Oman Sea

Authors: Fatemeh Sadat Sharifi, A. A. Bidokhti, M. Ezam, F. Ahmadi Givi

Abstract:

This study focuses on the tidal oscillation and its speed to create a general pattern in seas. The purpose of the analysis is to find out the amplitude and phase for several important tidal components. Therefore, Regional Ocean Models (ROMS) was rendered to consider the correlation and accuracy of this pattern. Finding tidal harmonic components allows us to predict tide at this region. Better prediction of these tides, making standard platform, making suitable wave breakers, helping coastal building, navigation, fisheries, port management and tsunami research. Result shows a fair accuracy in the SSH. It reveals tidal currents are highest in Hormuz Strait and the narrow and shallow region between Kish Island. To investigate flow patterns of the region, the results of limited size model of FVCOM were utilized. Many features of the present day view of ocean circulation have some precedent in tidal and long- wave studies. Tidal waves are categorized to be among the long waves. So that tidal currents studies have indeed effects in subsequent studies of sea and ocean circulations.

Keywords: barotropic tide, FVCOM, numerical model, OTPS, ROMS

Procedia PDF Downloads 234
7871 Land Cover Classification Using Sentinel-2 Image Data and Random Forest Algorithm

Authors: Thanh Noi Phan, Martin Kappas, Jan Degener

Abstract:

The currently launched Sentinel 2 (S2) satellite (June, 2015) bring a great potential and opportunities for land use/cover map applications, due to its fine spatial resolution multispectral as well as high temporal resolutions. So far, there are handful studies using S2 real data for land cover classification. Especially in northern Vietnam, to our best knowledge, there exist no studies using S2 data for land cover map application. The aim of this study is to provide the preliminary result of land cover classification using Sentinel -2 data with a rising state – of – art classifier, Random Forest. A case study with heterogeneous land use/cover in the eastern of Hanoi Capital – Vietnam was chosen for this study. All 10 spectral bands of 10 and 20 m pixel size of S2 images were used, the 10 m bands were resampled to 20 m. Among several classified algorithms, supervised Random Forest classifier (RF) was applied because it was reported as one of the most accuracy methods of satellite image classification. The results showed that the red-edge and shortwave infrared (SWIR) bands play an important role in land cover classified results. A very high overall accuracy above 90% of classification results was achieved.

Keywords: classify algorithm, classification, land cover, random forest, sentinel 2, Vietnam

Procedia PDF Downloads 384
7870 Coastal Water Characteristics along the Saudi Arabian Coastline

Authors: Yasser O. Abualnaja1, Alexandra Pavlidou2, Taha Boksmati3, Ahmad Alharbi3, Hammad Alsulmi3, Saleh Omar Maghrabi3, Hassan Mowalad3, Rayan Mutwalli3, James H. Churchill4, Afroditi Androni2, Dionysios Ballas2, Ioannis Hatzianestis2, Harilaos Kontoyiannis2, Angeliki Konstantinopoulou2, Georgios Krokkos1, 5, Georgios Pappas2, Vassilis P. Papadopoulos2, Konstantinos Parinos2, Elvira Plakidi2, Eleni Rousselaki2, Dimitris Velaoras2, Panagiota Zachioti2, Theodore Zoulias2, Ibrahim Hoteit5.

Abstract:

The coastal areas along the Kingdom of Saudi Arabia on both the Red Sea and Arabian Gulf have been witnessing in the past decades an unprecedented economic growth and a rapid increase in anthropogenic activities. Therefore, the Saudi Arabian government has decided to frame a strategy for sustainable development of the coastal and marine environments, which comes in the context of the Vision 2030, aimed at providing the first comprehensive ‘Status Quo Assessment’ of the Kingdom’s coastal and marine environments. This strategy will serve as a baseline assessment for future monitoring activities; this baseline is relied on scientific evidence of the drivers, pressures, and their impact on the environments of the Red Sea and Arabian Gulf. A key element of the assessment was the cumulative pressures of the hotspots analysis, which was developed following the principles of the Driver-Pressure-State-Impact-Response (DPSIR) framework and using the cumulative pressure and impact assessment methodology. Ten hotspot sites were identified, eight in the Red Sea and two in the Arabian Gulf. Thus, multidisciplinary research cruises were conducted throughout the Red Sea and the Arabian Gulf coastal and marine environments in June/July 2021 and September 2021, respectively, in order to understand the relative impact of hydrography and the various pressures on the quality of seawater and sediments. The main objective was to record the physical and biogeochemical parameters along the coastal waters of the Kingdom, tracing the dispersion of contaminants related to specific pressures. The assessment revealed the effect of hydrography on the trophic status of the southern marine coastal areas of the Red Sea. Jeddah Lagoon system seems to face significant eutrophication and pollution challenges, whereas sediments are enriched in some heavy metals in many areas of the Red Sea and the Arabian Gulf. This multidisciplinary research in the Red Sea and the Arabian Gulf coastal waters will pave the way for future detailed environmental monitoring strategies for the Saudi Arabian marine environment.

Keywords: arabian gulf, contaminants, hotspot, red sea

Procedia PDF Downloads 110
7869 Students’ Speech Anxiety in Blended Learning

Authors: Mary Jane B. Suarez

Abstract:

Public speaking anxiety (PSA), also known as speech anxiety, is innumerably persistent in any traditional communication classes, especially for students who learn English as a second language. The speech anxiety intensifies when communication skills assessments have taken their toll in an online or a remote mode of learning due to the perils of the COVID-19 virus. Both teachers and students have experienced vast ambiguity on how to realize a still effective way to teach and learn speaking skills amidst the pandemic. Communication skills assessments like public speaking, oral presentations, and student reporting have defined their new meaning using Google Meet, Zoom, and other online platforms. Though using such technologies has paved for more creative ways for students to acquire and develop communication skills, the effectiveness of using such assessment tools stands in question. This mixed method study aimed to determine the factors that affected the public speaking skills of students in a communication class, to probe on the assessment gaps in assessing speaking skills of students attending online classes vis-à-vis the implementation of remote and blended modalities of learning, and to recommend ways on how to address the public speaking anxieties of students in performing a speaking task online and to bridge the assessment gaps based on the outcome of the study in order to achieve a smooth segue from online to on-ground instructions maneuvering towards a much better post-pandemic academic milieu. Using a convergent parallel design, both quantitative and qualitative data were reconciled by probing on the public speaking anxiety of students and the potential assessment gaps encountered in an online English communication class under remote and blended learning. There were four phases in applying the convergent parallel design. The first phase was the data collection, where both quantitative and qualitative data were collected using document reviews and focus group discussions. The second phase was data analysis, where quantitative data was treated using statistical testing, particularly frequency, percentage, and mean by using Microsoft Excel application and IBM Statistical Package for Social Sciences (SPSS) version 19, and qualitative data was examined using thematic analysis. The third phase was the merging of data analysis results to amalgamate varying comparisons between desired learning competencies versus the actual learning competencies of students. Finally, the fourth phase was the interpretation of merged data that led to the findings that there was a significantly high percentage of students' public speaking anxiety whenever students would deliver speaking tasks online. There were also assessment gaps identified by comparing the desired learning competencies of the formative and alternative assessments implemented and the actual speaking performances of students that showed evidence that public speaking anxiety of students was not properly identified and processed.

Keywords: blended learning, communication skills assessment, public speaking anxiety, speech anxiety

Procedia PDF Downloads 102
7868 A Real Time Ultra-Wideband Location System for Smart Healthcare

Authors: Mingyang Sun, Guozheng Yan, Dasheng Liu, Lei Yang

Abstract:

Driven by the demand of intelligent monitoring in rehabilitation centers or hospitals, a high accuracy real-time location system based on UWB (ultra-wideband) technology was proposed. The system measures precise location of a specific person, traces his movement and visualizes his trajectory on the screen for doctors or administrators. Therefore, doctors could view the position of the patient at any time and find them immediately and exactly when something emergent happens. In our design process, different algorithms were discussed, and their errors were analyzed. In addition, we discussed about a , simple but effective way of correcting the antenna delay error, which turned out to be effective. By choosing the best algorithm and correcting errors with corresponding methods, the system attained a good accuracy. Experiments indicated that the ranging error of the system is lower than 7 cm, the locating error is lower than 20 cm, and the refresh rate exceeds 5 times per second. In future works, by embedding the system in wearable IoT (Internet of Things) devices, it could provide not only physical parameters, but also the activity status of the patient, which would help doctors a lot in performing healthcare.

Keywords: intelligent monitoring, ultra-wideband technology, real-time location, IoT devices, smart healthcare

Procedia PDF Downloads 137
7867 Utilization of Cloud-Based Learning Platform for the Enhancement of IT Onboarding System

Authors: Christian Luarca

Abstract:

The study aims to define the efficiency of e-Trainings by the use of cloud platform as part of the onboarding process for IT support engineers. Traditional lecture based trainings involves human resource to guide and assist new hires as part of onboarding which takes time and effort. The use of electronic medium as a platform for training provides a two-way basic communication that can be done in a repetitive manner. The study focuses on determining the most efficient manner of learning the basic knowledge on IT support in the shortest time possible. This was determined by conducting the same set of knowledge transfer categories in two different approaches, one being the e-Training and the other using the traditional method. Performance assessment will be done by the use of Service Tracker Assessment (STA) Tool and Service Manager. Data gathered from this ongoing study will promote the utilization of e-Trainings in the IT onboarding process.

Keywords: cloud platform, e-Training, efficiency, onboarding

Procedia PDF Downloads 149
7866 An Intelligent Traffic Management System Based on the WiFi and Bluetooth Sensing

Authors: Hamed Hossein Afshari, Shahrzad Jalali, Amir Hossein Ghods, Bijan Raahemi

Abstract:

This paper introduces an automated clustering solution that applies to WiFi/Bluetooth sensing data and is later used for traffic management applications. The paper initially summarizes a number of clustering approaches and thereafter shows their performance for noise removal. In this context, clustering is used to recognize WiFi and Bluetooth MAC addresses that belong to passengers traveling by a public urban transit bus. The main objective is to build an intelligent system that automatically filters out MAC addresses that belong to persons located outside the bus for different routes in the city of Ottawa. The proposed intelligent system alleviates the need for defining restrictive thresholds that however reduces the accuracy as well as the range of applicability of the solution for different routes. This paper moreover discusses the performance benefits of the presented clustering approaches in terms of the accuracy, time and space complexity, and the ease of use. Note that results of clustering can further be used for the purpose of the origin-destination estimation of individual passengers, predicting the traffic load, and intelligent management of urban bus schedules.

Keywords: WiFi-Bluetooth sensing, cluster analysis, artificial intelligence, traffic management

Procedia PDF Downloads 241
7865 Threat Analysis: A Technical Review on Risk Assessment and Management of National Testing Service (NTS)

Authors: Beenish Urooj, Ubaid Ullah, Sidra Riasat

Abstract:

National Testing Service-Pakistan (NTS) is an agency in Pakistan that conducts student success appraisal examinations. In this research paper, we must present a security model for the NTS organization. The security model will depict certain security countermeasures for a better defense against certain types of breaches and system malware. We will provide a security roadmap, which will help the company to execute its further goals to maintain security standards and policies. We also covered multiple aspects in securing the environment of the organization. We introduced the processes, architecture, data classification, auditing approaches, survey responses, data handling, and also training and awareness of risk for the company. The primary contribution is the Risk Survey, based on the maturity model meant to assess and examine employee training and knowledge of risks in the company's activities.

Keywords: NTS, risk assessment, threat factors, security, services

Procedia PDF Downloads 69
7864 Risk Analysis of Leaks from a Subsea Oil Facility Based on Fuzzy Logic Techniques

Authors: Belén Vinaixa Kinnear, Arturo Hidalgo López, Bernardo Elembo Wilasi, Pablo Fernández Pérez, Cecilia Hernández Fuentealba

Abstract:

The expanded use of risk assessment in legislative and corporate decision-making has increased the role of expert judgement in giving data for security-related decision-making. Expert judgements are required in most steps of risk assessment: danger recognizable proof, hazard estimation, risk evaluation, and examination of choices. This paper presents a fault tree analysis (FTA), which implies a probabilistic failure analysis applied to leakage of oil in a subsea production system. In standard FTA, the failure probabilities of items of a framework are treated as exact values while evaluating the failure probability of the top event. There is continuously insufficiency of data for calculating the failure estimation of components within the drilling industry. Therefore, fuzzy hypothesis can be used as a solution to solve the issue. The aim of this paper is to examine the leaks from the Zafiro West subsea oil facility by using fuzzy fault tree analysis (FFTA). As a result, the research has given theoretical and practical contributions to maritime safety and environmental protection. It has been also an effective strategy used traditionally in identifying hazards in nuclear installations and power industries.

Keywords: expert judgment, probability assessment, fault tree analysis, risk analysis, oil pipelines, subsea production system, drilling, quantitative risk analysis, leakage failure, top event, off-shore industry

Procedia PDF Downloads 190
7863 The Reliability of Management Earnings Forecasts in IPO Prospectuses: A Study of Managers’ Forecasting Preferences

Authors: Maha Hammami, Olfa Benouda Sioud

Abstract:

This study investigates the reliability of management earnings forecasts with reference to these two ingredients: verifiability and neutrality. Specifically, we examine the biasedness (or accuracy) of management earnings forecasts and company specific characteristics that can be associated with accuracy. Based on sample of 102 IPO prospectuses published for admission on NYSE Euronext Paris from 2002 to 2010, we found that these forecasts are on average optimistic and two of the five test variables, earnings variability and financial leverage are significant in explaining ex post bias. Acknowledging the possibility that the bias is the result of the managers’ forecasting behavior, we then examine whether managers decide to under-predict, over-predict or forecast accurately for self-serving purposes. Explicitly, we examine the role of financial distress, operating performance, ownership by insiders and the economy state in influencing managers’ forecasting preferences. We find that managers of distressed firms seem to over-predict future earnings. We also find that when managers are given more stock options, they tend to under-predict future earnings. Finally, we conclude that the management earnings forecasts are affected by an intentional bias due to managers’ forecasting preferences.

Keywords: intentional bias, management earnings forecasts, neutrality, verifiability

Procedia PDF Downloads 233